Усиление стеновых панелей производственных зданий

Обновлено: 19.05.2024

5. Методы усиления наземных конструкций зданий и сооружений

Анализ данных по деформациям зданий и сооружений в рассматриваемых условиях показал, что выбор способа усиления несущих конструкций зависит от инженерно-геологических условий (свойств грунтов) и степени их изученности, характера и величины приложенной нагрузки, детальности обследования существующих фундаментов, сохранности существующих конструкций, способа производства работ и типа применяемого оборудования.

Особо опасные деформации происходят в построенных без учета развития неравномерных осадок старых зданиях, получивших повреждения и имеющих многочисленные дефекты, ослабляющие несущие конструкции: трещины в стенах, сдвиги перекрытий и лестничных маршей, перекосы проемов, отклонения стен от вертикали и др.

Исходя из особенностей и характера примыкания принимаются те или иные конструктивные мероприятия, направленные на обеспечение эксплуатационной пригодности существующих зданий: предупредительные проектные решения; предупредительные меры, необходимые при производстве работ; ремонтные меры при возникновении аварийных ситуаций.

Усиление конструкций может выполняться по временной и по постоянной схеме. Временное усиление конструкций применяют в случаях длительного развития деформаций при возникновении аварийных повреждений зданий. По мере стабилизации деформаций временное усиление заменяется постоянным.

Усиление конструкций, как предупредительное, так и восстановительное, выполняется увеличением несущей способности элементов сооружения или изменением конструктивной схемы зданий путем увеличения его пространственной жесткости и прочности.

К настоящему времени разработаны и проверены практикой многочисленные методы восстановления эксплуатационных качеств зданий. Одни методы позволяют усилить надфундаментные конструкции креплением простенков в кирпичных домах, устройством накладных и напряженных поясов, разгрузочных балок, скоб-стяжек и т.п. Другими методами повышают несущую способность основания, реконструируют или усиливают фундамент устройством сплошной фундаментной плиты, расширением или заглублением фундамента, подведением под стены здания свай типа «Мега», набивных, буроинъекционных и т.п., вдавливанием существующих свай с увеличением их длины.

Прежде чем начать работу по усилению отдельных конструкций, необходимо их разгрузить с помощью установки временных опор. Однако здесь нередко допускаются ошибки: нагрузка лежащих выше деформированных конструкций сосредоточенно передается на деформирующийся фундамент и тем самым ухудшаются условия его работы. Нагрузку необходимо перераспределить так, чтобы разгрузить полностью или частично деформирующийся фундамент, т.е. передать ее на надежное основание, иногда через специально выполненные опоры (площадки). За временными опорами необходимо вести постоянные наблюдения и при необходимости подбивать под них клинья или ставить дополнительные разгружающие опоры.

Деформированные простенки между оконными, дверными или иными проемами кирпичных зданий усиливают путем устройства металлических или железобетонных корсетов (обойм). Если выполнено временное крепление лежащей выше кладки, простенки могут быть усилены частичной или полной их перекладкой.

Конструкция металлического корсета состоит из вертикальных стоек уголковой стали с шириной полок 100—120 мм, охватывающих углы простенка, и приваренных к стойкам через определенный интервал горизонтальных планок из полосовой стали толщиной 6—8 мм. Такой корсет почти вдвое повышает несущую способность простенка (рис. 8.3). С внутренней стороны здания части металлического каркаса устраиваются с заглублением в тело простенка и последующим оштукатуриванием борозд. Железобетонный корсет применяется в тех случаях, когда напряжение в рабочем сечении простенка может вызвать разрушение кладки. Стойки такого корсета также могут располагаться в вертикальных бороздах, пробиваемых в кладке простенков.

Рис. 8.3. Усиление кирпичного простенка металлической обоймой 1 — кирпичная кладка; 2 — металлическая планка; 3 — уголок

В тех случаях, когда в конструкциях здания возникают опасные трещины в местах примыкания капитальных стен друг к другу, стены отклоняются от вертикальной плоскости и выпучиваются их отдельные участки, в целях предотвращения дальнейшего развития деформаций устраивают накладные пояса (рис. 8.4). Эти пояса представляют собой систему парных вертикальных анкеров из швеллеров № 12—14, объединенных горизонтальными тяжами из круглой стали диаметром 18—28 мм. Тяжи лучше всего устраивать на уровне железобетонных перекрытий с последующим укрытием их под полами. Натяжение тяжей ведется вручную с помощью муфт, имеющих обратную нарезку. Рассчитываются тяжи по усилию на растяжение кладки. С наружной стороны анкеры и тяжи можно утапливать в штрабу, которая затем оштукатуривается.

Рис. 8.4. Усиление здания вертикальными накладными поясами 1 — накладной пояс из швеллера; 2 — металлический тяж

В зимнее время не исключена возможность проявления изморози на металлических частях накладных поясов внутри зданий, поэтому на наружной части тяжей необходимо устраивать теплоизолирующие прокладки.

Напряженные пояса конструкции Козлова применяются в тех случаях, когда в стенах зданий возникают трещины со значительным раскрытием и большой протяженностью. Такие пояса придают зданию пространственную жесткость, снимают растягивающие напряжения в кладке и передают их на металл (рис. 8.5).

Рис. 8.5. Усиление здания напрягаемыми поясами а — фасад; б — план части здания; в — варианты размещения тяжей; 1 — арматурный тяж диаметром 22 — 32 мм; 2 — штраба

Применение напряженных поясов имеет определенные преимущества по сравнению с другими способами, поскольку они обеспечивают: выравнивание неравномерных деформаций коробки здания; ведение восстановительных работ без нарушения нормальной эксплуатации здания; исключение перекладки значительных участков стен; экономичное расходование металла на восстановление поврежденных стен и здания.

Напряженные пояса состоят из металлических стержней диаметром 22—32 мм, охватывающих поврежденное здание или его отсек на уровне междуэтажных и чердачного перекрытий. Стержни натягивают обычно вручную резьбовыми муфтами. Для установки стержней поясов пробивают горизонтальные штрабы с наружной стороны стен. Стержни крепят к опорным частям, представляющим собой вертикальные уголки № 10—15, установленные на углах или пересечениях стен. Пояса должны быть замкнутыми. Согласно методике Академии коммунального хозяйства им. К.Д. Памфилова, длина большой стороны пояса не должна превышать 1,5 длины короткой. Длинная сторона обычно составляет 15—18 м. Пояс, охватывающий деформированную часть здания, должен быть заведен на неповрежденную часть не менее чем на 1,5 длины деформированного участка.

Сечение тяжей подбирается по усилию, зависящему от расчетного сопротивления кладки на скалывание, толщины стены и ее длины. Сечение стержней, воспринимающих изгибающий момент в стене, назначается таким, чтобы их прочность равнялась прочности кладки, воспринимающей перерезывающую силу:

N = 0,2Rlb ,

где N — усилие в стержне, кН; R — расчетное сопротивление кладки скалыванию, кН/м 2 ; l — длина стены, м; b — толщина стены, м.

Трещины в стенах здания можно укрепить с помощью скоб-стяжек, устанавливаемых на уровне каждого этажа. Назначение таких скоб — перераспределение нагрузки от деформированных участков стен на прочные участки. Такое мероприятие позволяет предотвратить дальнейшее раскрытие трещин. Скоба-стяжка (рис. 8.6) состоит из обрезка швеллера или уголка длиной не менее 2 м, скрепленного со стеной двумя анкерными болтами диаметром 20—22 мм. Анкерный болт располагается на расстоянии не ближе 1 м от трещины.

Рис. 8.6. Усиление кирпичных зданий с помощью скоб-стяжек или разгрузочных балок (размеры в см) а — фасад; б — фрагмент усиления, 1 — скоба-стяжка; 2 — разгрузочная балка из швеллера на уровне верха фундамента (на уровне 1-го или подвального этажа), 3 — стяжной болт, 4 — планка-анкер; 5 — бетон марки 100

В отличие от скоб-стяжек, обеспечивающих локальное усиление поврежденного участка стены, разгрузочные балки служат для общего усиления здания. Обычно их устраивают из швеллеров № 22—27 и ставят на уровне верха фундамента или на уровне оконных перемычек первого или подвального этажа (см. рис. 8.6).

Двусторонние разгрузочные балки устанавливают при толщине стен более 64 см и анкеруют болтами диаметром 16—20 мм через 2—2,5 м. Односторонние разгрузочные балки ставят при малой толщине стен и анкеруют полосовым или круглым железом с тем же интервалом, что и двусторонние балки.

Скобы-стяжки и разгрузочные балки устанавливают на цементном растворе в штрабе глубиной не менее ширины полки. По окончании крепления анкеров штраба заполняется бетоном марки 100 с уплотнением. Все металлические детали скоб-стяжек и разгрузочных поясов должны быть покрыты антикоррозионными составами.

Для крупнопанельных зданий в связи с их конструктивными особенностями нужны иные решения по усилению. Для таких зданий предупредительные меры осуществляются введением горизонтального поэтажного армирования (рис. 8.7); усилением крепления плит перекрытий на панелях внутренних и наружных стен (рис. 8.8); устройством консольных опираний перекрытий (рис. 8.8, в); армированием вертикальных стыков и др.

Рис. 8.7. Усиление конструкций крупнопанельных зданий а — анкерами; б — тяжами; 1 — анкер; 2 — стеновая панель; 3 — тяж; 4 — арматурный каркас; 5 — тяжи; 6 — штукатурка по сетке; 7 — металлический уголок Рис. 8.8. Усиление и повышение устойчивости перекрытий панельных зданий а — вывешиванием перекрытий; б — применением стеновых панелей с консольным уширением; в — установкой ребер жесткости; 1 — металлическая серьга; 2 — балка; 3 — перекрытие; 4 — стеновая панель; 5 — тяж; 6 — трещины, сколы; 7 — консоль; 8 — штукатурка па сетке

Увеличение пространственной жесткости сооружения изменением конструктивной схемы позволяет перераспределить усилия в конструкциях, обеспечив более эффективную их работу. Для этого можно установить дополнительные конструкции в виде стоек, подкосов, порталов, ввести связи, диафрагмы, распорки и др. (рис. 8.9).

Рис. 8.9. Установка жестких и гибких разгружающих конструкций а — дополнительная колонна; б — подкосы; в — портал; г — подкосы

Указанные способы в первую очередь применимы для многоэтажных производственных зданий каркасного типа, являются достаточно эффективными и позволяют разгрузить конструкции, получившие повреждения Во всех случаях усиливающие элементы должны быть включены в совместную работу с существующими конструкциями Для этой цели усиливающие элементы обжимают домкратами, подклинивают, заделывают зазоры раствором на расширяющемся цементе и т.п.

Сотников С.Н. Проектирование и возведение фундаментов вблизи существующих сооружений

Рекомендации


Настоящие Рекомендации знакомят со способом усиления и восстановления бетонных и железобетонных элементов, поврежденных трещинами. По сравнению с традиционным способом он прост в применении, экономичен и нетрудоемок.

Рекомендации предназначены для инженерно-технических работников, занятых проектированием и строительством крупнопанельных жилых домов.

Рекомендации разработаны канд. техн. наук Ю.В. Барковым и инж. В.Ф. Захаровым на основе авторского свидетельства № 1432169 (Бюллетень открытий и изобретений, 1988, № 39).

ЦНИИЭП жилища оказывает техническую помощь в освоении и использовании способа усиления и восстановления несущей способности бетонных и железобетонных элементов крупнопанельных домов, поврежденных трещинами.

За консультацией и оказанием технической помощи при внедрении способа усиления конструкций обращаться по адресу: 127434, Москва, Дмитровское шоссе, 9, корп. Б, ЦНИИЭП жилища отдел, эксплуатационных свойств жилых зданий, тел. 216-89-18.

ВВЕДЕНИЕ

Анализ повреждений конструкций крупнопанельных зданий при различных аварийных случаях показал, что выполняя конструктивные мероприятия, можно восстановить несущую способность панелей и обеспечить их эксплуатационную надежность. Однако хотя строители и производят усиление элементов в соответствии с предписаниями проектных организаций, при этом часто применяются недостаточно обоснованные конструктивные решения. В одних случаях они разработаны с излишним запасом и требуют большого расхода материалов и трудозатрат, а в других - недостаточно эффективны. Поэтому так часто применяются металлические или железобетонные обоймы, которые помимо высокой стоимости и трудозатрат уменьшают жилую площадь.

В ряде стран при ремонте различных железобетонных конструкций применяется метод инъекции в трещины клеящих эпоксидных составов. Имеется и подобный отечественный опыт, примененный при восстановлении уникальных зданий и сооружений. Но широкого распространения этот метод не получил из-за несовершенства применяемого оборудования и специфики трещинообразования в панелях. В ряде случаев, чтобы заполнить эпоксидным составом полости трещины, создают искусственное ее раскрытие, что является весьма трудоемким процессом.

Поэтому предлагаемые методы усиления панелей, поврежденных трещинами, позволяющие восстановить эксплуатационные свойства и несущую способность элементов конструкций, должны быть просты, технологичны в исполнении при минимальных затратах.

Предлагаемый способ усиления конструкций, поврежденных трещинами, отвечает этим требованиям; он экономичен и менее трудоемок по сравнению с многими методами усиления элементов конструкций крупнопанельных зданий.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Рекомендуемый способ усиления бетонных и железобетонных элементов предназначен для разработки проектных решений по усилению конструкций крупнопанельных зданий, поврежденных трещинами при аварийных случаях.

1.2. Способ усиления бетонных и железобетонных элементов может быть применен строительными организациями, осуществляющими строительство, ремонт и эксплуатацию крупнопанельных жилых домов.

1.3. Рекомендуемый способ усиления бетонных и железобетонных элементов поврежденных трещинами, рассчитан на применение в строительстве крупнопанельных домов различных серий, несущие конструкции которых представляют собой плоские панели и плиты перекрытия сплошного сечения. Конструктивное решение усиления несущих элементов крупнопанельных домов - внутренних стен и плит перекрытий, для которых разработаны рекомендации, позволяет исключить дальнейшее раскрытие и развитие трещин, повысить трещиностойкость и восстановить несущую способность конструкций при воздействии монтажных и эксплуатационных нагрузок.

1.4. Способ усиления разработан с учетом положений норм [1, 2, 3].

1.5. При усилении конструкций выполняются следующие работы:

- обследуются повреждения конструкций;

- определяется расчетом количество узлов усиления;

- проект усиления согласуется с проектной организацией;

- производится устройство узлов усиления;

- осуществляется контроль за качеством работ и соблюдением правил по технике безопасности.

2. КОНСТРУКТИВНОЕ РЕШЕНИЕ СПОСОБА УСИЛЕНИЯ

2.1. Конструктивное решение узла усиления панельных конструкций, поврежденных трещинами в крупнопанельных домах, заключается в следующем. Вдоль трещины, разделяющей панель на отдельные части, в ряде сечений, перпендикулярных направлению трещины, сверлят симметрично относительно трещины по два сквозных канала под углом 40-50° к плоскости элемента, в которые затем устанавливают металлические стержни, имеющие отгибы на одном конце и резьбу - на другом; отгибы стержней соединяют между собой электросваркой, после чего на стержнях с противоположных сторон затягивают гайки. За счет установки стержней с двух сторон обеспечивается равномерное обжатие сечения с трещиной (рис. 1).


Рис.1. Конструктивное решение способа усиления элементов:

а - элемент с трещиной и узлами усиления; б - конструкция одностороннего усиления и схема усилий; в - конструкция двухстороннего усиления и схема усилий; 1 - элемент с узлами усиления; 2 - трещина; 3 - сквозной канал; 4 - металлический стержень усиления; 5 - гнездо; 6 - отгибы стержней, соединенные на сварке; 7 - гайка с шайбой; 8 - сварной шов h ш = 6 мм; l ш = 30 - 40 мм; S - усилие от натяжения стержня, передаваемое через шайбу; Т - вертикальная составляющая от усилия, воспринимаемая отгибами стержней; N - горизонтальная составляющая, создающая обжатие сечения с трещиной

2.2. Полости каналов, в которых установлены стержни, заполняются цементным раствором.

2.3. Крепления концов металлических стержней узла усиления в элементах могут выполняться скрытыми или открытыми в зависимости от назначения элемента и условий эксплуатации. Открытые крепления покрываются антикоррозийными составами.

При устройстве скрытого крепления узла усиления в конструкции делаются углубления (гнезда), которые затем заполняются цементным раствором с добавлением пасты ПВА.

2.4. На основе расчетных и опытных данных установлены следующие рациональные параметры соединительных конструкций применительно к элементам и панелям крупнопанельных зданий наиболее распространенных серий:

- сквозные каналы Ø 12 мм;

- соединительные стержни из круглой стали Ø 10 мм, класса А-1;

- длина стержней - в зависимости от толщины элемента;

- длина отгиба принята 30 мм, длина сварного шва не менее 40 мм, высота сварного шва 5 мм, длина резьбы 40 мм.

В прил. 2 приводятся рабочие чертежи металлических стержней усиления (рис. 1.П.2) и шаблона для сверления сквозных каналов (рис. 2.П.2).

2.5. Количество устанавливаемых узлов усиления определяется расчетом в зависимости от типа и назначения конструкций, действующих усилий и величины нагрузки.

В разделах по усилению внутренних стен и плит перекрытий приводятся соответствующие методики расчета усилений элементов.

2.6. Узлы усиления в зависимости от типа конструкции и вида нагрузки могут выполняться либо с одной стороны (одной грани) элемента, либо с двух сторон. Так, при усилении внутренних стен усиление, как правило, выполняется с двух сторон с некоторым шагом, определяемым количеством узлов и длиной трещины. При усилении перекрытий узлы усиления выполняются с одной стороны с расположением стержней со стороны растянутого волокна плиты (см. рис.1).

3. УСИЛЕНИЕ ВНУТРЕННИХ СТЕН

3.1. Трещины во внутренних стеновых панелях условно могут быть разделены на четыре типа (табл. 1), для которых разработаны схемы усиления.

Восстановление и усиление крупнопанельных зданий

Восстановление поврежденных землетрясениями, а также усиление эксплуатируемых зданий - относятся к одной общей проблеме - сейсмозащите зданий и сооружений. Запроектированные в соответствии с действующими нормами объекты, как правило, не получают в результате расчетных сейсмических воздействий серьезных повреждений. Если же такие и наблюдаются, то они являются либо следствием ошибок в проектировании, либо неудовлетворительного качества строительномонтажных работ. В меньшей мере причина повреждений может быть приписана некачественному изготовлению сборных конструкций, поскольку их качество контролируется заводскими лабораториями. Чаще всего повреждения вызываются комплексом причин. В ряде случаев ликвидация последствий землетрясений заключается в незначительном ремонте зданий.

Необходимость усиления последних возникает в случаях изменения сейсмичности района строительства и если объект неоднократно подвергался воздействиям нерасчетных землетрясений и в нем произошло накопление повреждений.


Под термином "восстановление" понимается воссоздание первоначального уровня сейсмообеспеченности здания. Восстановление производится, если к моменту землетрясения сейсмообеспеченность должна была соответствовать действующим нормам проектирования сейсмостойких зданий.

В понятие "усиление" вкладывается иной смысл - повышение сейсмообеспеченности зданий, являющейся недостаточной по сравнению с той, которая требовалась бы по действующим нормам проектирования. Мероприятия по усилению выполняются до землетрясения по специально разработанному плану.

В процессе ликвидации последствий землетрясений могут осуществляться комплексные мероприятия по сейсмозащите зданий — восстановление с усилением. Предполагается не только воссоздание первоначальной сейсмообеспеченности здания, но и доведение ее либо до уровня, соответствующего требованиям норм проектирования, либо до уровня, установленного специальным распоряжением.

Способность здания или сооружения- воспринимать тот или иной уровень сейсмических нагрузок обозначается термином "сейсмообеспеченность". Следует различать начальную и конечную сейсмообеспеченность. Под первой понимается заложенная в процессе проектирования здания его способность воспринимать те или иные сейсмические нагрузки. Сейсмообеспеченность, являющаяся результатом осуществления предусмотренного проектом комплекса конструктивных мероприятий при ликвидации последствий землетрясений или работ по усилению, называется условно конечной.


Практически любое крупнопанельное здание имеет определенную сейсмообеспеченность, но это не означает, что оно обязательно сейсмостойкое. Если конечная сейсмообеспеченность отвечает уровню действующего СШПа, то здание или сооружение следует считать сейсмостойким.

Таким образом, мероприятия, направленные на восстановление или повышение сейсмообеспеченности зданий, могут быть разделены на три группы: мероприятие по восстановлению, по усилению и на мероприятия по восстановлению с усилением.

По уровню начальной сейсмообеспеченности крупнопанельные здания целесообразно также отнести к трем группам: I - к зданиям, запроектированным без учета сейсмических воздействий; II — к зданиям, проекты которых разрабатывались с учетом ранее действовавших норм проектирования на сейсмические воздействия; III — к зданиям, разработанным по действующим на момент землетрясения расчетной интенсивности нормам проектирования на сейсмические воздействия.

Уровни конечной сейсмообеспеченности должны назначаться с учетом: градостроительных задач развития застройки населенного пункта; грунтовых условий, на которых расположены намеченные к восстановлению или усилению здания; срока последующей эксплуатации здания; функционального назначения здания; количества перенесенных зданием землетрясений нерасчетной интенсивности; наличия и характера осуществленных после предыдущих землетрясений восстановительных мероприятий; наличия и характера усиления несущих конструкций зданий, осуществленных в соответствии с долговременным планом предупреждения возможных повреждений от ожидаемого землетрясения.

По уровню конечной сейсмообеспеченности крупнопанельные здания с учетом продолжительности последующего срока эксплуатации рекомендуется подразделять на две группы: а - с последующей эксплуатацией до пяти лет; б - более пяти лет.

Для зданий группы Ша (не имеющих антисейсмических мероприятий со сроком последующей эксплуатации до пяти лет) экономически оправданным следует считать восстановление несущих конструкций без расчета на сейсмические воздействия с учетом воспринятая только вертикальных нагрузок.

Здание группы Iб рекомендуется восстанавливать в целях доведения конечной сейсмообеспеченности до уровня, при ко-котором могут быть восприняты нагрузки, возникающие при 7-балльном землетрясении.

Восстановление до воссоздания начальной сейсмообеспеченности следует осуществлять в зданиях группы IIа.

В зданиях группы IIб должно сочетаться восстановление с усилением с целью наделения здания сейсмообеспеченностью по требованиям действующих норм. Наконец, первоначальная сейсмообеспеченность (сейсмостойкость) восстанавливается в зданиях группы III.

Известен ряд способов восстановления и усиления несущих конструкций и зданий в целом. При выборе способа рекомендуется учитывать: требование высоких темпов, ведения строительно-монтажных работ; необходимость обеспечения высокого качества работ, позволяющих сохранить в течение последующего срока эксплуатации достигнутые уровни сейсмообеспеченности здания; надежность используемых в проектах способов в части сохранения в течение планируемого срока уровня сейсмообеспеченности здания; требование минимума затрат на осуществление мероприятий по восстановлению или усилению.

Ликвидации повреждений и работам по усилению должно предшествовать вариантное проектирование с анализом экономической и технической эффективности каждого варианта проектных предложений. Реализации подлежит проект, обеспечивающий: высокие темпы ликвидации последствий землетрясений; надежность восстановления (усиления) здания; минимум затрат; комфортность подвергнутого восстановлению (усилению) жилья.

Рис. 1.49. Устройство двухсторонних и односторонних армированных рубашек

Рис. 1.49. Устройство двухсторонних и односторонних армированных рубашек При разработке проектов восстановления (усиления) крупнопанельных зданий возможно использование как одного, так и нескольких различных способов. Наружные и внутренние стены и их пересечения (вертикальные стыковые соединения) рекомендуется восстанавливать (усиливать) с помощью: железобетонных и растворных армированных односторонних или двухсторонних рубашек; сеток в слое прочного цементного раствора в пределах поврежденного участка стены или узла; металлических скоб, накладок и уголков; железобетонных шпонок; инъецирования обычных цементных и специальных растворов; полимерармированных шпонок (ПАШ); наклейки стеклоткани.

Железобетонные обоймы применяются в случае недостаточной несущей способности панелей. Обычно они устраиваются на всю ширину и высоту стены (рис. 1.49). Толщина бетонных слоев, марка бетона и количество арматуры в виде плоских сварных сеток определяется расчетом. В варианте двухсторонних рубашек сетки объединяются между собой посредством стержней диаметром не менее 6 мм, пропускаемых в сквозные отверстия диаметром не менее 12 мм. Шаг отверстий не должен быть меньше 500 мм. Более редкое размещение соединительной поперечной арматуры ухудшает совместность работы железобетонных слоев [122].

Сетки армирования бетонных односторонних слоев могут крепиться к обнажаемой арматуре каркасов панелей, либо с помощью специальных анкеров, заделываемых в отверстиях прочным раствором. Возможна пристрелка сетки к поверхности панели. В любом случае необходимо обеспечивать зазор между поверхностью стены и сеткой с целью образования защитного слоя и создания условий наиболее эффективной работы сетки.

Рис. 1.50. Восстановление стеновых панелей диагональными и перекрестными сетками

Рис. 1.50. Восстановление стеновых панелей диагональными и перекрестными сетками В случае возникновения в панеле отдельных и не очень протяженных трещин возможен вариант с применением локальных сеток, размещаемых в пределах трещин (рис. 1.50). Такой способ восстановления требует устройства шграб глубиной 25— 30 мм для размещения сеток в слое прочного цементного раствора заподлицо с поверхностью панели. Крепление сеток производится либо к обнаженной арматуре панелей, либо с помощью поперечной соединительной арматуры в виде шпилек диаметром 3—5 мм из стали В-I или Вр-I. После установки стержней в отверстия производится их зачеканка раствором той же марки, что и раствор армированного сеткой слоя. Раствор следует принимать не ниже марки 100. Расстояние от конца трещины до торца сетки принимается не менее 300 мм. Напуск сетки в каждую сторону от трещины должно быть порядка 150 мм. Сетка с ячейками 150x50 мм должны прикрепляться к панели поперечной арматурой с шагом не более 200 мм в обоих направлениях. Скобы выполняются из арматуры классов А-I и A-II диаметром, устанавливаемым из расчета. П-образные скобы пропускаются сквозь отверстия, размер которых следует увеличивать против диаметра арматуры на 10 мм, чтобы иметь возможность зачеканить отверстие с арматурой. По поверхностям панелей между отверстиями пробиваются борозды глубиной не менее, чем на 5 мм превышающие диаметр скобы. Выступающие из отверстий свободные концы скоб загибаются и свариваются между собой (рис. 1.51, а)Борозды заполняются раствором заподлицо с поверностью панели.

Рис. 1.51. Восстановление стеновых панелей арматурными скобами

Рис. 1.51. Восстановление стеновых панелей арматурными скобами Металлические пластины, как показали опыты, могут рассматриваться в качестве достаточно надежного решения, способного предотвратить полную потерю несущей способности поврежденной стеновой панели от последующих сейсмических сотрясений. Пластины, как и скобы, должны размещаться в специально подготовленных выемах, пересекающих трещину под прямым углом (рис. 1.51, б). Пластины следует устанавливать попарно, соединяя их через сквозные отверстия в панелях стяжными болтами или привариваемыми к пластинам стержнями арматуры. Болты или арматура, а также пластины устанавливаются на прочном цементном растворе. Вместо обычных могут применяться полимеррастворы. Марка раствора должна приниматься не менее 100. В промежутках между пластинами трещины могут инъецироваться цементным либо полимеррастворами. Возможна также расчистка трещин под У-образное поперечное сечение для последующей расшивки раствором.

Рис. 1.52. Восстановление стеновых панелей железобетонными шпонками

Рис. 1.52. Восстановление стеновых панелей железобетонными шпонками Одним из эффективных способов восстановления поврежденной трещиной стеновой панели считаются железобетонные шпонки, пересекающие трещину под прямым углом (рис. 1.52, а). Шпонки могут быть сквозными и устанавливаемыми с двух сторон панели. Армируются эти элементы восстановления плоскими и пространственными каркасами. Двухсторонние шпонки должны обязательно связываться поперечными стержнями для создания условий совместной работы. Сквозные шпонки предпочтительно делать типа "ласточкиного" хвоста в целях повыше-шения надежности заделки их в теле панели. Неперехваченные участки трещин желательно заинъецировать цементным раствором. Во избежание появления трещин по контакту старого и нового бетонов желательно использовать расширяющиеся цементы.

Менее эффективным при самостоятельном применении и достаточно надежным в сочетании с инъецированием следует считать наклейку на трещины стеклотканевых "пластырей" с помощью эпоксидных клеев и полимеррастворов (рис. 1.52,6). Инъецирование обычных цементных растворов в качестве самостоятельного способа не может рассматриваться достаточно эффективным. Как уже подчеркивалось, его целесообразно применять в сочетании с другими способами. Причина кроется в слабой, по сравнению с растворами на полимерных основах или эпоксидными клеями, клеящей способности цементных растворов. С другой стороны, полимеррастворы и эпоксидные композиции допустимо применять самостоятельно при ширине раскрытия трещин ОД мм и более. Исследования ТбилЗНИИЭП [94] убедительно свидетельствуют о подобной возможности. При соответствующем подборе составов можно добиться разрыва не по клеевому шву, а по материалу стены непосредственно. Данный способ правильнее применять для "залечивания" трещин при варианте неполного отселения людей из здания на время ремонтно-восстановительных работ.

Опыт Газлийских землетрясений 1976 г. свидетельствует о надежности еще одного способа восстановления или повышения сейсмообеспеченности крупнопанельных зданий - полимерраст-ворными шпонками (ПАШ). Они предложены, применены на практике ТбилЗНИИЭП и ТашЗНИИЭП в процессе ликвидации последствий Газлийских землетрясений [8].

Рис. 1.53. Восстановление стеновых панелей полимеррастворными шпонками

Рис. 1.53. Восстановление стеновых панелей полимеррастворными шпонками В поврежденной трещинами панели под прямыми углами к ним подготавливаются шпоночные выемы (рис. 1.53), в которых с соответствующими зазорами укрепляются или отдельные трещины, или плоские сварные каркасы. После установки опалубки из бумаги или картона шпонки заполняются полимер-растворами. Шпонки могут быть односторонними и двухсторонними. Прочность сцепления полимеррастворов с бетоном столь велика, что не требуется постановка дополнительной поперечной связующей арматуры. Армирование шпонок подбирается в зависимости от действующих в плоскости трещины усилий. К недостаткам способов восстановления (усиления) с помощью эпоксидных композиций и полимеррастворов относится зависимость от погодных условий (предпочтительно применять при положительных температурах). Кроме того, использование в здании только этих материалов неизбежно отразится на последующем пределе огнестойкости восстановленного (усиленного) здания. Установлено, что эпоксидные клеи и по-лимеррастворы теряют свои свойства при температуре 250— 300°С, в то время как стандартный пожар поднимает температуру до 900-1000°С. Чтобы снизить остроту вопроса, необходимо описываемый способ сочетать с "традиционным".

Рис. 1.54. Восстановление узлов пересечений стеновых наружных панелей

Рис. 1.54. Восстановление узлов пересечений стеновых наружных панелей Практически всеми описанными выше способами можно восстанавливать (усиливать) места пересечений наружных панелей с внутренними и внутренних между собой.

Поскольку, как показывает осмотр зданий после землетрясений, чаще и прежде всего повреждаются стыковые соединения, может производиться локальное (в пределах определенного расстояния от угла пересечений стен) торкретирование по сетке бетона и раствора (рис. 1.54). Ширина полосы торкретирования принимается не более 500 мм для удобства установки соединительной поперечной арматуры. Опыты ЦНИИСК показали, что доведенные до полного разрушения при сдвиге узлы пересечений с помощью рубашек могут восстановить несущую способность до 85 % первоначальной. Расчет арматуры сеток усиления рекомендуется устанавливать на основании расчета из условия восприятия элементами восстановления сдвигающих усилий в стыке с учетом его остаточной (после землетрясения) несущей способности в размере 0,2-Ю,3 от первоначальной. Аналогичный подход должен иметь место и при расчете элементов восстановления с использованием уголков.

Рис. 1.55. Восстановление узлов пересечений внутренних стеновых панелей

Рис. 1.55. Восстановление узлов пересечений внутренних стеновых панелей Экспериментально проверен способ восстановления или усиления узлов пересечений внутренних стеновых панелей с помощью металлических уголков (рис. 1.55). Уголки изготовляются из полосовой стали шириной 50—80 мм и толщиной 5—8 мм и устанавливаются в специально подготовленных выемах в панелях на прочном цементном растворе марки не ниже 100, Стяжными болтами уголки прижимаются к панелям, после чего выемы с уголками заполняются раствором заподлицо с поверхностью панели. Перед постановкой уголков поврежденный или разрушенный бетон замоноличивания удаляется и заменяется либо бетоном (в случае повреждения больших объемов), либо цементным раствором указанной выше марки. Трещины могут быть заинъецированы обычным цементным или полимерраствором. В этом случае несущая способность узла пересечения при сдвиге может быть восстановлена практически на 100%. Шаг уголков и диаметр стяжных болтов принимается по расчету на воспринятие сдвигающих усилий, действующих в месте пересечения стен.

При ликвидации последствий землетрясения возможны два варианта подхода к расчету элементов восстановления. По первому варианту, когда бетон замоноличивания поврежден отдельными трещинами, остаточную несущую способность стыка рекомендуется учитывать в размере не более 0,2?0,3 от первоначальной. В случае значительного разрушения бетона замоноличивания и разрыва отдельных стержней соединительной горизонтальной арматуры элементы восстановления рассчитываются на полную величину сдвигающей нагрузки в зоне вертикального стыка.

Решение задачи усиления здания также требует оценки остаточной несущей способности при сдвиге узла пересечения стен. Если здание возведено без антисейсмических мероприятий, остаточная несущая способность принимается равной нулю. В случае ограниченных мероприятий она может приниматься в пределах 0,2?0,5 от первоначальной несущей способности.

Восстановление совместной работы стен ортогональных направлений может осуществляться полимерармированными шпонками. Они предназначаются для воспринятая сдвига и растяжения. С их помощью целесообразно повышать сейсмообеспеченность не подвергавшимся землетрясениям зданий.

Рис. 1.56. Устройство ПАШ в пересечениях наружных, внутренних панелей стен и перекрытий

Рис. 1.56. Устройство ПАШ в пересечениях наружных, внутренних панелей стен и перекрытий ПАШ могут располагаться как изнутри, так и снаружи здания (рис. 1.56, а). Однако следует учитывать, что введение их в стык между наружными и внутренними стенами в районах с низкими зимними температурами вызовет снижение теплозащитных функций ограждения. Поэтому наружное размещение ПАШ более оправданно применять в районах с незначительными отрицательными температурами. Благодаря конструктивному решению полимерармированные шпонки обладают в определенной мере универсальностью (рис. 1.56, б): они используются для подкрепления вертикальных, горизонтальных стыков, связей наружных стен с перекрытиями. Одновременно с восстановлением (усилением) связей с перекрытиями в последнем случае будут воссоздаваться (или создаваться) связи между панелями в горизонтальном шве.

Известны и другие конструктивные решения, используемые для ликвидации последствий землетрясений, например металлические пояса, предварительно напрягаемые и без напряжения. Однако они здесь не приводятся в силу недостаточности экспериментальной изученности при действии знакопеременных динамических типа сейсмических нагрузок. К тому же данное решение чрезвычайно металлоемко. Вероятно, целесообразно использовать металлические пояса в качестве временных устройств с целью предотвращения прогрессирующего развития деформаций поврежденных конструкций. После осуществления мероприятий по восстановлению описанными выше способами конструкции поясов следует демонтировать.

Возможен ли ремонт или усиление стеновых ограждающих панелей промышленных цехов?


В Вашем случае однозначно видно, что обрамление парапетных панелей оцинкованным железом выполнялось не по проекту и без сопровождения авторского и технического надзора. В Вашем случае я дам рекомендацию провести детальный осмотр состояния закладных деталей стеновых панелей. Для этого необходимо будет с поверхности кровли вскрыть места крепления стеновых панелей, а точнее где разваривались между собой закладные детали. Если износ закладных деталей превышает 30 % это может явиться причиной для более кардинальных действий, таких как писал автор предыдущего ответа, выполнить демонтаж с последующим возведением новой конструкции с точки зрения экономической составляющей.

На эскизе я отображаю типовое решение закрепление стеновых панелей к несущим элементам каркаса здания.


Но по Вашей фотографии я на 90 % уверен, что с закладными у Вас все в порядке. Соответственно необходимо будет организовать доступ рабочих с наружной стороны здания для того, чтобы оббить отслоившийся бетон, зафиксировать при помощи анкеров штукатурную, а возможно в Вашем случае придется применить кладочную сетку из проволоки 3 мм и предваритаельно прогрунтовав выполнить оштукатуривание поверхности парапетной плиты. Демонтировав предварительно оцинкованное обрамление парапетов. Которое Вам придется заменить на большую ширину, для того, чтобы оно смогло отводить воду от поверхности стены как можно дальше. И сделать его по такому же принципу как изображено на эскизе ниже:


Уклон обрамления будет необходим чтобы вода не попадала на парапетную плиту в местах соединения оцинкованных фартуков обрамления.

А ниже я хочу показать на фото как применяется кладочная сетка для оштукатуривания аналогичных поверхностей. Только в нашем случае необходимо брать анкера длинной не менее 100 мм и крепить необходимо не менее 8 штук на 1 м2.

Читайте также: