Как рассчитать номинальный ток трансформатора

Обновлено: 13.05.2024

Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.

Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.

Содержание статьи

Сразу заостряю ваше внимание на том вопросе, что приводимые методики не способны точно учесть магнитные свойства сердечника, который может быть выполнен из разных сортов электротехнических стали.

Поэтому реальные электрические характеристики собранного трансформатора могут отличаться на сколько-то вольт или число ампер от полученного расчетного значения. На практике это обычно не критично, но, всегда может быть откорректировано изменением числа количества в одной из обмоток.

Поперечное сечение магнитопровода передает первичную энергию магнитным потоком во вторичную обмотку. Обладая определенным магнитным сопротивлением, оно ограничивает процесс трансформации.

От формы, материала и сечения сердечника зависит мощность, которую можно преобразовывать и нормально передавать во вторичную цепь.

Как пользоваться онлайн калькулятором для расчета трансформатора пошагово

Подготовка исходных данных за 6 простых шагов

Шаг №1. Указание формы сердечника и его поперечного сечения

Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.

Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:

  1. Ширину пластины под катушкой с обмоткой.
  2. Толщину набранного пакета.

Вставьте эти данные в соответствующие ячейки таблицы.

Шаг №2. Выбор напряжений

Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.

Заполните указанные ячейки.

Шаг №3. Частота сигнала переменного тока

По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.

Их создают из других материалов сердечника и рассчитывают иными способами.

Шаг №4. Коэффициент полезного действия

У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.

Но, вы можете откорректировать его значение вручную.

Шаг №5. Магнитная индуктивность

Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.

По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.

Шаг №6. Плотность тока

Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.

Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.

Выполнение онлайн расчета трансформатора

После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.

Онлайн калькулятор (ссылка откроется в новой вкладке)

Как рассчитать силовой трансформатор по формулам за 5 этапов

Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.

По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.

Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода

В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.

Потери мощности во вторичной обмотке оценивают по статистической таблице.

Мощность трансформатора, ватты Коэффициент полезного действия ŋ
15÷50 0,50÷0,80
50÷150 0,80÷0,90
150÷300 0,90÷0,93
300÷1000 0,93÷0,95
>1000 0.95÷0,98

Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.

Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:

  1. для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
  2. у сердечника из Ш-образных пластин Qc=0,7√S1.

Сердечники трансформаторов

Таким образом, первый этап расчета позволяет: зная необходимую величину первичной или вторичной мощности подобрать магнитопровод по форме и поперечному сечению сердечника;или по габаритам имеющегося магнитопровода оценить электрические мощности, которые сможет пропускать проектируемый трансформатор.

Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток

Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.

Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.

Коэффициент трансформации трансформатора

На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.

Этап №3. Как вычислить диаметры медного провода для каждой обмотки

При определении поперечного сечения проводника катушки используется эмпирическое выражение, учитывающее, что плотность тока лежит в пределах 1,8÷3 ампера на квадратный миллиметр.

Расчет диаметра провода

Величину тока в амперах для каждой обмотки мы определили на предыдущем шаге.

Теперь просто извлекаем из нее квадратный корень и умножаем на коэффициент 0,8. Полученное число записываем в миллиметрах. Это расчетный диаметр провода для катушки.

Он подобран с учетом выделения допустимого тепла из-за протекающего по нему тока. Если место в окне сердечника позволяет, то диаметр можно немного увеличить. Тогда эти обмотки будут лучше приспособлены к тепловым нагрузкам.

Когда даже при плотной намотке все витки провода не вмещаются в окне магнитопровода, то его поперечное сечение допустимо чуть уменьшить. Но, такой трансформатор следует использовать для кратковременной работы и последующего охлаждения.

При выборе диаметра провода добиваются оптимального соотношения между его нагревом при эксплуатации и габаритами свободного пространства внутри сердечника, позволяющими разместить все обмотки.

Этап №4. Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты

Вычисление основано на использовании магнитных свойств железа сердечника. Промышленные трансформаторы собираются из разных сортов электротехнической стали, подбираемые под конкретные условия работы. Они рассчитываются по сложным, индивидуальным алгоритмам.

Домашнему мастеру достаются магнитопроводы неизвестной марки, определить электротехнические характеристики которой ему практически не реально. Поэтому формулы учитывают усредненные параметры, которые не сложно откорректировать при наладке.

Для расчета вводится эмпирический коэффициент ω’. Он учитывает величину напряжения в вольтах, которое наводится в одном витке катушки и связан с поперечным сечением магнитопровода Qc (см кв).

Расчет числа витков трансформатора

В первичной обмотке число витков вычислим, как W1= ω’∙U1, а во вторичной — W2= ω’∙U2.

Этап №5. Учет свободного места внутри окна магнитопровода

На этом шаге требуется прикинуть: войдут ли все обмотки в свободное пространство окна сердечника с учетом габаритов катушки.

Для этого допускаем, что провод имеет сечение не круглое, а квадрата со стороной одного диаметра. Тогда при совершенно идеальной плотной укладке он займет площадь, равную произведению единичного сечения на количество витков.

Увеличиваем эту площадь процентов на 30, ибо так идеально намотать витки не получится. Это будет место внутри полостей катушки, а она еще займет определенное пространство.

Далее сравниваем полученные площади для катушек каждой обмотки с окном магнитопровода и делаем выводы.

Второй способ оценки — мотать витки «на удачу». Им можно пользоваться, если новая конструкция перематывается проводом со старых рабочих катушек на том же сердечнике.

4 практических совета по наладке и сборке трансформатора: личный опыт

Сборка магнитопровода

Степень сжатия пластин влияет на шумы, издаваемые железом сердечника при вибрациях от протекающего по нему магнитного потока.

Одновременно не плотное прилегание железа с воздушными зазорами увеличивает магнитное сопротивление, вызывает дополнительные потери энергии.

Если для стягивания пластин используются металлические шпильки, то их надо изолировать от железа сердечника бумажными вставками и картонными шайбами.

Иначе по этому креплению возникнет искусственно созданный короткозамкнутый виток. В нем станет наводиться дополнительная ЭДС, значительно снижающая коэффициент полезного действия.

Состояние изоляции крепежных болтов относительно железа сердечника проверяют мегаомметром с напряжением от 1000 вольт. Показание должно быть не менее 0,5 Мом.

Расчет провода по плотности тока

Оптимальные размеры трансформатора играют важную роль для устройств, работающих при экстремальных нагрузках.

Для питающей обмотки, подключенной к бытовой проводке лучше выбирать плотность тока из расчета 2 А/мм кв, а для остальных — 2,5.

Способы намотки витков

Быстрая навивка на станке «внавал» занимает повышенный объем и нормально работает при относительно небольших диаметрах провода.

Качественную укладку обеспечивает намотка плотными витками один возле другого с расположением их рядами и прокладкой ровными слоями изоляции из конденсаторной бумаги, лакоткани, других материалов.

Хорошо подходят для создания диэлектрического слоя целлофановые (не из полиэтилена) ленты. Можно резать их от упаковок сигарет. Отлично справляется с задачами слоя изоляции кулинарная пленка для запекания мясных продуктов и выпечек.

Она же придает красивый вид внешнему покрытию катушки, одновременно обеспечивая ее защиту от механических повреждений.

Обмотки сварочных и пускозарядных устройств, работающие в экстремальных условиях с высокими нагрузками, желательно дополнительно пропитывать между рядами слоями силикатного клея (жидкое стекло).

Ему требуется дать время, чтобы засох. После этого наматывают очередной слой, что значительно удлиняет сроки сборки. Зато созданный по такой технологии трансформатор хорошо выдерживает высокие температурные нагрузки без создания межвитковых замыканий.

Как вариант такой защиты работает пропитка рядов провода разогретым воском, но, жидкое стекло обладает лучшей изоляцией.

Когда длины провода не хватает для всей обмотки, то его соединяют. Подключение следует делать не внутри катушки, а снаружи. Это позволит регулировать выходное напряжение и силу тока.

Замер тока на холостом ходу трансформатора

Мощные сварочные аппараты требуют точного подбора объема пластин и количества витков под рабочее напряжение, что взаимосвязано.

Выполнить качественную наладку позволяет замер тока холостого хода при оптимальной величине напряжения на входной обмотке питания.

Его значение должно укладываться в предел 100÷150 миллиампер из расчета на каждые 100 ватт приложенной мощности для трансформаторных изделий длительного включения. Когда используется режим кратковременной работы с частыми остановками, то его можно увеличить до 400÷500 мА.

Выполняя расчет трансформатора онлайн калькулятором или проверку его вычислений дедовскими формулами, вам придется собирать всю конструкцию в железе и проводах. При первых сборках своими руками можно наделать много досадных ошибок.

Чтобы их избежать рекомендую посмотреть видеоролик владельца Юность Ru. Он очень подробно и понятно объясняет технологию сборки и расчета. Под видео расположено много полезных комментариев, с которыми тоже следует ознакомиться.

Если заметите в ролике некоторые моменты, которые немного отличаются от моих рекомендаций, то можете задавать вопросы в комментариях. Обязательно обсудим.

Советы профессионалов, как выбрать и рассчитать трансформатор тока

Трансформатор тока

Вопрос-ответ

Номинальная работа релейной аппаратуры, модулей управления, измерительных приборов в силовых цепях энергетических установок обеспечивается с помощью трансформаторов тока. Выбор такого оборудования зависит от многих параметров и значений, помочь познакомится с которыми, осветить общие принципы действия, призвана данная статья.

Содержание

Описание и принцип действия

Трансформатор тока – электромагнитное преобразовательное устройство, конструктивно, состоящее из:

  • цельный магнитопровод;
  • две обмотки, обязательно изолированные между собой и от земли (первичная и вторичная);
  • пластиковый запаянный неразборный корпус;
  • контактные клеммы для подключения прибора для измерений;
  • крепежные элементы для монтажа прибора;
  • табличка на корпусе, бумажный паспорт.

Обмотки преобразователя делятся между собой на первичную и вторичную, включаются в энергетическую цепь строго по определенным правилам.

Первичная обмотка подключается к электрической цепи последовательно (рассекая токопровод). Вторичная обмотка замкнута на определенную нагрузку измерительных элементов, релейной аппаратуры и автоматики. Она пропускает через себя величину тока, которая пропорциональна токовому значению первичной обмотки.

Принцип действия любого из них основан на законе электромагнитной индукции, действующий в равной степени в электрических и магнитных полях электрических машин и механизмов.

Эта пропорциональная величина электротока на выходных клеммах вторичной обмотки трансформатора необходима для нормальной работы измерительной, релейной аппаратуры, приборов учета электроэнергии в системах силовых энергетических установках до и выше 1000 вольт.

Прослеживается прямая зависимость номинальной работы всех измерительных систем, приборов контроля и управления от правильного выбора трансформаторов тока.

Классификация

Преобразователи, кроме описанных выше направлений функционирования, принято классифицировать по основным признакам, знание которых необходимо для их правильного выбора в различных силовых электроустановках.

Последовательные трансформаторы принято классифицировать по:

По роду установки

Класс измерительных токовых устройств делится на несколько вариантов общего или специального назначения:

  • Переносные – трансформаторы специального назначения, применяемые для контрольных измерений или испытаний в мобильных электротехнических лабораториях;
  • Накладные – устройства преобразования специального назначения, использующиеся на высоковольтных установках, наложением сверху проходных изоляторов цепей силового трансформатора сети;
  • Встроенные – измерительные трансформаторы специального типа, применяемые внутри различных электрических аппаратов и машин для преобразования величин внутренней цепи оборудования;
  • Внутренней установки – электротехнические устройства общего назначения применяемые на высоковольтных распределительных электросистемах, или силовых цепях низкого напряжение (400В);
  • Наружной установки – приборы преобразования общего назначения, применяемые открытых распределительных сетях высокого напряжения (свыше 1000В).

Точное определение оборудования на участке цепи, к которым будут подключены последовательные преобразователи становится одним из важных критериев их выбора.

По способу установки

Видовые различия корпусов последовательных трансформаторов электрической сети разделяет их по классу монтажа на:

  • Проходные – играют роль проходного изолятора сквозь определенное препятствие в системе электроустановки. Выводы первичных обмоток у них всегда расположен сверху, другой снизу;
  • Опорные – конструктивно имеют расположение всех первичных выводов на одной стороне. Их установка производится всегда на ровную опорную поверхность.

Правильное определение типа монтажа измерительного прибора для преобразования тока не допустит ошибок дальнейшего проектирования новой энергетической системы или ремонте уже созданной установки.

По типу изоляции

Группы измерительных приборов преобразования имеют различия в составе материала изоляции своих обмоток и корпуса, делятся на несколько основных:

Изоляционный материал оборудования выбирается от типа электроустановок, где они применяются. Он зависит и от величины номинального напряжения на участке установки приборов, климатических условий, где будет эксплуатироваться распределительное устройство и других факторов.

По количеству ступеней трансформации

Трансформаторы делятся на два основных типа в этом разрезе классификации:

  • Одноступенчатые – такие устройства имеют одну первичную и одну вторичную обмотку в устройстве, один неизменяемый коэффициент трансформации;
  • Многоступенчатые – электромагнитный аппараты каскадного вида, устройство которых содержит или возможность изменения числа витков первичной или вторичной обмотки, или содержит сразу несколько вторичных обмоток с дифферентом их числа витков. Эта конструкция позволяет иметь несколько коэффициентов трансформации в одном устройстве;

Первый класс трансформаторов наиболее распространен в применении энергетических установок общего назначения. Второй тип применяется в специализированных участках распределительных сетей по необходимости.

По количеству вторичных обмоток

Соответственно, исходя из количества ступеней трансформации приборы делятся на:

  • С одной вторичной обмоткой;
  • С двумя и более вторичными обмотками.

Основной вид трансформаторов в таком делении относит первые его вид к приборам общего назначения, второй к типу специального назначения.

По назначению

Основное назначение этого электромагнитного прибора – трансформация тока из одной величины в другую. Существует два основных направления, использования трансформаторов:

  • Для измерений – передача измерительных параметров приборам, показания которых снимает персонал электроустановки с целью анализа работы энергетических установок высокого напряжения (>1000В). Первичная обмотка трансформатора тока включается в разрыв энергетической цепи, а к его вторичной обмотке подключается требуемый измерительный прибор, типа амперметра, обмоток ваттметров или счетчиков учета электроэнергии. Их монтаж производится в энергетических установках, где невозможно прямое подключение измерительной аппаратуры, обмоток электросчетчиков напрямую, но необходимо при этом их нормальное функционирование.
  • Для защиты – передача измерительной информации устройствам защиты, или любым модулям управления энергетической системы, в состав которой они включены. Обеспечивает изолированную работу этих приборов в высоковольтных установках или силовых цепях с напряжением 400В. Изоляция реле и контрольных приборов от первичной цепи установки обеспечивает безопасную доступность к таким модулям обслуживающего персонала для их ремонта и эксплуатации.

Часто трансформаторы тока имеют смешанный функционал.

По классу напряжения

Важным критерием выбора устройств преобразования. Он включает в себя два основных класса:

  • Для высоковольтных распределительных установок – 6/10/35 киловольт и выше – применения преобразователей в таких сетях имеют увеличенных габарит и некоторые конструктивные различия;
  • Для низковольтных распределительных устройств – применение до 1000В – наиболее распространенный класс напряжения таких приборов равен 400В. В этом классе габариты трансформаторов зависят от номинальных токов первичных обмоток, а конструктивное исполнение обладает значительным многообразием в зависимости от типа монтажа и расположения участка их установки.

Неправильный подбор класс напряжения при выборе трансформаторов сделает их применение невозможным в проектируемой или работающей энергетической системы или ее участка.

По методу преобразования

В силу развития прогресса в электротехнике этот параметр теперь входит в основную классификацию приборов преобразования, состоит из типов:

  • Электромагнитные – приборы преобразования, основанные на обмотках медной проволоки, с цельным стальным сердечником, наиболее распространенный экономически выгодный вид трансформаторов, широко используемый в различных распределительных сетях;
  • Оптико-электронный – новый тип преобразования токовой величины, основанный на прогрессивно инновационном устройстве электромагнитных приборов, их изоляции, с применением новейших материалов. Выше по цене, но имеющий более точные выходные параметры.

Резюмируя перечисленную выше классификацию электромагнитного оборудования, вывод по их верному выбору на поверхности – только полное изучение всех перечисленных параметров устройств преобразования тока, сравнение их с параметрами энергосистемы, где они будут эксплуатироваться, не позволит сделать непростительных ошибок при их подборе, дальнейшей установки и качественному использованию.

Как выбрать

Выбор трансформаторов тока (ТТ) зависит не только от знания их классификации в общем формате, но и требует правильной оценки многих других величин трансформаторов. В электротехнике такие значения принято называть номинальными параметрами.

Номинальные параметры

Правильный выбор ТТ состоит из подбора собственных номинальных величин, проведения тест-проверок, результаты которых станут основополагающими для определения необходимой марки трансформаторов.

Основные номинальные параметры ТТ состоят из:

Рабочее напряжение

Значение величины рабочего напряжения – то есть значение действующего напряжения распределительного установки, куда подбирается определенный измерительный трансформатор, должно быть меньше или равно номинальному напряжению трансформатора. Для эффективного выбора существует стандартный ряд номиналов рабочих напряжений, выраженный в киловольтах: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

Первичный ток ТТ

Второй основной параметр выбора измерительного прибора происходит практически также, как и подбор рабочего напряжения: табличные токовые стандарты токов ТТ сравниваются со значением рабочего тока участка цепи или всей электроустановки, где планируется устанавливаться преобразовательный прибор.

Однако здесь нужно учитывать еще один критерий: в сети с активной нагрузкой и потребителями общего назначения номиналы подбираются без учета поправочных запасов по току, а вот для электрооборудования генераторов, двигателей или других активно-реактивных потребителей требуется при выборе первичного тока ТТ учитывать 10% запас по его величине. Это связано с бросками токовых величин в момент пуска подобного оборудования.

Если выбор первичного тока с учетом 10% запаса находится между стандартных значений ряда – берется больший из их значений.

Однако здесь необходимо получить данные еще двух обязательных проверок трансформаторов, чтобы окончательно быть уверенным в его правильном выборе:

Проверка на термическую стойкость

Термическая стойкость гарантирует, что выбранный ТТ сможет выдержать тепловой удар и остаться в нормальном рабочем состоянии, без каких-либо повреждений в аварийном режиме короткого замыкания (КЗ), при прохождении через него определенной величины тока короткого замыкания за определенный период времени. Существует специальная формула проверочных значений на термическую стойкость преобразовательных приборов до и выше 1000 В.

Если выбранный трансформатор не подходит под расчетные значения термической стойкости, стоит обратить внимания на другую модель трансформатора во избежание образования проблем с энергетической установкой на этапах ее дальнейшей эксплуатации.

На электродинамическую стойкость

Этот опытно – расчетный процесс тестирует выбираемый трансформатор на стойкость от динамического воздействия на него тока короткого замыкания при аварийном режиме в цепи. Определенный промежуток времени электромагнитный прибор должен выдержать и такое воздействие, оставшись в рабочем состоянии.

В противном случае – требуется смена марки или модели трансформатора. Тест на электродинамическую стойкость определен специальной формулой, в которой участвуют постоянные значения и величины аварийного режима.

Проверка по мощности вторичной нагрузки

Третий обязательный параметр выбора ТТ. Проверка проходит путем сравнительного анализа номинальной мощности ТТ и полной мощности вторичной нагрузки на всем участке цепи, в которой планируется установка выбираемого трансформатора тока. Номинальная величина мощности должна быть больше или равна значению в действующей или проектируемой установке.

Важно знать при этом, что полная мощность нагрузки цепи представляет собой сумму сопротивлений всех коммутационных, измерительных, релейных приборов и аппаратуры управления участка умноженная на квадрат тока этой аппаратуры.

Если подбор осуществляется в проектируемом распределительном устройстве – значения сопротивлений берутся из паспортных данных оборудования, установленного там, если объект уже действующий – величины сопротивления получаются путем замеров сопротивления омметров или другими известными методами.

Коэффициент трансформации

Этот параметр является заключительным номинальным параметром, который должен учитываться для правильного выбора трансформаторов тока для измерительных приборов, релейной системы и модулей управления в распределительных цепях.

Критерий выбора по данному параметру делится на два варианта:

  • Из минимального значения коэффициента трансформации – в этом случае его значения принимается, исходя из номинального значения линии распределительного устройства, в которое подбирается преобразовательный прибор;
  • Из максимального значения коэффициента трансформации –значения минимального коэффициента трансформации умноженное на отношение рабочего тока линии к максимальному значению тока вторичной обмотки трансформатора.

Второй параметр регламентируется нормативными документами «ПУЭ» (Правила устройств электроустановок) и применяется при выборе трансформаторов тока, используемых для питания обмоток учета электроэнергии.

Назначение

Учет сферы применения трансформаторов по назначению устанавливает жесткий выбор его класса точности.

Для питания обмоток коммерческого учета необходимо выбирать трансформаторы с классом точности не ниже 0,5. Бытовой учет электроэнергии ограничивает выбор приборов трансформации с классом точности равным 1

Для питания релейной аппаратуры или приборов управления в распределительной установке выбор трансформаторов диктуется специальным классом точности повышенного номинала, который обозначается 10 (Р).

Не учитывая сферу применения, нельзя гарантировать правильного выбора трансформатора, т.к. его параметр под названием класс точности значительно влияет на точность снимаемых показаний и будет детальней рассмотрен в этой статьей ниже.

Другие критерии

Проектные институты или технические специалисты, ведущие выбор трансформаторов тока могут руководствоваться и другими параметрами выбора преобразовательных приборов для участка цепи энергетической установки, такими как:

  • Определение типа автоматизации установки узла учета, которая может повлиять на определение необходимого класса точности выбираемого трансформатора;
  • Расчеты длины учета и сечения проводников, идущих от ТТ до приборов учета, с целью расчета величины потери напряжения, которая должна иметь минимальные значения в процентном отношении;
  • Если новая энергетическая установка проектируется с нуля – учитывается метод преобразования величины тока.
  • Если распределительная сеть действующая – важным параметром выбора прибора становится действующей даты поверки прибора. Оборудование трансформации не должно иметь просроченных дат поверки от метрологических служб.

Любой параметр трансформатора тока выбирается исходя и в соответствии с данными, описанными в нормативной документации «Правил и Устройств Электроустановок».

Схемы включения

Для питания релейной аппаратуры, токовых обмоток учета электроэнергии общего или коммерческого назначения существует три основных схемы включения трансформаторов тока:

  • «полная звезда»;
  • «неполная звезда»;
  • «треугольник».

Каждая из типов подключения для различного назначения оптимизирует работу измерительных, учетных систем электрооборудования, позволяет сделать оптимальными параметры учета электроэнергии в цепях новых или действующих распределительных устройств до и выше 1000 вольт.

Как правильно выбрать ТТ для релейной защиты

Чтобы правильно выбрать трансформаторы тока для различных блоков релейной защиты и автоматики, стоит обратить внимание на несколько важных параметров их выбора:

  • Максимальное и номинальное значение напряжения в первичной обмотке трансформатора;
  • Номинальное значение тока в первичной обмотке;
  • Класс точности.

Последний параметр – для различных видов трансформаторов имеет различные значения, а для блоков релейной защиты и автоматики имеет приоритетное значение в связи с тем, что от него зависит точность выходного сигнала, другими словами, качество питания всего блока защиты и автоматики. Для более точной работы систем защиты и автоматики в распределительных сетях применяется использование трансформаторов с повышенным классом точности – 10 (Р). Подробное рассмотрение такого понятия, как класс точности в статье публикуется ниже.

Выбор класса точности

Параметр трансформатора тока, указывающий, что погрешность измерений величины тока вторичной обмотки ТТ не превышает значений, указанных в нормативных документах по ГОСТ 7746-2011. Согласно данному ГОСТу, номинальные значения классов точности, следующие: 0,1, 0,2S, 0,2, 0,5, 0,5S, 1, 3, 5, 10.

Для цепей измерительных приборов, учетного оборудования и систем релейной защиты классы точности преобразователей тока будут разными.

А для учета электроэнергии общего или коммерческого типа применяются обычные классы точности преобразователей тока равные 1, 3. Нужно добавить, что для питания измерительных приборов типа амперметры и подобные им, выбираются трансформаторы тока классом точности 0,5 или повышенной точности, погрешность которых составляет 0,5S.

Блоки автоматики и релейной защиты требуют к своим источникам питания в сетях распределительных установок использования оборудования повышенной точности, в которых погрешность величины тока вторичной обмотки трансформатора не будет превышать 10% значения. Маркировка такого класса точности – 10 (Р).

Примеры расчета

В качестве примера выбора трансформаторов тока рассмотрим расчетную проверку правильности выбора ТТ для счетчика электроэнергии в распределительной установке, с номинальным током в 150А, при минимуме нагрузки в 15А.

Ток вторичной обмотки при номинальном токе: 150/40 = 3,75А;

Минимальный ток вторичной обмотки при номинальной нагрузке: (5*40)/100 = 2А;

Полученный ток вторичной обмотки проверяемого трансформатора больше полученного значения минимального тока, что говорит о выполнении первого требования проверки;

Рассчитаем минимальный ток вторичной обмотки при минимальной нагрузке: 15/40 = 0,38А;

Узнаем минимальный ток вторичной обмотке при минимальной нагрузке: 5*5/100 = 0,25А;

0,38А> 0,25А – еще один пункт не выходит за рамки требуемых правил соответствия выбранного трансформатора тока;

Рассчитаем значение тока при ¼ нагрузке: 150*25/100 = 37,5А;

Рассчитаем значение тока вторичной обмотки при ¼ нагрузки: 37,5/40 = 0,94А;

Узнаем минимальный ток вторичной обмотки при ¼ нагрузке: 5*10/100 = 0,5А;

Сравнив оба значения токов вторичной обмотки, видим, что и здесь расчетное значение в норме: 0,94А> 0,5А;

Вывод: трансформатор тока Т-0,66 200/5 для учета электроэнергии выбран правильно и соответствует всем нормативным значениям «ПУЭ».

Советы и рекомендации по выбору

Основная рекомендация по подбору трансформаторов тока состоит в тщательном и полном использовании всех параметров и критериев выбора преобразователей тока по классификации и номинальным значениям оборудования в равной степени без легкомысленного отношения к любому из них.

Выбор трансформаторов тока в зависимости от их назначения в обязательном порядке должен соответствовать всем нормативным документам и стандартам ГОСТ, действующим в текущий момент их выбора.

При использовании автоматизированных программ расчета номиналов последовательных трансформаторов, перепроверка полученных значений несколькими подобными сервисами не станет лишним для подтверждения правильности полученных данных.

Понятие номинальной мощности трансформатора, в чем указывается и измеряется

силовой трансформатор

Силовой

Для установки трансформатора необходимо рассчитывать его номинальную мощность. Выбор агрегата по данному показателю зависит от планируемых режимов работы, уровня нагрузки, условий и типа охлаждения прибора. При расчетах учитываются особенности измерения мощности трансформатора распределение нагрузки на составные части цепи при аварийной и стандартной работе прибора.

Содержание

Понятие номинальной мощности трансформатора

Номинальная мощность трансформатора – это полная мощность, на которую рассчитан прибор его изготовителем. То есть, напряжение, которое в течение всего срока эксплуатации трансформатор выдерживает без перерыва.

Заводы дают гарантию службы от 20 до 25 лет.

Данный показатель всегда связан с температурным режимом работы: насколько допускается нагрев обмоток и при каких условиях охлаждается агрегат. При разных мощностях обмоток трансформатора номинальной считают наибольшую. В основном, в трансформаторах установлено масляное охлаждение, которое напрямую зависит от температуры окружающей среды.

Поскольку погодные условия постоянно изменяются, наибольший нагрев обмоток при максимальной теплоте воздуха считается верхним пределом среднего показателя сопротивления температуры, возможной для соблюдения безопасности.

У приборов с другим типом охлаждения в паспорте от производителя прописываются номинальные температурные условия.

Помимо номинальной, есть типовая мощность трансформатора, которая считается, как сумма величин нагрузки на все обмотки, поделенная на два. А максимальная нагрузка на обмотки рассчитывается, как произведение наибольшей величины тока на максимально разрешенное напряжение данной части цепи.

В чем измеряется и указывается

Номинальную мощность трансформаторов измеряют в кВА (киловольт-амперах), а не в кВТ (киловаттах). Эти два показателя отличаются друг от друга и не тождественны. Первый – это полная (номинальная) мощность, второй – активная. Номинальная потребляется в работу не в полном объеме, поскольку часть ее распространяется на электромагнитные поля цепи, и только оставшаяся часть – это активная мощность – действует по назначению.

Нагрузка на трансформатор обуславливается потребляемым током, а не энергией, которая используется фактически. То есть, полная мощность представляет собой все напряжение, налагаемое во время работы прибора на все составляющие электрической цепочки. Поэтому данную номинальную величину указывают в единицах вольт-ампер.

В работе электроприборов также учитывают коэффициент, который выражается в отношении активной к номинальной (cos фи). Данный коэффициент отражает величину сдвижения переменного тока по фазе относительно нагрузки, приложенной к ней.

Шкала стандартных мощностей силовых трансформаторов

На территории России используется единая шкала стандартных мощностей. Она разделяется на два шага: 1,35 и 1,6, каждый включает ряд величин, представленных в таблице ниже.

Шаг 1,35. В кВА Шаг 1,6. В кВА
100 100
135 160
180 250
240 400
320 630
420 1000
560 1600

В настоящее время заводы выпускают трансформаторные подстанции (ТП), применяя мощности шага 1,6. Шкала шага 1,35 уже не используется на производствах, но старые установки, выпущенные в советское время, проектировались именно по этой шкале. При этом, исследования определили старые приборы как более выгодные, поскольку они могут работать в полную силу, в отличие от современных агрегатов.

При выборе разных видов приборов, учитывается, что они должны быть максимально близкими по наибольшему показателю нагрузки в обычном режиме и предельному напряжению в аварийном.

При выборе трансформаторов для промышленных производств важно учитывать их количество для рационального распределения электроэнергии и их типовые мощности при определенной номинальной нагрузке.

Пример выбора трансформатора

Выбрать трансформатор можно исходя из их конструктивного исполнения, ориентируясь на необходимые характеристики, или по номинальной нагрузке.

Выбор по конструктивному исполнению

Силовые трансформаторы бывают нескольких видов:

  • масляные – устанавливаются внутри или снаружи зданий, где нет опасности возгорания или взрыва веществ;
  • сухие – находятся в пожароопасных помещениях;
  • с негорючим жидким диэлектриком – устанавливаются внутри строений, отличающихся высокой взрыво- и пожароопасностью.

Масляные лучше остальных отводят тепло от сердечника и обмоток, составные части хорошо защищены от внешних воздействий. Также, данные трансформаторы меньше других по стоимости. К недостаткам относится необходимость установки в специальных помещениях или снаружи строений, из-за высокой вероятности возгорания или взрыва при поврежденной защите активных частей.

Сухие трансформаторы устанавливают в тех помещениях, где высокая вероятность возгорания и большое электрическое напряжение. Такие установки обладают повышенными огнеупорными свойствами благодаря жаропрочным изоляционным материалам. Но условия охлаждения уступают масляным, из-за чего плотность тока в обмотках меньше.

Агрегаты с негорючим диэлектриком обладают схожими огнеупорными свойствами с сухими, не наносят вред окружающей среде, за счет характеристик охлаждающей жидкостей и считаются более долговечными.

Выбор по мощности

Агрегаты для главных понизительных подстанций (ГПП) и цеховых трансформаторных подстанций выбирают по среднему напряжению за максимально загруженный период работы с контролем удельного расхода электроэнергии.

Фактор, которым характеризуется необходимая полная мощность трансформатора – это допустимое значение относительной аварийной нагрузки. Этот показатель регламентируется ГОСТом и определяется, как возможный тепловой износ изоляции агрегата за аварийный период с учетом температуры охлаждения, типа прибора и графика режима аварийной работы.

При определении необходимой номинальной нагрузки трансформатора используют два подхода, зависящие от наличия исходных данных:

Онлайн расчет трансформатора тока

Данный онлайн калькулятор позволяет произвести расчет и выбор измерительных трансформаторов тока (ИТТ/ТТ) для подключения электрического счетчика по мощности.

Расчет трансформатора тока

ПРИМЕЧАНИЕ: После расчета выбранный трансформатор тока необходимо проверить по загрузке при максимальных и минимальных значениях проходящих через него нагрузок.

Проверку выполнения данного требования можно произвести с помощью следующего онлайн калькулятора:

Расчет загрузки трансформаторов тока

Справочно: Расчет производится для счетчика с номинальным (базовым) током 5 Ампер.

Оказался ли полезен для Вас данный онлайн калькулятор? Или может быть у Вас остались вопросы? Напишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Читайте также: