Несущая способность стены монолитной

Обновлено: 19.04.2024

Несущая способность стен кирпич

Несущими называются стены, которые воспринимают нагрузку от опирающихся на них плит перекрытий, покрытий, балок и т.д.

Также следует учесть марку кирпича по морозостойкости. Так как каждый строит дом для себя, как минимум на сто лет, то при сухом и нормальном влажностном режиме помещений принимается марка (Мрз) от 25 и выше.

При строительстве дома, коттеджа, гаража, хоз.построек и др.сооружений с сухим и нормальным влажностным режимом рекомендуется применять для наружных стен пустотелый кирпич, так как его теплопроводность ниже, чем у полнотелого. Соответственно, при теплотехническом расчете толщина утеплителя получится меньше, что сэкономит денежные средства при его покупке. Полнотелый кирпич для наружных стен необходимо применять только при необходимости обеспечения прочности кладки.

Армирование кирпичной кладки допускается только лишь в том случае, когда увеличение марки кирпича и раствора не позволяет обеспечить требуемую несущую способность.

Пример расчета кирпичной стены.

Исходные данные: Рассчитать стену первого этажа двухэтажного коттеджа на прочность. Стены выполнены из кирпича М75 на растворе М25 толщиной h=250мм, длина стены L=6м. Высота этажа H=3м.


Выбор расчетного сечения.

В глухих стенах за расчетное принимается сечение I-I на уровне низа перекрытия с продольной силой N и максимальным изгибающим моментом М. Часто опасным бывает сечение II-II, так как изгибающий момент чуть меньше максимального и равен 2/3М, а коэффициенты mg и φ минимальны.

В стенах с проемами сечение принимается на уровне низа перемычек.

Давайте рассмотрим сечение I-I.

Из прошлой статьи Сбор нагрузок на стену первого этажа возьмем полученное значение полной нагрузки, которая включает в себя нагрузки от перекрытия первого этажа P1=1,8т и вышележащих этажей G=G п +P 2 +G 2= 3,7т:

Плита перекрытия опирается на стену на расстоянии а=150мм. Продольная сила P1 от перекрытия будет находиться на расстоянии а / 3 = 150 / 3 = 50 мм. Почему на 1/3? Потому что эпюра напряжений под опорным участком будет в виде треугольника, а центр тяжести треугольника как раз находится на 1/3 длины опирания.

Нагрузка от вышележащих этажей G считается приложенной по центру.

Так как нагрузка от плиты перекрытия (P1) приложена не по центру сечения, а на расстоянии от него равном:

Тогда эксцентриситет продольной силы N составит:

Так как несущая стена толщиной 25см, то в расчете следует учесть величину случайного эксцентриситета eν=2см, тогда общий эксцентриситет равен:

Прочность кл адки внецентренно сжатого элемента определяется по формуле:

Коэффициенты mg и φ1 в рассматриваемом сечении I-I равны 1.


ω = 1 + e /h = 1 + 0,045/0,25 = 1,18 ≤ 1,45 условие выполняется

Несущая способность кладки равна:

Прочность кладки обеспечена.

Статья была для Вас полезной?

Расчет нагрузки на кирпичную стену – пример определения несущей способности конструкции

Проектирование и возведение сооружений из кирпича требует дополнительного расчета нагрузки. Несущая способность кирпичной кладки при неправильной закладке приводит к разрушению стены. Поэтому инженеры с максимальной точностью рассчитывают показатели. Для этого нужно знать марку кирпича по плотности, осуществляемую нагрузку, устойчивость, сопротивление сжатию и теплопередаче.


Виды нагрузок на кирпичную стену

Нагруженность элементов конструкции подразделяют на 2 вида:

К постоянным относят удельную массу перегородок, перестенок, стен и других элементов, а также постоянное влияние подземных вод, горных пород и их гидростатика. Временные, как становится ясно из названия, это сбор нагрузок характерного типа, которые могут изменяться. К ним относят:


На данный показатель может влиять наличие снега.

  • вес временно привезенного оборудования либо стационарных объектов;
  • разность перепадов давления в проложенных трубах здания;
  • нагрузки климатического характера влияния окружающей среды (снег, дождь, ветер).

Если сооружение проектируется с малым количеством этажей, то строители могут пренебрегать данными касательно временных напряжений на здание, однако только при условии создания повышенного запаса прочности на этапах его строительства.

От чего зависит нагруженность кирпичной кладки?

Для проведения расчета первым делом необходимо определить все факторы, влияющие на прочность участка проектирования, а именно:

Перед началом проведения калькуляций следует учесть, что в конструкции есть подоконники.

  • защитные возвышения по периметру кровли;
  • подоконники;
  • простенки;
  • участки над окнами с учетом полного веса всех составляющих стены;
  • допустимые нагрузки на плиту и между перекрытиями;
  • удельную массу настила;
  • для зимнего периода также учитывают вес снежного покрытия на крыше и влияние сильных порывов ветра.

Для зданий более 2-х этажей проводят расчет для определения способности их сопротивляемости. С помощью формул высчитывают нагрузки от каждого отдельного этажа конструкции и точки давления. Высокие нагрузки образовываются в нижних частях кирпичного столба. Если условия по правильному соотношению величин толщины и высоты не будут выполнены, то с увеличением срока эксплуатации стена начнет выгибаться и может полностью разрушиться от перенапряжения.

В строительной индустрии предусматривается толщина кладки из кирпича для несущих стен от 1,5 до 2,5 изделия. Но окончательное вычисление зависит от высотности объекта. Определяется устойчивость к нагрузкам непосредственно с помощью расчета, но в случае строительства 3 и более этажных зданий нужен тщательный анализ по формулам, которые учитывают сложение нагрузок от каждого этажа, угол приложения силы и возможные дополнительные напряжения.


При планировании конструкции несущего типа материал стоит укладывать не менее, чем в 1,5 камня. Вернуться к оглавлению

Пример расчета нагруженности кирпичной стены

Чтобы разобраться в вопросе нагрузок несущих конструкций, можно изучить пример выполнения проекта, в котором не учитываются временные эксплуатационные нагрузки. Например, здание 4-х этажей с толщиной стен 64 см (Т), удельный вес с учетом всех элементов — кирпича, штукатурки и раствора составляет М=18 кН/м3. По ГОСТу 11214—86, выполнена закладка окон, их размеры по ширине 100—150 см (Ш) по высоте 100—130 см (В).

Приложение веса на простенок от элементов, находящихся выше, согласно замерам, равен 0,64*1,42 м, а высота одного этажа (Вэт) 4200 мм. При этом сила давления на участок происходит под углом 45°. При слое штукатурки в 2 см определяют нагрузку от стен следующим алгоритмом: Нстен=(4Вэт+0,5(Вэт-В1)3—4Ш1*В1)(h+0,02)М. Подставив значения, получают 0, 447 МН. Определение требуемой нагруженной площади П=Вэт*В½-Ш/2. В этом случае значение равно 6 м. Нп =(30+3*215)*6 = 4,072МН. Получаемая нагрузка на кладку из кирпича от перекрытий 2-го этажа равняется: Н2=215*6 = 1,290МН, в том числе Н2l=(1,26+215*3)*6= 3,878МН. Удельный вес кирпичного простенка высчитывается по формуле: Нпр=(0,02+0,64)*(1,42+0,08)*3*1,1*18= 0,0588 МН.


Необходимый показатель для данной конструкции можно вычислить, используя некоторые данные и формулы.

Расчет несущей способности кирпичной стены выполняется по максимально загруженным простенкам нижнего этажа.

При обследовании элемента выбирают части стены с минимальной шириной и толщиной. Чаще всего они расположенными в проемах дверей или окон. Если условие У >= Н на устойчивость стены при расчетах подтверждается, то проект выполнен верно и прочность конструктивных элементов достаточна. Расчет простенка для каждого этажа и суммирование значений показывают общую нагрузку здания и выполняются согласно СНиП II-22—81.

Недостаточное сопротивление стены из кирпича

Если при определении расчетного сопротивления данные устойчивости менее ее нагрузки, следует выполнять армирование стенок и перегородок. При упрочнении материала прирост показателей прочности составляет 40%. Далее следует заново пересчитать показатели устойчивости, учитывая усиление стальными элементами. Зная что У = 1,5, а Н = 1,113, рассчитывается коэффициент усиления, поделив значения, К = 1,348. Таким образом, увеличить прочностные показатели нужно на 34,8%. Проводя армирование железной обоймой, можно достичь нужных показателей прочности, если правильно выбрать марку кирпича, усиление, определить конструкцию фундамента и характеристики грунта под фундаментом.

Как рассчитать стены из кладки на устойчивость

Чтобы выполнить расчет стены на устойчивость, нужно в первую очередь разобраться с их классификацией (см. СНиП II -22-81 «Каменные и армокаменные конструкции», а также пособие к СНиП) и понять, какие бывают виды стен:

Разберемся с вопросом устойчивоcти стен.

Первый вопрос, возникающий у «непосвященного» человека: ну куда может деться стена? Найдем ответ с помощью аналогии. Возьмем книгу в твердом переплете и поставим ее на ребро. Чем больше формат книги, тем меньше будет ее устойчивость; с другой стороны, чем книга будет толще, тем лучше она будет стоять на ребре. Со стенами та же ситуация. Устойчивость стены зависит от высоты и толщины.

Что нужно, чтобы избежать такого явления? Нужно изучить п.п. 6.16. 6.20 СНиП II -22-81.


Рассмотрим вопросы определения устойчивости стен на примерах.

Пример 1. Дана перегородка из газобетона марки М25 на растворе марки М4 высотой 3,5 м, толщиной 200 мм, шириной 6 м, не связанная с перекрытием. В перегородке дверной проем 1х2,1 м. Необходимо определить устойчивость перегородки.

Находим коэффициенты k из таблиц ы 29:

Окончательно β = 1,26*9,8 = 12.3.

Пример 2. Дана наружная ненесущая стена из облегченной кладки из кирпича марки М50 на растворе марки М25. Высота стены 3 м, толщина 0,38 м, длина стены 6 м. Стена с двумя окнами размером 1,2х1,2 м. Необходимо определить устойчивость стены.

Находим коэффициенты k из таблиц ы 29:

Окончательно β = 0,94*15,4 = 14,5.

Еще полезные статьи:

профили арматуру не заменят

Вернёмся пока к стенам, тут вычитал ещё интересный вариант tilt-up
на фундаменте отливается прямо стена с утелпением сразу (в утеплении есть углубления для армирования, т.е. слой бетона не везде одинаковый, как бы та же ребристая структура)

потом это ставится уже краном (свариваются, скручиаются выносы арматуры) а стыки и углы монолитятся и утепляются отдельно (в стыках из плиты и потом в перекрытие отдельно арматура закладывается)

Как Вам такая технология? Несущая стена получится 150мм с утолщениями до 250мм из керазитобетона M50 с умеренным армированием

а значит будут проблемы в растянутой зоне плиты и в местах анкеровки арматуры.

Для стен же, тем более для одноэтажного дома, керамзитобетон вполне подходит. Конечно, нужно соблюсти все нормативные требования для лёгких бетонов.

стяжка не армируется

почитал СНИП по легким бетонам, там довольно интересные есть моменты.
1. похоже можно делать керамзитобетон без мелкого наполнителя, я думаю использовать 10-20
2. есть разные сорта керамзита по прочности, и требования для каждой марки керамзитобетона

Несущая монолитная стена 15 см.

Добрый день!
Интересует мнение специалистов по поводу несущей способности монолитной стены 150 мм.
Стена армирована 10-той арматурой двойным квадратом 250 х 250 мм, т.е. арматуры около 10 кг/м2.
Бетон товарный М-200. Возможны несколько холодных швов в стене, примерно каждый метр высоты. Швы будут обработаны максимально с соблюдение строительных норм. Уплотнение бетона вибратором не планируется, поскольку может не выдержать опалубка, но будет применятся ручное уплотнение.
Внутренняя несущая стена 300 мм - газобетон.
Перекрытие сборное железобетонное опирается по краям на монолит, внутри соотвественно на несущую стену, либо как вариант полностью монолитное перекрытие, но это маловероятно.
Дом 13,7 х 10,2 метра. Высота 1 этажа почти 3 метра, второй этаж мансардный. В коньке высота 8,7 метра.
Если важно, то будет стоять на ленточном монолитном фундаменте шириной 250 мм, глубина 1200 мм, тоже соответственно проармированном таким квадратом.

Последний раз редактировалось Lovipodachu, 18.04.2010 в 19:09 .

Петрозаводск

А какие защитные слои бетона?

Калининград

Имеете ввиду наружные и внутренние слои?
Снаружи 100 мм пенополистирол, внутри штукатурка непосредственно по бетону.
Это имелось ввиду?

Петрозаводск

Вот: , сколько от наружной грани бет. стены до грани арматурного стержня? Или до центра стрежня?

Калининград

Понял.
20-30 мм
В общем если точнее, то по горизонтальной арматуре 20 мм, по вертикальной арматуре 30 мм.
До центра ближайшего к поверхности стены стержня 25 мм.

Стена безусловно выдержит, но как вы будете опалубку кородить. Мне кажется что это технически неудобно. Смущает ширина фундамента. Я проектирую дома 3х этажные полностью монолитные, толщина стен 160 мм и никаких проблем. Опалубка правда у фирмы специальная.

Калининград

Стена безусловно выдержит, но как вы будете опалубку кородить.

Ну, там тоже есть специальная опалубка, типа несъёмной. Закладки под арматуру, только там внутри без ППС получается. Вроде не очень сложно собирается, мне показывали.
Меня просто 150 мм стены смущали, с точки зрения прочности и армирования, достаточно ли арматуры, или наоборот слишком много.
И ещё волнует вопрос сопряжение железобетонного перекрытия и монолитной стены - насколько это грамотно и как там правильно этот узел связать.

Последний раз редактировалось Lovipodachu, 18.04.2010 в 20:46 .

согласно п.7,5 СП 52-103-2007 толщину стены надо принять 18 см. и более

Калининград

согласно п.7,5 СП 52-103-2007 толщину стены надо принять 18 см. и более

Я могу залить только 150, 200 или 250 мм стену. С вариантом 200 мм стоимость уже немного не та, которую бы хотелось иметь.
Я посмотрел СП - там ведь речь идет о высотных домах. Я же говорю по 2-х этажный дом.
Есть ли смысл переплачивать за толщину стены? Может всё-таки достаточно 150 мм?

Фундамент монолитная плита. Как посчитать толщину, какое выбрать армирование. Чем нельзя пренебрегать

Продолжаем тему фундаментов индивидуальных жилых домов.

В этой статье я максимально простым языком объясню как правильно запроектировать фундамент "Монолитная плита". Ремарка: регламент, описаный ниже, подходит для домов до двух этажей включительно из пенобетонных блоков или кирпича!

Тип фундамента "Монолитная плита" отличается следующими качествами:

1. Маленькое удельное давление на грунт;

2. Не боится высокого уровня грунтовых вод:

3. Отличная несущая способность;

4. Относительная простота конструкции.

Такой фундамент можно применять практически на всех типах грунтов, за исключением болотистых или торфяников.

А проектировать плиту в данной статье будем для одноэтажного дома вот с такой планировкой:

Площадь объекта 160 квадратных метров Площадь объекта 160 квадратных метров

Выбор типа фундамента и его дальнейшее проектирование происходит только после того, как выполнен Архитектурный проект дома (планировки, фасады, посадка на участок) и произведены инженерно-геологические изыскания.

По результатам изысканий в рассматриваемом случае, грунты, на которых будет стоять наш дом - суглинки с высоким уровнем грунтовых вод, а это значит, что фундамент на буронабивных сваях не подойдет, его будет подмывать.

Шаг 1. Разработка котлована, обратные засыпки

Габариты котлована должны выступать за габариты дома минимум на 2 метра с каждой стороны. Дом в осях 13,8 х 14,25 метров. Котлован выкапывается от 500 мм глубиной. Дно котлована выстилается геотекстилем, выполняется обратная засыпка скалой или песком (обязательно с послойной трамбовкой). Потом выкладываем основание плиты плотной пленкой или профилированной мембраной типа "Planter". Это нужно, чтобы при бетонировании "бетонное молочко" не уходило в грунт.

Шаг 2. Проектирование монолитной плиты

Для определения толщины плиты нужно взять максимальное расстояние от несущей до несущей стены и поделить это значение на "20". На плане несущие стены располагаются в осях 1, 3, 4 и 5. Самое большое расстояние между 1 и 3 осью - это 5.700 мм. Делим на "20" - получаем 285 мм. Полученное значение округляем до 10 мм в большую сторону. Толщина плиты в данном случае должна быть не мене 290 мм. При бетонировании использовать бетон марки М350 W4 F150.

Армирование фундамента следует производить двумя ярусами сеткой из арматуры А500С диаметром 12 мм, ячейка сетки 200 х200 мм.

Типы фундаментов. Монолитная фундаментная плита.

Внешний вид монолитной фундаментной плиты

Монолитная фундаментная плита представляет собой плоскую ж/бетонную конструкцию, расположенную под всей площадью дома (или других построек). Поскольку важным фактором любого фундамента является площадь опирания на грунт и от неё зависит передаваемая на грунт нагрузка, монолитная фундаментная плита выгодно отличается от других типов фундаментов, т.к. её площадь очень большая и это позволяет использовать её на грунтах с низкой несущей способностью. По аналогии с ленточным фундаментом, фундаментная плита бывает двух типов: мелкозаглубленная (в случае отсутствия подвального (цокольного) этажа), заглубленная (при наличии подвального (цокольного) этажа). Это позволяет значительно сэкономить на земляных работах при отсутствии потребности в устройстве подвального (цокольного) этажа.
За особенность работы монолитной фундаментной плиты - не оказывать сопротивления подвижкам грунта и не гасить их данный тип фундамента ещё называют "плавающим". Но, нельзя данное название трактовать как универсальный фундамент для всех типов грунтов, вопреки сложившемуся мнению, данный тип не пригоден для грунтов с сильным пучением или на топких грунтах. На таких грунтах не исключены неравномерная просадка дома, что может привести к неправильной работе несущих конструкций и проявиться в виде трещин на них. Для правильной работы фундаментной монолитной плиты главное сохранить баланс между нагрузкой от дома и возникающим в грунте, сезонным напряжениям, т.е. нельзя на тонкой (слабой) плите возводить массивный каменный двух-, трехэтажный дом; и наоборот - на толстой (массивной) плите возводить легкое деревянное строение. Для точного определения толщины плиты, марки бетона, количества арматуры, её диаметров и её расположения в теле плиты, производится расчет фундаментной монолитной плиты, но поскольку выполнить такой расчет под силу только специалисту, для частного домостроения применяется набор требований, который с достаточной степенью точности позволяет определить все эти параметры и простому обывателю.

Шаг 1. Определяем толщину фундаментной монолитной плиты.

Поскольку, основное назначение фундамента - передавать нагрузку от дома на грунт (основание), для расчета основных характеристик фундамента необходимо произвести расчет веса дома (для этого, можно воспользоваться калькулятором расчета веса дома). Как уже говорилось в статье (Грунты и основания) в зависимости от типа грунта, меняются и его физико-механические свойства, главное из которых - несущая способность грунта. Несущая способность - это максимальная нагрузка, которую грунт способен воспринять от веса дома, без деформаций. На основании несущей способности были разработаны показатели оптимального давления на грунт фундаментной плиты, в зависимости от его типа (см. Таблицу 1).

Таблица показателей оптимального давления на грунт при строительстве монолитной фундаментной плиты

Таблица №1.


Для примера, рассмотрим следующий вариант:
имеем дом, двухэтажный, наружные и внутренние стены которого выполнены из кирпича, толщина наружных стен в 2 кирпича (b=510мм), толщина внутренних несущих стен 1,5 кирпича (380мм). Размер дома в плане составляет 10 х 12м, длина внутренней несущей стены составляет 12м.п.
По результатам расчета на калькуляторе мы получили общий вес дома (с временными нагрузками и коэффициентом надежности 1,3): 630тн, при этом нагрузка на несущие стены составляет 6,38тн/м.п.
Далее, исходя из проекта, определяем площадь опирания плиты, в нашем примере, при размерах дома 10 х 12м, к длине и ширине необходимо добавить минимум по одной толщине наружной стены с каждой стороны, соответственно размеры плиты будут составлять:

(10м + 2 х 0,5(две толщины)) х (12 + 2 х 0,5(две толщины)) = 11 х 13 м = 143м2.

Таким образом у нас есть площадь плиты и вес дома. Разделим вес дома на площадь плиты:

630тн (630 000 кг) / 134м2 (1340000см2) = 0,470 кг/м2

- получили показатель распределенного давления на грунт от нашего дома.

Теперь из Таблицы №1 выбираем тип нашего грунта (например, "пески мелкие средней плотности") для которого оптимальным давлением будет 0,25кг/см2.
Сопоставляем с полученным нами распределенным давлением 0,47 кг/см2 отсюда делаем вывод: для нашего дома, имеющего вес 630тн на грунтах: пески мелкие средней плотности тип фундаментная плита экономически не выгоден, поскольку для выполнения условия оптимального давления на грунт нам потребуется увеличивать площадь фундаментной плиты почти в 2 раза.
Рассмотрим другой пример - имеем одноэтажный дом, с несущими стенами из пеноблоков, имеющий в плане размеры 8 х 10м. Используя калькулятор определяем его вес. Вес получился 98 тн. Определяем площадь фундаментной плиты:

(10м + 2 х 0,4 (две толщины)) х (8 + 2 х 0,4 (две толщины)) = 10,8 х 8,8 м = 95м2.

Таким образом у нас есть площадь плиты и вес дома. Опять разделим вес дома на площадь плиты:

98тн (98 000 кг) / 95м2 (950000см2) = 0,103 кг/м2

- получили показатель распределенного давления на грунт от нашего дома.

Теперь из Таблицы №1 выбираем тип нашего грунта (например, опять выберем "пески мелкие средней плотности") для которого оптимальным давлением будет 0,25кг/см2. Вычитаем из оптимального давления полученное нами распределенное давление:

0,250 - 0,103 = 0,147 кг/см2;

Теперь эту разницу мы должны компенсировать весом фундаментной плиты, для этого нам необходимо обратиться к формуле:

Mплиты / Sплиты = 0,147 кг/см2,

где,
Мплиты - масса плиты, кг;
Sплиты - её площадь, см2;

находим массу нашей плиты:

Мплиты = Sплиты х 0,147 = 950 000 см2 х 0,147 кг/см2 = 139 650кг;

Принимая во внимание, что плотность ж/бетона составляет в среднем 2500кг/м3, находим толщину нашей плиты:

139 650кг / 2500кг/м3 = 55,86 м3 (объем нашей плиты), разделим его на площадь / 95м2 = 0,588м = 58,8см.

Рассмотрим третий пример - имеем двухэтажный дом, с несущими стенами из пеноблоков, имеющий в плане размеры 8 х 10м. Используя калькулятор определяем его вес. Вес получился 168 тн. Определяем площадь фундаментной плиты:

(10м + 2 х 0,4 (две толщины)) х (8 + 2 х 0,4 (две толщины)) = 10,8 х 8,8 м = 95м2.

Таким образом у нас есть площадь плиты и вес дома. Опять разделим вес дома на площадь плиты:

168тн (168 000 кг) / 95м2 (950000см2) = 0,176 кг/м2

- получили показатель распределенного давления на грунт от нашего дома.

Теперь из Таблицы №1 выбираем тип нашего грунта (например, опять выберем "пески мелкие средней плотности") для которого оптимальным давлением будет 0,25кг/см2.
Вычитаем из оптимального давления полученное нами распределенное давление:

0,250 - 0,176 = 0,073 кг/см2;

Теперь эту разницу мы должны компенсировать весом фундаментной плиты, для этого нам необходимо обратиться к формуле:

Mплиты / Sплиты = 0,073 кг/см2,

где,
Мплиты - масса плиты, кг;
Sплиты - её площадь, см2;

находим массу нашей плиты:

Мплиты = Sплиты х 0,073 = 950 000 см2 х 0,073 кг/см2 = 63 350кг;

Принимая во внимание, что плотность ж/бетона составляет в среднем 2500кг/м3, находим толщину нашей плиты:

63 350кг / 2500кг/м3 = 27,74 м3 (объем нашей плиты), разделим его на площадь / 95м2 = 0,292м = 29,2см.

Анализ результатов расчета толщины фундаментной плиты:

по результатам расчетов толщина плиты может попасть в три диапазона:

  1. толщина плиты менее 100мм;
  2. толщина плиты от 150мм до 350мм;
  3. толщина плиты более 350мм.

В первом случае - у Вас очень слабая несущая способность грунта. Возможно потребуются дополнительные обследования и принятие решений для укрепления грунтов, либо переход на другой тип фундаментов.
Во втором случае - Монолитная фундаментная плита подходит Вам в качестве основания. Полученный результат округляют до ближайшего значения, кратного 50 мм (в целях экономии лучше округлять в меньшую сторону!).
В третьем случае - монолитная фундаментная плита, как тип фундамента не подходит для Вашего дома. Требуется принимать в расчет другой тип фундаментов (ленточный, столбчатый или свайный).

Таким образом, для рассмотренных нами первого и второго варианта показали - что тип фундамента - монолитная фундаментная плита - НЕ ПОДХОДИТ! Такой тип фундамента подходит лишь для третьего варианта, его мы и продолжим дальше рассматривать.
Окончательно принимаем толщину 25см и пересчитаем заново, но с учетом веса самой плиты:

168 тн (вес дома) + (95м2 (площадь плиты) х 0,25м (толщина плиты) х 2500кг.м3 (плотность ж/бетона) = 168тн + 59,38тн = 227,38тн (общий вес);

Разделим его на площадь плиты:

227 380 / 950 000 = 0,239кг/см2

- сравниваем с оптимальным давлением 0,250 получаем разницу 0,011кг/см2 - 4,4% от оптимальной нагрузки это в пределах

допуска (+-10%), поэтому дя расчета остальных показателей принимаем толщину плиты - 25 см.

Шаг 2. Определяем марку бетона для фундаментной плиты.

Для определения марки бетона фундамента, нам необходимо рассчитать один показатель отношение нагрузки от здания к площади несущих стен. Для расчета площади несущих стен мы возьмем периметр дома (10+8) х 2 = 36м.п. и умножим на толщину стен 0,4м получим 14,4 м2.
Делим нагрузку от дома 168тн (168000кг) на площадь несущих стен 14,4м2 (144000см2):

168 000 / 144 000 = 1,16кг/см2 ,

что соответствует 1,16 кгс/см2, это очень маленькая нагрузка для бетона любой марки (см. таблицу 2), но принято закладывать марку бетона для монолитной фундаментной плиты не ниже М200!

Таблица прочности бетона в зависимости от марки или класса бетона

Таблица №2.

Шаг 3. Расчет армирования для фундаментной плиты.

Армирование фундаментной плиты выполняется сеткам, взаимно перекрещивающимися под прямым углом стержнями арматуры.
Согласно СП 63.13330.2012, при высоте плиты от 10 до 15 см используется один ряд арматурной сетки, от 15 см до 30 см – два ряда, свыше 30 см – три и более рядов.
Для железобетонных оснований используется арматура диаметром в основном 12–16 мм, чаще всего 14 мм. Если сеток несколько, то верхняя армируется с помощью прутков диаметром 8–10 мм (поскольку она выполняет функцию "конструктивной", а нижняя функцию "рабочей" арматуры).

Шаг арматуры может быть различным, лучше его принимать в зависимости от того, какова толщина плиты фундамента:
если толщина плиты до 25 см используют шаг 150 мм,
если толщина свыше 25 см – 200 мм.

Напишем наши исходные данные для фундаментной плиты:

  • Длина плиты - 10,8м;
  • Ширина плиты - 8,8м;
  • Толщина плиты - 250мм;
  • Кол-во армирующих сеток - 2 шт;
  • Арматура для нижней сетки - класс А500 диам. 14мм;
  • Шаг арматуры для нижней сетки - принимаем 150 мм;
  • Арматура для верхней сетки - класс А400 диам. 10мм;
  • Шаг для верхней сетки - принимаем 200мм;

Выполняем расчет:
Нижняя сетка ("рабочая" арматура).
считаем кол-во продольных стержней, для этого делим ширину на шаг арматуры и добавляем один пруток (крайний):

8800 / 150 + 1 = 59,67

60 прутков (длиной 10,8 м.), общая длина = 648 м.п.

считаем кол-во продольных стержней, для этого делим ширину на шаг арматуры и добавляем один пруток (крайний):

10800 / 150 + 1 = 73 прутка (длиной 8,8 м.), общая длина = 642,4 м.п.

Итого на нижнюю сетку необходимо 648 + 642,4 = 1290,4 м.п. при весе погонного метра 1,21 кг/м.п. общий вес составит 1561,4 кг = 1,56 тн.

Верхняя сетка ("конструктивная" арматура).
считаем кол-во продольных стержней, для этого делим ширину на шаг арматуры и добавляем один пруток (крайний):

8800 / 200 + 1 = 45 прутков (длиной 10,8 м.), общая длина = 486 м.п.

считаем кол-во продольных стержней, для этого делим ширину на шаг арматуры и добавляем один пруток (крайний):

10800 / 200 + 1 = 55 прутков (длиной 8,8 м.), общая длина = 484 м.п.

Итого на нижнюю сетку необходимо 486 + 484 = 970 м.п. при весе погонного метра 0,62 кг/м.п. общий вес составит 601,4 кг = 0,60 тн.

Дополнительно считаются концевые скобообразные элементы (см. рис. 4) из расчета 1 шт на каждый стержень нижней сетки, при этом длина одного элемента - пять толщин плиты:

(60 + 73) х (0,25*5) = 166,25 м.п. (из арматуры А400 диам. 10мм) х 0,62 = 103 кг = 0,1 тн;

Так же дополнительно считаются фиксаторы верхней сетки ("пауки" или "лягушки" см рис.3)
Из расчета 2 шт на 1 м.кв. сетки, при этом длина одного элемента - пять толщин плиты:

95 м2 х 2 шт х (0,25*5) = 237,5 м.п. (из арматуры А400 диам. 10мм) х 0,62 = 147,25 кг = 0,15 тн;

Потребность в арматуре:

  • арматура А500 диам. 14мм - 1,56тн.;
  • арматура А400 диам. 10мм - 0,85тн.;

Остался ещё один вопрос - стоимость монолитной фундаментной плиты.
Для правильной работы фундаментной плиты необходимо выполнить все минимально необходимые слои:

  • По слою утрамбованного грунта устраивается песчаная подушка толщиной 25 - 30 см, с послойным тромбованием;
  • Для выполнения оклеечной гидроизоляции необходимо сформировать основание - чаще всего это слой подбетонки из бетона В7,5 (В15) толщиной 100мм;
  • Слой гидроизоляции оклеечной в два слоя;
  • Сама монолитная плита;

Для расчета укрупненной стоимости нам необходимо:
Состав работ и перечень необходимых материалов.
Состав работ:

  1. Разработка грунта - (из расчета мелкозаглубленной плиты и необходимых слоев получается глубина котлована: песок 300мм + подбетонка 100мм = 400 мм) - 95,0м2 х 0,4 = 38 м3;
  2. Устройство песчаного (щебеночного) основания - 0,3м (толщина) х 95,0 м2 = 28,5м3;
  3. Устройство подбетонки из бетона В7,5 - 95м2 (площадь) х 0,1м (толщина) = 9,5м3;
  4. Устройство гидроизоляции из рулонных материалов в два слоя: 95 м2;
  5. Устройство опалубки - 0,4 (высота опалубки) х (10,8 + 8,8) х 2 м.п. (периметр) = 15,68 м.кв.;
  6. Устройство арматурного каркаса - 1,56 + 0,85 = 2,41 тн.;
  7. Укладка бетонной смеси - 23,76 м2;
  8. Распалубливание - 15,68 м.кв.
  1. Песок(щебень) - 28,5 * 1,3 (коэфф. уплотнения) = 37,0м3;
  2. Бетон В7,5 - 9,5 х 1,02 = 9,7м3;
  3. Гидростеклоизол - 95 м2 х 2 (слоя) х 1,1 (расход) = 209м2;
  4. Щиты опалубки - 201,6 м.кв.;
  5. Арматура - 2,41 тн.;
  6. Бетон - 23,76 х 1,02 = 24,2м3;

Далее, в зависимости от региона, где Вы собираетесь строить определяете рыночные расценки на работы и материалы.
Сводим все данные в таблицу №3. и получаем смету:

Укрупненная смета на устройство монолитной фундаментной плиты

Таблица №3.

Мы рассмотрели ещё один тип фундаментов - монолитная фундаментная плита, ознакомились с его плюсами и минусами. Этой статьёй мы заканчиваем знакомиться с типами фундаментов, далее будем рассматривать технологию их строительства.

Монолитное перекрытие: устройство и способы возведения

В этой статье мы расскажем о том, какие бывают способы возведения монолитного перекрытия, а также вы узнаете о достоинствах и недостатках этих способов. Статья расскажет об основных требованиях к толщине и армированию элементов железобетонного перекрытия.

Армированный бетон — материал практически вечный. Из него создают множество конструктивных элементов — балки, стены, перемычки. Одним из самых сложных, на первый взгляд, изделий является перекрытие. Однако трудоёмкость возведения полностью компенсируется эксплуатационными свойствами готового изделия.

Достоинства монолитного перекрытия:

  1. Наибольшая несущая способность из известных материалов.
  2. Самый долговечный из широкодоступных материалов.
  3. Относительно дешёвое сырьё (для бетона).
  4. Для выполнения работ не требуется высокой квалификации всей бригады (достаточно 1–2 ведущих специалистов).
  5. Комбинированные функции: основа пола второго этажа, армопояс, связь всех стен между собой.
  6. Правильно устроенная монолитная конструкция исключает появление деформационных дефектов («ступени», перекосы, трещины).

Недостатки перекрытия из бетона:

  1. Трудоёмкость возведения. Работа связана с устройством горизонтальной опалубки высокой прочности и жёсткости.
  2. Задействован сопутствующий материал, который после бетонирования может стать непригодным — фанера, доска отбортовки, стойки (деревянные).
  3. Большой вес конструкции — необходимы мощные стены и фундамент.
  4. Высокая теплопроводность бетона — все открытые снаружи участки необходимо утеплить.
  5. Бетонное перекрытие возможно только на каменных стенах.

Железобетонные перекрытия подойдут для капитальных строений, рассчитанных на большой срок службы, а также для помещений, в которых предусмотрена существенная статическая и динамическая нагрузка — цеха, гостиницы, общежития (с перегородками из каменного материала).

В частном строительстве монолитные плиты перекрытия обычно устраивают по кирпичным стенам, т. к. стены из бетона гораздо более сложные в возведении, чем кирпичные.

Толщина монолитного перекрытия

Из-за большого удельного веса бетона (2400 кг/м³) изделия из него получаются тяжёлыми. Массу изделия можно уменьшить за счёт уменьшения части бетона в конструкции, то есть просто сделать её тоньше. Жёсткость при этом компенсируется армированием. Достаточная толщина ж/б элементов:

  • несущих стен — 160 мм
  • перекрытий — 200 мм
  • перегородок — 100 мм

Толщина указанных элементов будет считаться достаточной только при соблюдении правил армирования . Расчёты и многолетняя практика показали, что существует оптимальный баланс массы, объёма, сечения и несущей способности ж/б элементов. Об этом читайте ниже в разделе «Армирование перекрытий». Достаточная толщина кирпичной стены — 380 мм (1,5 кирпича).

Опалубка перекрытий

Как и любой ж/б элемент, перекрытие требует установки формы для бетона — опалубки. Поскольку перекрытие имеет значительные размеры по площади и находится на высоте, опалубка для него имеет вид стола: сплошная плоскость, заполняющая пространство между несущими стенами (и колоннами) на пространственно жёсткой раме из стоек и откосов. Опалубка бывает трёх видов, но одно требование неизменно для любого из них — надёжное основание.

Инвентарная опалубка

Комплект заводских изделий, в который входят:

  1. Стойки — винтовые выдвижные домкраты, длиной до 4 м.
  2. Оборудование для стоек — «треноги» в нижней части для устойчивости отдельно стоящего домкрата и «короны» в верхней для посадки балок стола.
  3. Деревянные балки — заводские клееные изделия двутаврового профиля высотой 200 мм и длиной до 4,2 м.
  4. Ламинированная фанера — листы фанеры толщиной 18–24 мм, размером 1220х2440 мм, покрытые устойчивой плёнкой, предназначенные для создания плоскости перекрытия. Покрытие выдерживает до 40 циклов бетонирования.

Такой набор является профессиональным — инвентарной опалубкой строят высотные жилые дома. Он надёжен, удобен и рассчитан на постоянную эксплуатацию. Приобретение набора для устройства одного перекрытия не оправдает себя — все изделия стальные и стоят недёшево. Выходом может стать аренда опалубки. Специалисты фирмы сами рассчитают необходимое количество каждого из элементов для вашего объекта.

Несомненными достоинствами такого подхода являются скорость установки опалубки и удобство работы, а также качество плоскости. К недостаткам можно отнести риск задержки срока аренды.

Самодельная опалубка

Все элементы «стола» для перекрытия можно выполнить самостоятельно из дерева и некоторых металлических деталей.

К этому методу прибегают в случае, когда основные элементы — стойки, балка и материал плоскости (фанера или доска) есть в наличии. Это и служит основным достоинством метода — использование подручного материала. Очевидные недостатки:

  1. Трудоёмкое возведение, требующее развитых навыков плотника.
  2. Большой отход материала — до 20% станет непригодным.
  3. Проблематичная регулировка по высоте (установка «в горизонт»).

Комбинированный метод

Предусматривает частичное использование элементов инвентарной опалубки и пиломатериала.

В этом случае можно использовать заводские стойки с треногами и коронами, а балки и настил опалубки сделать из доски. Либо арендовать ламинированную фанеру, а раму «стола» собрать из подручного леса. Комбинаций может быть множество.

Армирование перекрытия

Для устройства арматурного каркаса висячего ж/б перекрытия толщиной 200 мм используется зеркальная сетка из арматуры А3 Ø 16 мм с ячейкой 150–180 мм. При использовании бетона, приготовленного на месте, рекомендуем усилить каркас, применив меньший шаг стержней — 150 мм. Если бетон заводской, допускается шаг до 200 мм. В местах опоры и примыкания элементов (опора на стену, колонну, капитель) рекомендуем сделать усиления — добавить стержни.

Бетонирование перекрытия

Существуют правила бетонирования, которые следует соблюдать беспрекословно, чтобы не подвергнуть конструкцию разрушению в дальнейшем:

Читайте также: