Как понизить напряжение в светодиодном светильнике

Обновлено: 28.04.2024

Важный параметр светодиодных светильников, о котором не все знают

Светодиодное освещение экономично и удобно в использовании. Светильники потребляют меньше электроэнергии, чем их предшественники — лампы накаливания и люминесцентные. Но всё ли так хорошо и просто на практике или есть какие-то подводные камни? Сегодня и предлагаю поговорить на эту тему.

В чём проблема и кто виноват

Проблема заключается в том, что при включении светодиодного освещения выбивает автомат.

С этой проблемой сталкиваются как в жилых помещениях, так и в офисах, магазинах и прочих местах, где установлено много светильников. Причём такое случается, даже если суммарная мощность светильников лежит в пределах нескольких сотен ватт.

Это связано с тем, что при включении LED-светильников кратковременно (до 500 мкс) протекает пусковой ток в 10…100 раз больше номинального. Он обусловлен особенностям источников питания для светодиодов — драйверов, во входных цепях которых устанавливают диодный мост и фильтрующий (сглаживающий) конденсатор. Скачек тока приводит к тому, что срабатывает электромагнитный расцепитель автоматического выключателя на этой линии.

Важно! Пусковые токи не у светодиодов, а у драйверов!

Немного схем и теории

Любые светодиодные приборы состоят из двух основных элементов: источника света (матрицы из светодиодов) и блока питания.

Светодиоды работают от постоянного тока, а в электросети у нас переменный, поэтому для работы светодиодов нужно преобразовать переменный ток в постоянный, а лучше ещё и стабилизировать его. Для преобразования и стабилизации тока используют специальные источники питания — драйверы.

В дешёвых светильниках вместо драйверов используют гасящий конденсатор (C1), который ограничивает ток до величины необходимой светодиодам (HL1-HL16). После конденсатора устанавливают выпрямитель (ZL1) и фильтр (C2) и получают постоянное по знаку и величине напряжение.

Схема светодиодного светильника с гасящим конденсатором Схема светодиодного светильника с гасящим конденсатором

Но в течение дня напряжение в электросети изменяется, иногда в широких пределах, и может быть как пониженным, так и повышенным. В этой схеме нет никакой стабилизации, ток на выходе изменяется в зависимости от нагрузки и от питающего напряжения, а при повышенном токе светодиоды быстро выходят из строя.

Драйвер — это импульсный источник питания, который в общем случае состоит из таких блоков:

  1. Сетевой фильтр. Он нужен, чтобы не пропускать помехи в питающую сеть, возникающие в процессе работы инвертора. В дешёвых маломощных драйверах его зачастую нет.
  2. Выпрямитель и сглаживающий фильтр. Преобразуют переменное напряжение из электросети в постоянное. На выходе фильтра постоянное напряжение равно амплитудному сетевому — примерно 320 В.
  3. Инвертор. Преобразует постоянное напряжение опять в переменное напряжение или ток, но уже высокой частоты. Состоит из силового ключа, его обвязки и схемы управления. Силовой ключ управляет током в первичной обмотке трансформатора.
  4. Импульсный трансформатор. Выполняет такую же функцию, как и сетевой железный трансформатор, но в качестве сердечника используется не железо, а феррит. Это позволяет ему работать на высокой частоте (десятки и сотни килогерц). С его помощью понижают или повышают сетевое напряжение до требуемой величины, а также обеспечивают гальваническую развязку с сетью.
  5. Выходной выпрямитель с фильтром нужен, чтобы ещё раз преобразовать высокочастотное переменное напряжение в постоянное и сгладить его пульсации.
Пример функциональной схемы импульсного источника питания Пример функциональной схемы импульсного источника питания

Блок управления инвертором отслеживает выходное напряжение или ток и корректирует работу инвертора так, чтобы поддерживать их на нужном уровне, то есть стабилизирует выходные параметры. Помимо этого, он может выполнять функции защиты от перегрузки, короткого замыкания и других аварийных режимов, возникающих в работе источника питания.

На практике схема драйвера может отличаться, например, вместо трансформатора используют дроссели, а инвертор выполняют в виде одной детали со встроенным силовым ключом. Так как статья не об этом, предлагаю не углубляться в подробности схемотехники ИИП.

Пример схемы светодиодного драйвера Пример схемы светодиодного драйвера

И в драйвере, и в схеме с гасящим конденсатором ток сначала выпрямляется (1) диодным мостом, а затем сглаживается ёмкостным или другим фильтром (2).

Графики напряжения выпрямителя: 1 — на выходе диодного моста без фильтра; 2 — с фильтром Графики напряжения выпрямителя: 1 — на выходе диодного моста без фильтра; 2 — с фильтром

Разряженный конденсатор по свойствам похож на участок цепи с коротким замыканием, то есть у него очень низкое сопротивление и при подключении к сети потребляет очень большой ток, как и другие виды ёмкостной нагрузки. Отсюда и возникает пусковой ток драйверов и других ИИП.

Какие могут быть последствия

Мы уже сказали, что при групповом включении светильников могут выбивать автоматические выключатели. Например, светодиодные светильники общей мощностью 300 ватт могут запросто выключить автоматический выключатель B6, который должен выдерживать нагрузку до 1320 ватт, а пусковой ток при этом может доходить до сотни ампер, а иногда и выше.

Но если выбивающий автомат можно заменить на другой, с большим номиналом (насколько это позволяет сделать проводка), и менее чувствительной ВТХ, то вторая проблема принесёт больше неприятностей.

При включении большого тока контакты искрят. Из-за искрения контакты начинают подгорать, со временем переходное сопротивление увеличивается, и они начинают греться. В самых негативных сценариях развития этой проблемы контакты и вовсе прилипают друг к другу, проще говоря, свариваются.

Вы часто можете видеть подобное, когда включаете вилку импульсного блока питания, даже простой зарядки от смартфона в розетку, почти всегда из неё летят искры. Представьте, что то же самое происходит при каждом включении света внутри выключателя.

Если с обычными выключателями всё не так страшно, можно и заменить, то что делать с автоматикой, например, с распаянными на платах контроллеров реле? А ведь номинальный ток этих реле позволяет питать нагрузку в киловатт, а иногда и больше. Можно, конечно, установить дополнительный контактор или мощное реле. Но, скорее всего, его всё равно придётся периодически менять.

Хотя производители предупреждают. Таблица допустимой нагрузки импульсного реле от Евроавтоматики F&F. Хотя производители предупреждают. Таблица допустимой нагрузки импульсного реле от Евроавтоматики F&F.

Что говорят производители о величине и длительности пускового тока

А здесь начинается самое интересное для проектировщика и электрика. Известные производители светодиодных драйверов в технических характеристиках указывают величину и длительность пусковых токов. Кстати, в англоязычной среде они обозначаются как «inrush current ».

Ниже приведена подборка скриншотов из инструкций драйверов мощностью около 20 ватт (±5 ватт), разных производителей, выбранных случайным образом.

В паспорте драйвера Phillips CertaDrive 19W 200-350mA 54V DS 230V в первой таблице указываются основные характеристики устройства.

CertaDrive 19W 200-350mA 54V DS 230V CertaDrive 19W 200-350mA 54V DS 230V

Но это не всё, в конце документа отдельный лист отведён описанию пусковых токов, и в нём есть две таблицы. В первой указаны следующие параметры:

  1. Пусковой ток в пике. У рассматриваемого драйвера 17,56А.
  2. Длительность пускового тока. Под длительностью здесь понимается время от начала импульса до момента, когда величина тока снизилась в 2 раза от пиковой. У рассматриваемого драйвера 138,5 мкс, что равно 0,000139 секунды.
  3. Количество драйверов на 1 автоматический выключатель B 16. Можно подключить до 108 этих драйверов на 1 автомат.

Может показаться, что проблемы как таковой и нет: «ну подключай себе 108 драйверов на одну линию, этого что мало что ли?». Но посмотрите внимательно на характеристики драйвера — номинальный ток 90 миллиампер, а пусковой – 17,56 ампер, разница в 217 раз!

Дальше идёт таблица подбора автоматов по количеству драйверу, не самая удобная, на мой взгляд.

В первой колонке указан тип ВТХ, во второй — номинальный ток, а в третьей — «относительное количество драйверов в цепи». Здесь количество указано не в штуках, а в процентах от 108 драйверов. То есть если у вас автомат 6А типа В, то вы можете поставить 40% драйверов от 108, то есть 108×40%=43,2 драйвера, округлять в меньшую сторону.

Но смущает, что при пусковом токе в 17 ампер можно подключить так много драйверов, возможно это опечатка или ошибка в паспорте. Поэтому давайте посмотрим ещё несколько. Например, ещё один от Phillips, модель CertaDrive 21W 0.5A 42V 230V.

Характеристики драйвера CertaDrive 21W 0.5A 42V 230V Характеристики драйвера CertaDrive 21W 0.5A 42V 230V

Структура паспорта у него аналогична, но вот значения пусковых токов и количества драйверов на 1 автомат уже интереснее. Такой же автомат (В16) может запитать уже 40 драйверов по 21 ватту. То есть номинальная мощность нагрузки будет всего 840 ватт, а ток около 3.6 ампер, и если подключить ещё несколько штук, то начнёт выбивать автомат на 16 ампер. Неплохая разница, согласны? Но на освещение часто ставят автоматы на 6-10А, в таблице ниже указано, что к автомату В6 можно подключить 40×40%= 16 драйверов — всего лишь 336 ватт и 1,4 ампера нагрузки.

И это очень любопытно, ведь пусковой ток заявлен всего 4 ампера, и длительность его в 2 раза меньше — всего 60 мкс, а драйверов можно подключить меньше, чем в предыдущем случае…

Возможно, кто-то скажет, что выбраны не «те» драйверы, и не «того» производителя. Давайте глянем на продукцию сильного конкурента в лице OSRAM. Посмотрим паспорт на OPTOTRONIC FIT D NFC FL мощностью 25 ватт. Пусковой ток у них до 16А, длительностью 240 мкс, при номинальном 0,18А. Здесь нет такой большой таблицы по подбору автоматов, указано только что к В16 можно подключить 36 драйверов, а к В10 — 22.

Следующим посмотрим драйвер Arlight ARJ -KE 68300A 20W , 300mA , PFC . Прямо в карточке товара на сайте указан пусковой ток 43А, при номинальном 0,3А (пусковой в 143 раза больше), данных о возможном количестве подключённых к одной линии драйверов нет.

Ну и наконец посмотрим, что нам покажет ещё один популярный бренд — Mean Well. У драйвера LPC-20-350 мощностью 20 ватт, при номинальном потребляемом токе 0,35А, пусковой составляет 70А, который через 220 мкс снижается до 50% от пикового. То есть пусковой ток в 200 раз больше номинального.

Последний драйвер отлично иллюстрирует проблему, к автомату на 16А с ВТХ типа В можно подключить всего 8 драйверов, а если изменить ВТХ на тип С, то до 14 драйверов. Теперь немного посчитаем:

1. Потребляемая драйвером мощность: 230×0,35=80,5 ватт.

2. Суммарная мощность при использовании АВ С16: 80,5×8= 644 ватта.

3. Суммарная мощность при использовании АВ С16: 80,5×14= 1127 ватт.

То есть к автомату, который выдерживает 3.6 кВт можно подключить драйверов на 600-1000 ватт, притом что суммарная мощность светодиодов, которые они запитают, будет 168 и 294 ватт (обратите внимание на верхнюю часть таблицы) для первого автомата В16 и С16 соответственно.

На этом предлагаю закончить обзор характеристик продукции, думаю, вы уже убедились, что проблема существует. Но если производитель всё указывает, то просто установи нормальный автомат, чего обсуждать?

В этом и есть основная проблема – большинство производителей готовых светильников со встроенными или внешними драйверами не указывают пусковые токи и их длительность, и уж тем более не предлагают таблиц с максимальным количеством светильников на 1 автомат. Это вызывает серьёзные проблемы у проектировщиков, ведь не зная реальных параметров нагрузки, пусковых токов нельзя корректно подобрать автоматический выключатель, а без него нельзя и посчитать кабельную линию.

Способы решения проблемы

Кто виноват мы разобрались (конденсаторы в драйверах), давайте теперь поговорим о том, что делать! Есть ряд решений проблем с LED-драйверами:

  1. Повышение номинала автоматов.
  2. Установка реле и контакторов.
  3. Включение при переходе через ноль.
  4. Задержка включения.
  5. Решения по ограничению пусковых токов от радиолюбителей.
  6. Модульные ограничители пусковых токов.

Номинал автоматического выключателя

Повысить номинал автомата можно только в тех случаях, когда кабельная линия была выбрана с запасом, например, на освещение проложили 1.5 мм², и поставили АВ на 6 ампер. Если это не так, то при повышении номинала нужно использовать кабель большего сечения, что особенно заметно, особенно если подключают десятки и сотни мощных светильников и их суммарный пусковой ток очень высок. А что делать, если кабель уже выбран и смонтирован? Поэтому такой вариант не всегда возможен.

Можно ли посчитать номинал автомата при известных пусковых токах? Теоретически да, но не всё так просто. Как известно, при подключении элементов в цепь параллельно их токи складываются. Но если посчитать очевидным образом общий пусковой ток, скажем 10 светильников, с драйверами из последнего примера, то получится:

Электромагнитный расцепитель автомата C 16 сработает при перегрузке в 5-10 раз от номинального тока:

По такой логике он должен сработать уже от двух (трёх) светильников. Но в инструкции производитель «разрешает» подключать к С16 до 14 светильников, чей суммарный пусковой ток будет равен 980А, как же так?

Всё дело в их длительности, по данным производителя пусковые токи протекают 220 мкс = 0,22 мс = 0,00022 с. При этом через указанное время ток составляет уже 50% от пикового. То есть указанные 70 ампер протекают в течение ещё меньшего периода времени, возможно, даже на порядок.

А как, вернее, когда сработает автомат? Согласно время-токовой характеристике при 10 кратной перегрузке он отключится не позже чем через 0,1 секунду (или 100 мс, или 100 000 мкс), при перегрузке примерно в 100 раз (1600А), он должен сработать через 5 мс (5000 мкс). А длительность пускового тока всего 220 мкс (в 20 раз короче).

Для правильного расчёта следует обратиться к журналу «Полупроводниковая светотехника» №2/2020, в котором опубликована статья «Электрические характеристики ОП со светодиодными источниками света при включении и требования к устройствам защиты сети электропитания».

Авторы этой статьи опираясь на материалы от компании ABB и другую нормативно-техническую документацию рассказали, как правильно учитывать пусковые токи и рассчитывать номиналы автоматов для светодиодного освещения. Особый интерес в ней вызывает график срабатывания автоматов ABB при импульсных токах, поэтому рекомендую ознакомиться с этой статьёй, которая, кстати, есть в свободном доступе на официальном сайте журнала.

Но если автоматический выключатель и кабель мы подобрали, что делать с выключателями и реле автоматики? Чтобы продлить их срок службы устанавливают дополнительно более мощные реле или контакторы. Но это также может полностью не решить проблему — пусковые токи как были, так и остались. Контакты как подгорали, так и будут это делать, возможно, медленнее.

Переход через ноль

Реально улучшит ситуацию использования реле, которые включают нагрузку при переходе питающего напряжения через ноль. Для проверки сказанного смоделируем цепь с выпрямителем и входной ёмкостью. Резистор сопротивлением 1 Ом будем использовать для измерения тока с помощью осциллографа. Так 1 вольт соответствует 1 амперу.

Переделка LED 36W светодиодных светильников на пониженный ток PT6985-D

Чтобы увеличить срок службы, нужно уменьшить ток через светодиоды с 360 до 330-300 мА. В драйвере микросхема PT6985-D. Путем замены одного или двух из трёх параллельных резисторов 1R6 на 2R2. Напряжение на каждой линейке упадёт до 22,6 В..

Далее, нужно снять светодиодные полоски (защелки сзади сжать) взять термоклей или термопасту и промазать стеклотекстолит, улучшить теплоотвод от светодиодов.

Далее РЕМОНТ светильника:

Ремонт светильника Feron AL2115 112 LED 2500Lm 36W 4000K 230V/50Hz 21078 EAN 4627110520943 16RU-JC-FER05 02.2017.

Срок службы оказался не 6 лет, а 8 месяцев (5760 часов). Выход из строя 3-х из 4-х линеек светодиодов. В линейке 7 последовательно на 4 параллельно 3.2В 90mA = 28 светодиодов, 23В, 0.36А, всего 28*4=112шт 23*4=92В, 0.36А

Feron AL2115 112 LED 2500Lm 36W 6500K 230V/50Hz 07.2017 21083 EAN 4627110525047 17RU-JC-FER07 микросхема надпись ZT7AC, вторая микросхема 1221 502С. R16 R500 R17 2R0 поменял R17 на 4R2, ток упал с 363 до 324 мА.

Тоже самое тут, нужно снять светодиодные полоски (вытащить распираторы), взять термоклей или термопасту и промазать стеклотекстолит точками под каждым светодиодом, то бишь улучшить теплоотвод от светодиодов.

Продление срока службы светодиодных ламп. Понижение тока/ремонт

В лампах ECO-C37 3.5Вт 4000K E14 на 220В/50Гц 1244 с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 0,62мкф (624 надпись и 400

) применяются кругляш S5-C37 3030 4-27,8мм с последовательно включенными 4 светодиодами на 15.8В, 55мА 0,87W, в итоге 63В, 3,5W. Нужно уменьшить ёмкость понижающего конденсатора до 0,47 мкф (474) и рабочим напряжение 400

соответственно. Таким образом рабочий ток 4-х светодиодов упадёт с 55 мА до 42 мА, напряжение с 63 до 58 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 27%.

В лампах 5.4W на AC 220В с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 1,3мкф (135 надпись и 400

) применяются последовательных 10 светодиодов на 6В, 90мА 0,54W, в итоге 60В, 5,4W. Нужно уменьшить ёмкость понижающего конденсатора до 1,0 мкф (105) и рабочим напряжение 400

соответственно. Таким образом рабочий ток 10-ти светодиодов упадёт с 90 мА до 60 мА, напряжение с 60 до 56 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 30%.

В лампах Ecola A50 LED 7W на AC 220В с параметрическим (нестабилизированным) БП на основе понижающего конденсатора 1,1мкф (115 надпись и 400

) применяются последовательных 40 светодиодов на 3В, 57мА 0,54W, в итоге 120В, 6,6W. Нужно уменьшить ёмкость понижающего конденсатора до 1,0 мкф (105) и рабочим напряжение 400

соответственно. Таким образом рабочий ток 40-ти светодиодов упадёт с 57 мА до 52 мА, напряжение с 120 до 114 Вольт и нагрев всей лампы существенно снизится. Мощность упадёт на 10%.

В лампах 3.5W Feron LB-40 E27 2700K на AC

В лампах с али 15W Warm White 220V RoHS на основе стабилизатора тока 2 микросхемы MBI1802 (плата D44-22P-01 3611E) применяются 22 последовательно включенных светодиода, разорванных на 16 и 6 штук микросхемами. На светодиодах 38V и 109V постоянки соответственно, ток 57мА, 8.5W, в середине на U1 и U2 микросхемах 43V, всего 190V. На одном светодиоде 6.7V, 0.38W. От сети было потребление

230V, 62мА на переменке. Внимание, эта лампа на фотоаппарате сильно мерцает! Обязательно паяем конденсатор от 4.7 uF до 10 uF на 400V после диодного моста и для кондёра есть много места в цоколе. После впайки кондёра ток возрастает до 92мА и светодиоды сгорят за 5 сек. Для уменьшения тока нужно на микросхемах 1802 вместо R1 и R2 по 13 Ом впаять два резистора по 15 Ом (ток упадёт до 50мА), если хай себе мерцает и не паять кондёр, или по 23 Ома (можно резюки стоя допаять последовательно в длину два по 10 Ом) (ток упадёт до 52мА), если паять кондёр.

220V 81мА 18W до переделки и 54мА 12W после. В этих лампах нет конденсатора, поэтому они мерцают.

220V 105мА 23W до переделки и 70мА 15W после.

Также, в лампах с массивным алюминиевым радиатором между ним и кругляшом светодиодов часто отсутствует белая теплопроводящая паста КПТ-8, желательно её нанести.

Оставляйте комментарии по файлу, кому что нужно рассчитать..

47 thoughts on “ Продление срока службы светодиодных ламп. Понижение тока/ремонт ”

Энергосберегунчик :

После перегрева сгорели светодиоды на лампах с конденсатором 135. Замкнул в каждой лампочке светодиод и поменял кондёр на 105 (1 мкф), теперь чуть слабее светит, снял колпачок с лампы, но лампа так же горячая.

Надеюсь, что теперь проработает дольше.

А как быть с энергосберегающими лампами?

Занёс статью в заметки, спасибо за инфу.

электрик21 :

Здравствуйте. У меня лампа 9W на основе мс9918с. Вылетел 1 светодиод-остальные15 целые. Подскажите какое нужно поставить сопротивление -чтобы еще поработала?Причина по всей видимости была в том-что именно под этим диодом отсутствовала паста/ктл\. Спасибо.

Первое, нужно обязательно уменьшить ток через светодиоды, видимо, подошло время и будет цепная реакция, скорее всего будут умирать ослабевающие (перегретые и деградирующие).. Ну и улучшить теплоотвод (снять пластиковый колпачок, если нет влажности и лампу не заденут).. Отпишите сюда все параметры лампы и какие резисторы на средней ноге микросхемы? Если такие же, как в описании, то смело уменьшайте на указанные параметры.
Второе, у вас на микросхеме 9918C стабилизация тока и нет переходного трансформатора (как в сложных схемах светильников), и если один светодиод вылетел, то его нужно смело замыкать и не морочиться с резистором. Если бы вылетело много светодиодов и драйвер бы перестал запускаться, тогда..

электрик21 :

Значит можно просто замкнуть светодиод.R-средней ноги 2.2ом.Использовать без рассеивателя не комфортно/смысл тогда этой лампы/.Значит важен ток-а то что 290в -не важно?.

электрик21 :

290- это на выпрямительном конденсаторе и на выходе на светодиоды/без нагрузки\-не стал рисковать диодами.

электрик21 :

Для проверки светодиодов берём лабораторный БП с регулируемой отсечкой тока и регулируемым напряжением, тестируем светодиоды и делаем выводы.
К примеру, DC DIY Kit плавной регулировкой ток короткого замыкания ОГРАНИЧЕНИЯ защиты 0-30 В 2mA-3A на али и индикатор 0-100В 0-10А, мощный трансформатор 80-100 Вт на 24-36В переменки в глуши не проблема найти из старого ТВ или муз центра..

Ставим ток 20мА и плавно повышая напряжение, проверяем линейки светодиодов, напряжение, при котором светодиоды ярко загорятся и есть рабочее минус 3-5%, если повысить напряжение всего лишь на эту самую мелочь 3-5%, ток возрастёт до рабочего, а это может быть и 50мА и 100мА для разных типов светодиодов.. Нельзя ставить ток 100мА, потому как если светодиоды на 50мА, они погорят сразу.
Если напряжения 30В не хватает зажечь всю линейку, то крокодилами цепляемся на один светодиод, вычисляя его рабочее напряжение, это может быть и 3, и 6, и 9, и 11 вольт. Ток определить сложнее по одному светодиоду, но можно посчитать потребляемую мощность всего светильника и поделить на кол-во светодиодов, получив мощность одного светодиода, а затем и его рабочий ток. Погрешность может быть до 20% и в плюс и в минус, посему проверяем себя дважды и трижды и в том числе по внешнему виду светодиодов, ища полный аналог.

Определившись 100% с напряжением и током линеек светодиодов, также понижаем ток в драйвере, чтобы не дожечь деградировавшие в тяжелых условиях светодиоды, какие можно закупить на али пачками на 100-200 р. Светодиоды лучше брать 2700К желтоватые, а не 6000К ярко синие (портят глаза, в них нет красного и в обоих нет зеленого спектра), и дополнять светильник отдельно зелеными светодиодами (для зрения, 18 лет дети в южной корее все слепые, а в этой стране максимум гаджетов и светодиодного освещения).

Измерять постоянный ток на светодиодах до 200 мА можно прибором D-830B, как обычно, в разрыв цепи, а на 10А может быть погрешность..

Как уменьшить напряжение в светодиодной лампе?

Очень часто перегорают светодиоды в лампочке, стал проверять почему, всё оказалось просто завышены их токи, стоят светодиоды на 9V 100ма, а на деле завышено и напряжение и ток. Вот я захотел уменьшить напряжение, соответственно уменьшился бы и ток. Я добавил сначала ещё один светодиод (точно с такими параметрами), замерил ничего не изменилось, добавил ещё один смотрю у меня напряжение растёт с каждым добавленным диодам. Так получается замкнутый круг, я добавляю что бы уменьшить а оно так же прибавляется. Я добавил ещё токограничивающий резистор сначала на 20 потом поменял его на 100 Ом та же история и напряжение и ток ещё вырос. Схема питания не примитивная, может это и хуже. Так как же мне понизить напряжение а количество диодов что бы добавить? Что бы моя лампа работала в лёгком режиме.

фото

фото

фото

в избранное up --> garikbut [6.6K] Никодимыч, так удалось задуманное или нет? — 2 года назад Никодимыч [11.8K] Да, удалось. Всё очень просто,увеличиваете резистор RS1 и ток падает, а соответственно и напряжение. Подобрал когда светодиоды почти не греются, но проигрываю в яркости. Тут никуда не деться, прямая зависимость, меньше ток-меньше и яркость. — 2 года назад комментировать garik­ but [6.6K] 2 года назад

Светодиод, это электронный элемент, который питается не напряжением а током. Если через него пропустить ток соответствующий его паспортным данным, то напряжение на нём выставится "автоматически" согласно паспортным данным. Т.е. если мы имеем девятивольтовые светодиоды (кстати на одном кристалле таких не бывает, стало быть в корпусе имеется три кристалла с падением напряжения на каждом по 3 - 3,2 вольта, в итоге получаем 9 - 9,6 вольт) то при последовательном их соединении напряжение на крайних выводах этой цепочки будет равно количеству светодиодов умноженное на 9 вольт. 7 штук = 63 вольта, 10 штук = 90 вольт и т.д.

Никодимыч задал вопрос:


Ответ: Чтобы уменьшить напряжение в светодиодной лампе, необходимо уменьшить количество светодиодов в цепочке.

Но при этом, сила тока проходящая через эту цепочку светодиодов останется прежней ( заданной резистором Rcs) и светодиоды будут также работать в предельном режиме.

Но баловаться напряжением на цепочке светодиодов и током проходящим через эту цепочку можно только в разумных пределах. Иначе неминуем фатальный исход для микросхемы драйвера. Чтобы этого не произошло, в даташите имеется график области допустимых значений выходных напряжений и токов для безопасной работы драйвера. По буржуйски - SOA.

Полного даташита на JW1795 я не нашёл. Нашёл полный на JW1792. Параметры у них практически одинаковые за исключением сопротивления канала сток-исток.


А это область допустимых значений напряжений и токов для JW1792.


Так как у нас вариант корпуса SOP8, то пользуемся графиком серого цвета.

Ток рассчитывается по формуле I = 0,3/Rcs. Отсюда Rcs = 0,3/I

Берём ток равный 100 миллиампер, тогда Rcs = 0,3/0,1 = 3 Ом.

При таком токе мы можем использовать ряд напряжений 40-120 вольт. Т.е. подбирать количество светодиодов в цепочке исходя из допустимого напряжения.

Опять же, допустимое напряжение выбираем исходя из величины питающего (сетевого) напряжения. Если сетевое напряжение ниже 100 вольт то напряжение на выходе драйвера на поднимется выше 70 вольт. Это можно прочитать в верхнем скриншоте.

автор вопроса выбрал этот ответ лучшим в избранное ссылка отблагодарить Никодимыч [11.8K] Да, ответ более чем исчерпывающий. Значит что бы не горели светодиоды от перегрева мне нужно уменьшить на них ток этим самым резистором Rcs исходя из формулы увеличив сопротивление при 6 ОМ это будет уже 50ма. Этим сегодня и займусь — 2 года назад garikbut [6.6K] комментировать jar-ohty [115K] 2 года назад

Вы не до конца понимаете принцип работы этой лампы. Источник питания светодиодов стабилизирует ток через них. Когда вы добавляете резистор или еще один светодиод, ток остается тем же самым. Это нужно, так как светодиоды нельзя питать напряжением, а нужно питать током. Светодиод по своей природе аналогичен стабилитрону: при напряжении ниже примерно трех вольт ток через светодиод почти не течет, а при его повышении он внезапно и быстро растет, уходя за допустимые пределы. То есть если пытаться подобрать рабочее напряжение для светодиода, окажется, что его надо поддерживать с точностью до сотых вольта, оно свое для каждого экземпляра светодиода и к тому же уменьшается с ростом температуры. Поэтому индикаторные светодиоды включают через резистор, а мощные осветительные - питают от источника стабильного тока.

Чтобы снизить ток, нужно найти (по datasheet'у на примененную в драйвере микросхему контроллера) токозадающий резистор и изменить его сопротивление. Впрочем, проблема не в завышенном токе, а в недостаточном теплоотводе, а также в развитии неустойчивостей в длинной цепи последовательных светодиодов при их резком включении: светодиоды открываются неодновременно и к последнему запертому светодиоду оказывается приложено напряжение, многократно превышающее допустимое, что приводит к его лавинному пробою.

Всем привет. В этой статье вы узнаете о методах продлевающим жизнь светодиодным светильникам, лампочкам и всему что связано со светодиодным освещением. Модернизировать будем известным нам по прошлой статье светодиодный светильник Varton 12W.

Уважаемый Remonter, недавно упоминал в статье о светодиодной подсветке телевизоров, о том что многие производители намеренно идут на ухищрения, прибыли ради и ради того чтобы грубо говоря их заводы не закрыли.
В прошлой своей статье о ремонте светиодного светильника я рассказал вам как его починить, а вот как продлить ему жизнь, решил рассказать в этой отдельной статье.


Дабы всё было понятно в нашем частном случае, срисовал схему блока питания светильника с платы. Даташит на шим-микросхему найти не предоставилось возможным, поэтому пришлось рассчитывать на свою интуицию, опыт, информацию в интернете и советы Remonter-a, администратора нашего сайта.


Схема драйвера светодиодного светильника

Схема проста. Перед диодным мостом установлен терморезистор, ограничивающий обычные завышенные скачкообразные пусковые токи конденсатора, при включении драйвера. Также установлен помехоподавлящий Y-конденсатор, устранящий помехи из схемы в сеть и из сети в схему. За диодным мостом конденсатор, сглаживающий пульсации с диодного моста, за ним резистор слегка ограничивающий напряжение, далее резистивный делитель из трех резисторов, задающий режим работы микросхемы, еще один сглаживающий конденсатор, два паралельно включенных токовых резитора. За микросхемой диод разряжающий на себя остаточный ток дросселя и возвращая ток снова на него, после выключения драйвера, защищающий таким образом схему. За диодом резистор и конденсатор, сглаживающие остаточные пульсации после дросселя. Ну а в конце уже следует и сама нагрузка в виде светодиодов.

Внешний вид платы и токовые резисторы

Поначалу пробовал вставить в разрыв питания светодиодов, математически рассчитанное на 30-ти процентное понижение тока сопротивление. К своему удивлению, вместо падения тока увидел мерцание светодиодов, с понижением яркости. Смотрите видео мерцания.

Так как даташита на микросхему не нашёл, предположил что это является особенностью её работы. Поэкспериментировав и поколдовав с осциллограмами в ключевых точках схемы, решил пойти более простым путём подбора токовых сопротивлений. К слову установка диодов в разрыв цепи в моем случае не дала ощутимого эффекта, так как пришлось бы набирать много диодов.

Подытожу. Таким вот незамысловатым образом мы с вами можем продлить жизнь светодиодным светильникам, лампочкам, светодиодным лентам, любым активным нагрузкам, нуждающихся в уменьшении ненормально завышенного тока.

Защита светодиодных ламп от перегорания: схемы, причины, продлеваем жизнь

На рынке светодиодных ламп и светильников представлен широкий спектр продукции в разных ценовых диапазонах. Основное отличие приборов низкого и среднего ценовых сегментов заключается в большей степени не в используемых светодиодах, а в источниках питания для них.

Светодиоды работают от постоянного тока, а не от переменного, который протекает в бытовой электрической сети, а от качества преобразователя в большей степени зависит надежность ламп и режим работы светодиодов. В этой статье мы рассмотрим, как защитить светодиодные лампы и продлить жизнь дешевым моделям.

Всё описанное ниже справедливо и для светильников и для ламп.

Содержание статьи

Два основных вида источников питания для светодиодов: гасящий конденсатор и импульсный драйвер

В самой дешевой светодиодной продукции используется гасящий конденсатор в качестве источника питания. Принцип его работы основан на реактивном сопротивлении конденсатора. Отметим простыми словами, что в цепях переменного тока конденсатор представляет собой аналог резистора. Отсюда следуют такие же недостатки, что и при использовании резистора:

1. Отсутствие стабилизации по напряжению или току.

2. Соответственно при росте входного напряжения увеличивается и напряжение на светодиодах, соответственно растёт и ток.

Эти недостатки связаны между собой. В отечественных электросетях, особенно в отдаленных районах, дачных поселках, деревнях и частном секторе часто наблюдаются скачки напряжения. Если напряжение проседает ниже 220В это не так страшно для ламп собранных по этой схеме, ток через светодиоды будет ниже, соответственно они прослужат дольше.

Схема светодиодной лампы с гасящим конденсатором:

А вот если напряжение будет выше номинального, например 240В, то светодиодная лампы быстро сгорит, по причине того, что и ток через светодиоды возрастет. Также очень опасны и импульсные скачки напряжения в сети, они возникают вследствие коммутации мощных электроприборов: вы наверняка замечали, что при включении холодильника или пылесоса, например, свет «моргает» - это и есть проявление этих импульсных скачков. Также они возникают во время грозы или аварийных ситуациях на ЛЭП или электростанции. Выглядит импульс следующим образом:

Импульсные драйвера для светодиодов

В светодиодных лампочках среднего и высокого ценового сегмента используются драйвера импульсного типа со стабилизацией тока.

Светодиоды работают от стабильного тока, напряжение для них не является основополагающей величиной. Поэтому драйвером называют источник тока. Его основными характеристиками является сила выходного тока и мощность.

Стабилизация тока реализуется с помощью цепей обратной связи, если не вдаваться в подробности существует два основных типа драйверов, которые используются в светодиодных лампочках и светильниках:

1. Бестрансформаторный, соответственно без гальванической развязки.

2. Трансформаторный – с гальванической развязкой.

Гальваническая развязка – это система, которая обеспечивает отсутствие прямого электрического контакта между первичной цепью питания и вторичной цепью питания. Она реализуется с помощью явлений электромагнитной индукции, иначе говоря, трансформаторами, а также с помощью оптоэлектронных устройств. В блоках питания для гальванической развязки используется именно трансформатор.

Типовая схема бестрансформаторного 220В драйвера для светодиодов изображена на рисунке ниже.

Обычно они построены на интегральной микросхеме со встроенными силовым транзистором. Она может быть в разных корпусах, например TO92, он используется также и в качестве корпуса для маломощных транзисторов и других ИМС, например линейных интегральных стабилизаторов, типа L7805. Встречаютcя и экземпляры в «восьминогих» корпусах для поверхностного монтажа, типа SOIC8 и другие.

Для таких драйверов повышения или понижения напряжения в питающей сети не страшны. Но крайне нежелательны импульсные перенапряжения – они могут вывести из строя диодный мост, если драйвер бестрансформаторный, то 220В попадут на выход микросхемы, или же мост пробьёт на КЗ по переменному току.

В первом случае высокое напряжение «убьёт светодиоды», вернее один из них, как это обычно происходит. Дело в том, что светодиоды в лампах, прожекторах и светильников обычно соединены последовательно, в результате сгорания одного светодиода цепь разрывается, остальные остаются целыми и невредимыми.

Во втором – выгорит предохранитель или дорожка печатной платы.

Типовая схема драйвера для светодиодов с трансформатором изображена ниже. Они устанавливаются в дорогую и качественную продукцию.

Защита светодиодных ламп: схемы и способы

Есть разные способы защиты электроприборов, все они справедливы для защиты светодиодных светильников, среди них:

1. Использование стабилизатора напряжения – это самый дорогой способ и для защиты люстры его использовать крайне неудобно. Однако можно запитать весь дом от сетевого стабилизатора напряжения, они бывают различных типов – релейные, электромеханические (сервоприводные), релейные, электронные. Обзор их преимуществ и недостатков может стать темой для отдельной статьи, пишите в комментарии, если вам интересна эта тема.

2. Использование варисторов – это прибор ограничивающие всплески напряжения, может использоваться как для защиты конкретного светильника или другого прибора, так и на вводе в дом.

3. Использование дополнительного гасящего конденсатора последовательном включении. Таким образом, ограничивается ток лампы, конденсатор рассчитывают исходя из мощности лампы. Это скорее не защита, а понижение мощности лампы, в результате при повышенных значениях напряжения в электросети срок её службы не сократится.

Варистор для защиты ламп и другой бытовой техники

Варистор – это прибор ограничивающий напряжение, его действие подобно газовому разряднику. Это полупроводниковый прибор с переменным сопротивлением. Когда на его выводах напряжение достигает уровня напряжения срабатывания варистора, его сопротивление снижается с тысяч мегаом до десятков Ом и через него начинает протекать ток. Его подключают в цепь параллельно. Таким образом, происходит защита электрооборудования.

Внешний вид варисторов

Un — классификационное напряжение. Это такое напряжение, при котором через варистор начинает протекать ток силой в 1 мА;

Um - максимально допустимое действующее переменное напряжение (среднеквадратичное);

Um= — максимально допустимое постоянное напряжение;

Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;

W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса.

Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;

Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда варистор пропускает через себя большой ток, она падает до нуля.

Для увеличения рассеваемой мощности производители увеличивают размер самого варистора, а также делают его выводы более массивными. Они выступают в качестве радиатора для отвода выделенной тепловой энергии.

Для защиты электроприборов в отечественных электросетях переменным напряжением в 220В подбирают варистор больший, чем амплитудное значение напряжения, а примерно равно 310В. То есть можно устанавливать варистор с классификационным напряжением около 380-430В.

Например, подойдет TVR 20 431. Если вы установите варистор с меньшим напряжением, то возможны его «ложные» срабатывания при незначительных превышениях напряжения питающей сети, а если установите с большим – защита не будет эффективной.

Как уже было сказано, варисторы могут устанавливаться непосредственно на вводе в дом, таким образом, вы защитите все электроприборы в доме. Для этого промышленностью выпускаются модульные варисторы, так называемые УЗИП.

Вот схема его подключения для трёхфазной сети, для однофазной – аналогично.

Эти схемы с использованием дифавтомата и защитой от высокого потенциала на одном или двух проводах однофазной цепи не менее интересны.

Для защиты одного светильника или лампочки используют такую схему включения, она приведена на примере самодельного светодиодного светильника, но при использовании готового светильника или лампы варистор устанавливается также – параллельно по цепи 220В.

Вы его можете установить как в корпусе самого осветительного прибора, так и на питающих проводах снаружи. Если он подключается к розетке – варистор можно расположить в розетке. Варистор можно заменить супрессором.

В этом видео ролике автор интересно рассказывает о таком способе защиты.

Готовые решения

Устройство защиты от импульсных перенапряжений для светодиодных светильников – от производителя LittleFuse. Обеспечивают защиту от перенапряжений величиной до 20 кВ. В зависимости от конструкции устанавливается в параллель или последовательно.

На рынке имеются устройства с разными характеристиками – напряжением срабатывания и пиковый ток.

Устройство защиты светодиодов сохраняет лампы при импульсах напряжения. Подключается параллельно цепи освещения после выключателя. Также предотвращает самопроизвольное мигание светодиодных лампочек при использовании выключателей с подсветкой.

Суть работы такого устройства заключается в том, что внутри установлен конденсатор. Ток подсветки выключателей течет через него, также он сглаживает всплески напряжений.

Подобное или аналогичное устройство от фирмы Гранит, модель БЗ-300-Л. Индекс «Л» в конце говорит о том, что это блок защиты для светодиодных и энергосберегающих ламп (клл).

Внутри расположено три детали, одну из которых мы рассмотрели выше:

Вот принципиальная схема. Вы можете её повторить.

Заключение

Полностью исключить вероятность перегорания светодиодных ламп и светильников невозможно. Однако вы можете продлить лампочкам жизнь, минимизировав влияние скачков напряжение. Сделать это можно либо своими руками, либо купив блок защиты светодиодных ламп заводского исполнения.

Читайте также: