Наблюдение за раскрытием трещин в стенах сооружений

Обновлено: 24.04.2024

ПРЕДИСЛОВИЕ

Конструкции зданий и сооружений в процессе строительства и эксплуатации подвергаются различного рода воздействиям (климатическим, технологическим, географическим и т.п.), которые вызывают в конструкциях различного рода повреждения и деформации, снижающие их прочность, долговечность и эксплуатационные качества.

Несущая способность и эксплуатационная надежность конструкций зависит также от качества изготовления конструкций, ведения строительно-монтажных работ и проектной документации. Пониженная или недостаточная несущая способность конструкций вызывает необходимость их усиления при надстройке, реконструкции зданий и ремонтно-восстановительных работах.

Правильность и экономичность выбора того или иного способа усиления и восстановления конструкций зависит от результата технического обследования их состояния, фактической прочности и качества использованных материалов, величины деформаций, степени и причин повреждений.

На основании этих данных производится оценка технического состояния конструкций как по несущей способности, так и по пригодности к нормальной эксплуатации (деформациям, трещиностойкости, теплопроводности, звукопроводности, воздухопроницаемости, морозостойкости, водонепроницаемости и т.п.). Под оценкой технического состояния конструкций в рассматриваемом случае понимается степень соответствия данного признака состояния (прочность, деформативность, долговечность и т.п.) требованиям соответствующих норм (СНиП, ГОСТ и т.п.). Результаты обследования и оценки технического состояния конструкций являются основой для составления проекта восстановления реконструкции зданий и проекта производства работ.

В Рекомендациях приводятся как простые визуальные методы обследования, получившие широкое распространение и не требующие специальной подготовки персонала, так и инструментальные способы обследований, требующие использования специального оборудования и специалистов соответствующих квалификаций. Оценка технического состояния поврежденных конструкций производится в соответствии с требованиями действующих норм с учетом понижающих коэффициентов, учитывающих влияние дефектов изготовления, производства работ, трещинообразования, огневого воздействия, влажности и т.п.

Цель Рекомендаций ознакомить широкий круг специалистов с методами обследования, оценки технического состояния конструкций зданий, а также с характерными случаями и видами повреждений конструкций при различных нагрузках и воздействиях.

Рекомендации могут быть использованы в качестве практического руководства при обследовании конструкций зданий и сооружений.

Рекомендации разработаны ЦНИИСК им. В. А. Кучеренко Госстроя СССР (канд. техн. наук А. А. Емельянов).

При разработке Рекомендаций использовался опыт проведения таких работ ЦНИИСК им. В. А. Кучеренко, АКХ им. К. Д. Панфилова, ЦНИИЭПжилища, ЦНИИпромзданий и другими организациями, а также литературные источники, список которых приводится в конце Рекомендаций.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Техническое обследование конструкций зданий и сооружений производится в целях получения фактических данных о размерах, прочности и повреждениях конструкций, которые необходимы при разработке проектов усиления, восстановления и реконструкции жилых, общественных и промышленных зданий, а также для выяснения причин повреждений и аварий строительных конструкций.

В процессе обследования должны быть получены исчерпывающие сведения для оценки состояния и несущей способности конструкций. По результатам технического обследования делаются выводы о состоянии конструкций, причинах их деформаций и повреждений, а также даются рекомендации по их усилению или замене и устранению причин повреждений.

1.2. Техническое обследование включает следующие этапы работ.

Предварительное (рекогносцировочное) обследование:

- сбор и анализ имеющейся технической документации (проектной, строительной, эксплуатационной);

- уточнение объемно-планировочного и конструктивного решения зданий и отдельных конструкций;

- выявление наиболее поврежденных и аварийных участков и конструкций;

- составление программы основных обследований.

Основное (техническое) обследование:

- уточнение размеров, схем опирания конструкций, нагрузок, качества и прочности материалов;

- выявление, измерение и зарисовка трещин, дефектов, повреждений конструкций;

- измерение деформаций (прогибов, наклонов, перекосов, сдвигов, осадок фундаментов и т.п.).

- уточнение результатов предварительных и основных обследований;

- длительные наблюдения и измерения деформаций конструкций, температурно-влажностного режима и т.п.;

- испытание конструкций пробной нагрузкой;

- уточнение данных инженерно-геологических и геодезических изысканий.

Составление заключения (отчета):

- о состоянии и несущей способности и деформациях конструкций на основе анализа данных обследований и инженерных расчетов с учетом фактической прочности материалов, нагрузок, расчетных схем;

- о причинах и степени опасности деформаций и повреждений конструкций и здания;

- выводы о пригодности конструкций к эксплуатации, рекомендации по их усилению или восстановлению.

1.3. Сбор и анализ технической документации включает изучение:

- проектной документации (рабочих чертежей зданий, конструкций, узлов сопряжения, расчетных схем, нагрузок, расчетов, материалов инженерно-геологических изысканий);

- строительной документации (паспорта, сертификаты на материалы, акты на скрытые работы, журналы работ, авторского и геодезического контроля, отступлений от проекта);

- изменений проектных решений в процессе эксплуатации зданий (перестройки, перепланировки, результаты обследований, испытаний материалов, вскрытий, усиления, ремонтов конструкций и т.п.).

1.4. Предварительное и основное обследование производится с применением, как простейших приборов (биноклей, отвесов, лент, рулеток, уровней и т.п.) не требующих специальной подготовки персонала, так и специальных приборов и оборудования (теодолитов, нивелиров, ультразвуковых и лазерных приборов и т.п.), требующих для выполнения работ специалистов соответствующей квалификации.

1.5. Результаты измерений размеров, дефектов, повреждений и деформаций конструкций наносятся на чертежи (планы, разрезы, развертки) в масштабе 1 : 50 - 1 : 200.

Планы и развертки должны иметь координатную сетку (прямоугольную, полярную и т.п.), которая привязывается к характерным осям или точкам (реперам) здания.

Дефекты и повреждения узлов сопряжения и отдельных участков конструкций (балок, плит) фотографируются или наносятся на чертежи (эскизы) крупного масштаба (1 : 5 - 1 : 20). На чертежах указываются очертания и размеры деформаций, дефектов и повреждения конструкций, направление, длина, ширина и глубина трещин. Запись результатов измерений на планах, развертках и в таблицах рекомендуется выполнять в целях сокращения объемов в закодированном виде.

1.6. Длительные наблюдения и измерения осадок фундаментов, колонн, прогибов балок, перекрытий, раскрытия стыков, швов, трещин и т.п., производятся в целях определения характера развития деформаций во времени (прогрессирующие, затухание, стабилизация). Измерения производятся периодически по специальной программе с интервалом от нескольких часов или дней (температурные деформации) до нескольких месяцев (осадки фундаментов).

1.7. Испытание конструкций пробной нагрузкой (балок, перекрытий, ферм и т.п.) производится в случаях, когда результаты основных и дополнительных обследований не позволяют уверенно судить о несущей способности и деформативности конструкций. Испытания проводятся по специальной программе, согласованной с проектной организацией.

2. ИНСТРУМЕНТАЛЬНЫЕ ИЗМЕРЕНИЯ

2.1. Для измерений геометрических размеров и величин деформаций и перемещений конструкций (наклонов, выпучивания, перекосов, сдвигов) используются следующие измерительные приборы:

приборы для линейных измерений в плане, по ширине (толщине) и высоте конструкций

- стальные и деревянные линейки, складные метры;

- стальные и тесмянные ленты и рулетки длиной 5, 10, 20 м и более;

приборы для угловых измерений

- обыкновенные и прецизионные теодолиты с 20-40-кратным увеличением трубы и минимальным расстоянием визирования 1,5-2 м (ТБ-1, ТТ-5, ОТШ, ТОМ, ОТ-2 и др.);

приборы для определения вертикальных перемещений

- обыкновенные и прецизионные оптические нивелиры с 20-30-кратным увеличением трубы и минимальным расстоянием визирования 1,3-2 м (НЗ, НВ-1, НТ, НА-1);

- оптические теодолиты с накладным уровнем на трубе (ТТ-4; ТОМ; ОТШ);

- гидростатические нивелиры (уровни), основанные на принципе сообщающихся сосудов типа НШТ и др., применяются для нивелирования в тесных, захламленных и сложных в плане помещениях, подвалах, коммуникационных траншеях и т.п.; точность отсчетов невооруженным глазом - 0,5 мм, при использовании специальных поплавков - до 0,1 мм;

приборы для проверки вертикальности конструкций, зданий и сооружений

- проволочные и нитяные отвесы длиной до 20 м и весом до 5 кг;

- оптические приборы вертикального визирования с 30-кратным увеличением трубы (зенит- и надирприборы ОЦП, ПОВП);

- лазерные приборы (ПМЛ-1, ЛЗЦ-1, лазерный теодолит ЛТ-75).

Обмерные работы

2.2. Обмеры зданий и конструкции по длине, ширине и высоте выполняются с помощью стальных лент, рулеток, линеек, угольников, отвесов, штангенциркулей и т.п. Точность измерений сечения и длины бетонных и каменных конструкций - 1 см, стальных элементов и арматуры - 1 мм. Результаты измерений наносятся на заранее заготовленные планы, разрезы, схемы узлов и сечений конструкций. Размеры и положение конструкций и их узлов в плане и по высоте должны увязываться с общими размерами зданий и результатами геодезической съемки (вертикальной и горизонтальной).

Измерение отклонений конструкций от вертикали

2.3. Отклонение от вертикали и выпучивание конструкций зданий и сооружений большой высоты (трубы, башни и т.п.), а также в труднодоступных местах, определяются с помощью теодолитов методом сноса вертикали (проектирования ) на линейку с миллиметровыми делениями (рис. 1 ).

2.4. Отклонение от вертикали в пределах этажа стен, перегородок, столбов и колонн (наклоны, выпучивание, смещение по горизонтали и т.п.) определяются с помощью нитяных и проволочных отвесов диаметром от 0,2 мм до 1-2 мм, закрепленных на кронштейнах, стойках или вышележащих конструкциях. При использовании отвесов отклонения от вертикали стен, столбов и перегородок в характерных точках (рис. 2 , а) находятся как разность расстояний рассматриваемых точек ai до отвеса относительно низа рассматриваемого элемента (нулевой точки). Измерение удаления точек от отвеса выполняется с помощью линейки с миллиметровыми делениями при строго горизонтальном ее положении; точность измерений при отсчете на глаз ± 0,5 мм.


Рис. 1. Измерение горизонтального смешения, двух точек (1 и 2) стены здания методом сноса вертикали с помощью теодолита

1, 2 - точки; 3 - теодолит; 4 - переносная линейка с миллиметровыми делениями


Рис. 2. Определение соосности (б) и отклонений стен от вертикали (а) с помощью вертикального отвеса

1 - стеновые панели (перегородки); 2 - отвес; 3 - точки подвески отвеса; 4 - точки измерения; 5 - линейка; 6 - сосуд с водой; 7 - отверстие в перекрытии

2.5. Соосность стен (панелей) различных этажей и величина горизонтального смещения осей стен в уровне перекрытий определяются с помощью отвесов, пропущенных через швы или отверстия в перекрытиях (рис. 2 , б). Величина горизонтального смещения (эксцентриситет) осей стен (панелей) вышележащего и нижележащего этажей находится как разность расстояний от их поверхностей до отвеса (с учетом толщины стен).

Измерение отклонений положения конструкций в горизонтальной плоскости

2.6. Смещения от осей и выгибы стен, перегородок, столбов и колонн в горизонтальной плоскости определяются:

- с помощью горизонтальной натянутой нити (проволоки);

- с помощью геодезических инструментов (оптических теодолитов и нивелиров, лазерных нивелиров);

2.7. При измерении с помощью натянутой нити или проволоки отклонения конструкции от оси определяются измерением расстояния от рассматриваемой точки на поверхности конструкции до проволоки (рис. 3 ).

Измерения выполняются стальной линейкой с миллиметровыми делениями. Величина прогиба (выгиба) конструкции в точке i вычисляется по формуле

где ho , hn - расстояние (ордината) от нити до начальной (о) и конечной ( h ) точки;

hi , li - ордината и расстояние от начала координат (о) до точки i ;

l - длина конструкций.

2.8. Измерение отклонений положения конструкций в горизонтальной плоскости с использованием геодезических инструментов производится в случаях, когда применение способа натянутой нити вызывает затруднение или оказывается невозможным (большая длина, сложная планировка помещений, наличие технологического оборудования). При использовании геодезических инструментов отклонение положения конструкции от осей в горизонтальной плоскости находится измерением расстояния от линии визирования теодолита или луча лазера до рассматриваемых точек на поверхности конструкции. Положение линии визирования (луча лазера) в плане фиксируется с помощью визирных марок (вешек), перемещаемых по линии визирования.

2.9. Смешанный метод измерения отклонения положения конструкций в горизонтальной плоскости представляет собой комбинацию способа натянутой нити и геодезического метода. Применяется для протяженных зданий и помещений со сложной конфигурацией в плане и при наличии технологического оборудования, препятствующего измерениям одним из указанных способов.


Рис. 3. Определение прогибов перекрытий и выгибов стен с помощью горизонтальной нити

1 - перекрытие (стена); 2 - горизонтальная нить; 3 - точки закрепления нити; 4 - точки измерения

Измерение вертикальных перемещений (прогибов) конструкций

2.10. Осадки фундаментов, стен, перекрытий, ферм, подкрановых балок определяются с помощью оптических и гидростатических нивелиров и теодолитов с накладным уровнем. Нивелирование производится по осям колонн, стен, опор перекрытий и балок, а также в местах просадок фундаментов. Результаты нивелирования привязываются к неподвижным точкам (реперам) или к существующей геодезической сети. Нивелирование производится с помощью переставных или навесных реек или шкаловых марок. Навесные рейки и шкаловые марки навешиваются на металлические штыри с центрирующим устройством (шариком, призмой, отверстием), заделанные в тело конструкции, или на специальные передвижные кронштейны телескопических стоек (рис. 4 ). Стойки устанавливаются строго вертикально в распор между полом и измеряемой конструкцией. Схема измерения осадок и прогибов конструкций с помощью гидростатического нивелира (уровня) показана на рис. 5 .

2.11. Вертикальные деформации (прогибы) горизонтальных конструкций (плит, балок, перекрытий, ферм и т.п.) определяются с помощью оптических и гидростатических нивелиров (рис. 5 ) или горизонтальной нити и линейки (см. рис. 3 ) и прогибомеров с ценой деления 0,1-0,01 мм (при испытаниях конструкций пробной нагрузкой).


Рис. 4. Вид телескопической штанги и шкаловой марки при определении прогибов потолков

1 - телескопическая штанга; 2 - репер с хомутиком для навески марки; 3 - навесная шкаловая марка; 4 - круглый уровень; 5 - фиксатор штанги


Рис. 5. Схема измерения прогибов перекрытий гидростатическим уровнем

1 - градуированная трубка; 2 - телескопическая стойка; 3 - сосуд; 4 - резиновый шланг; 5 - краник; 6 - точка измерения

Измерение раскрытия швов и стыков

2.12. Деформации швов и стыков конструкций (раскрытие, сдвиг) измеряются с помощью переносных индикаторов (мессур) с ценой деления 0,01 мм или штангенциркулем. Измерение производится между двумя стальными штырями диаметром 4-5 мм с центрирующим устройством на концах, заделанных в тело конструкций по обе стороны шва (стыка). Для непрерывной записи деформаций на ленту в течение суток и более используются механические (с часовым механизмом) и электронные самописцы. Схемы установки для автоматической записи раскрытия (а) и сдвига (б) вертикального шва панели показаны на рис. 6 .


Рис. 6. Измерение раскрытия (а) и сдвига (б) по шву сборных элементов с помощью самописцев

1 - шов; 2 - самописец; 3 - стальная нить 0,3 мм; 4 - штырь (болтик); 5 - блок; 8 - кронштейн

2.13. В труднодоступных и опасных для измерения местах деформации швов и стыков определяются с помощью дистанционных устройств, позволяющих производить измерения (отсчеты по шкале) на расстоянии с помощью теодолита или зрительной трубы на штативе без непосредственного контакта с исследуемой конструкцией. Схема дистанционного измерения раскрытия деформационного шва с помощью шкальных марок (1) и теодолита (3) показана на рис. 7 . Шкальная марка состоит из двух частей, заделанных по обе стороны шва: шкалы с миллиметровыми делениями и заостренного указателя.


Рис. 7. Схема измерений деформаций шва с помощью дистанционного прибора

1 - прибор, 2 - деформационный шов, 3 - зрительная труба, 4 - точка центрирования трубы

Наблюдения за трещинами

2.14. Наблюдения за развитием трещин в стенах во времени осуществляются с помощью гипсовых, стеклянных или пластинчатых маяков. Рекомендуемые размеры и схемы установки указанных маяков на трещинах показаны на рис. 8 .

2.15. Ширина раскрытия трещин измеряется с помощью:


Рис. 8. Маяки для наблюдения за раскрытием трещин, в стенах и перегородках

1 - трещина; 2 - маяк гипсовый или из стекла; 3 - металлическая пластинка; 4 - риски; 5 - гвоздь

- градуированных луп и микроскопов (МИР-2, МПБ-2) с 2,5-24-кратным увеличением;

- целлулоидных или бумажных трафаретов, с нанесенными на них линиями разной толщины от 0,05 до 2 мм, путем совмещения линий с краями трещины;

- масштабных линеек при раскрытии трещин более 2 мм (точность измерений ± 0,3 мм).

При длительных наблюдениях ширина раскрытия трещин за рассматриваемый период определяется с помощью переносных индикаторов с ценой деления 0,01 мм и штангенциркулей с ценой деления 0,1 мм. Величина раскрытия принимается равной разности двух измерений расстояния между штырями (реперами) с центрирующим устройством, заделанными в конструкцию по обе стороны трещины.

2.16. Глубина развития несквозных (слепых) трещин h тр определяется:

- по следу трещины на поверхности керна, высверленного из тела конструкции;

- с помощью стальных калиброванных щупов различной толщины по формуле

где d н - раскрытие трещины снаружи в мм (среднее из трех измерений);

d щ , h щ - толщина щупа и глубина погружения щупа в трещину в мм без усилия (среднее из трех измерений при смещении щупа по трещине на 1-2 см);

- с помощью ультразвуковых приборов (УКБ-1М; УК-10П; УЗП-62 и др.) в соответствии с указаниями РТУ УССР 92-62.

Глубина трещины определяется по разности времени прохождения ультразвуковых импульсов в МКС на длине базы а - с трещиной и без трещины по формуле

где t l , t a - время прохождения ультразвука соответственно на участке с трещиной и без трещины.

3. ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ И ФИЗИКО-МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ

Прочность материалов

3.1. Прочность каменных, бетонных и железобетонных конструкций (стен, фундаментов, каркасов, перекрытий и т.п.) может определяться неразрушающими и разрушающими методами.

3.2. Неразрушающие методы позволяют определять прочность конструкций без ослабления сечения и снижения несущей способности при отборе образцов, кернов или проб материалов. К неразрушающим методам относятся механические (ударные, отрыва, скалывания) и ультразвуковые способы.

3.3. Ударно-механический способ используется для определения прочности материалов, обладающих пластическими свойствами (бетоны, растворы, силикатные материалы и т.п.).

Определение прочности производится по величине отпечатка шарика на поверхности конструкции при ударе с помощью приборов ударного действия (молотки Физделя, Кашкарова, пистолет ЦНИИСК, склерометры КМ и ПМ-2, Шмидта и др.) в соответствии с указаниями ГОСТ 22690.0-77; ГОСТ 22690.1-77; ГОСТ 22690.2-77 и по прочности отрыва и скалывания бетона ГОСТ 22690.3-77; ГОСТ 22690.4-77; ГОСТ 21243-75.

3.4. Ультразвуковой способ используется для определения прочности хрупких и нехрупких материалов в соответствии с требованиями ГОСТ 24732-80 (бетоны) и ГОСТ 17624-78 (силикатные камни). Оценка прочности конструкций производится по скорости распространения ультразвука в материале образца с помощью ультразвуковых приборов типа УКБ-1М, УК-10П, "Бетон-ЗМ" и др.

3.5. При разрушающих методах физико-механические свойства материалов (прочность, плотность, влажность и т.п.) стен, фундаментов и перекрытий определяется испытанием образцов и проб, взятых непосредственно из тела обследуемой конструкции или близлежащих участков, если имеются доказательства идентичности применяемых на этих участках материалов.

3.6. Отбор кирпича, камней и раствора из стен и фундаментов и образцов бетона из стеновых панелей и плит перекрытий производится из ненесущих (под окнами, в проемах) или слабо нагруженных элементов, или конструкций, подлежащих разборке и демонтажу.

3.7. Для оценки прочности кирпича, камней правильной формы и раствора из кладки стен и фундаментов отбираются целые, неповрежденные кирпичи или камни и пластинки раствора из горизонтальных швов.

3.8. Для определения прочности бетона и природных камней неправильной формы (бута) из фрагментов бетона или камней выпиливаются кубики с размером ребра 40-200 мм или высверливаются цилиндры (керны) диаметром 40-150 мм и длиной, превышающей диаметр на 10-20 мм.

3.9. Отбор проб и образцов (кернов) из несущих стен, столбов и простенков производится при условии, что ослабление сечения и несущей способности рассматриваемой конструкции не превысит при этом допустимой величины.

3.10. Отбор проб для определения влажности, плотности и физико-химических характеристик материалов производится ударным способом с помощью зубил, стальных шлямбуров с внутренним диаметром 10-20 мм или высверливанием кернов электродрелью со специальными полыми насадками.

3.11. Прочность (марка) полнотелого и пустотелого глиняного обыкновенного, силикатного и трепельного кирпича определяется разрушающим способом по ГОСТ 8462-85 как средний результат испытаний при сжатии пяти образцов "двоек" из двух целых или их половинок, умноженный на коэффициент 1,2, и пяти образцов на изгиб (всего 10 образцов). Для испытания на сжатие керамических, силикатных, бетонных и природных камней правильной формы опытные образцы изготавливаются из одного камня или одной его половинки.

3.12. Прочность (марка) природных камней правильной и неправильной формы, а также мелких и крупных блоков из тяжелого, силикатного, ячеистого бетонов и бетонов на пористых заполнителях допускается определять путем испытания на сжатие образцов-кубов или цилиндров, выпиленных или высверленных из камней, целых изделий или монолита. Предел прочности природных камней и мелких и крупных блоков из указанных бетонов вычисляется умножением результатов испытаний образцов-кубов или цилиндров на масштабные коэффициенты, указанные в табл. 1 .

Наблюдение за трещинами: методы и нормативная документация

Трещины в стене — это дефекты строительной конструкции, проявляющиеся в виде расколов или разрывов стройматериала под воздействием весовой нагрузки. В результате не только портится внешний вид постройки, но также может значительно снизиться несущая способность конструкции. В результате возникает риск частичного или даже полного разрушения постройки, что сделает невозможным её эксплуатацию.

наблюдение за трещинами

Чтобы предотвратить подобные последствия, в ходе обследования зданий и сооружений применяются методы изучения трещин. Фиксируется их наличие, измеряется скорость расширения, ширина, глубина, прогнозируется динамика развития, а также выявляется причина появления. Делается всё это при помощи специальных инструментов и приспособлений. Основная цель наблюдения — сбор оперативной информации о действительном состоянии и изменении несущих и ответственных конструкций, и принятие необходимых мер по устранению дефектов.

Причины появления трещин

Среди многочисленных причин, из-за которых образуются трещины в стенах, основными и наиболее часто встречающимися являются следующие факторы:

  • отсутствие геодезических изысканий перед строительством;
  • грубые нарушения технологии в процессе строительства;
  • слабый фундамент;
  • неправильная эксплуатация;
  • просчёты в проектной документации;
  • неравномерное распределение нагрузок;
  • механические повреждения;
  • несанкционированная реконструкция;
  • несвоевременный ремонт;
  • пренебрежение рекомендациями, которые даются по результатам обследования зданий;
  • стихийные бедствия.

Также трещины могут появляться по причине естественного износа или исчерпания заложенного в постройку ресурса.

Группы трещин

Все трещины условно делятся по степени опасности для конструкций, в которых они возникли, на три группы:

  1. Неопасные — к таковым относятся дефекты, которые отрицательно влияют только на внешний вид постройки, однако, на её прочности и ресурсе никак не сказываются.
  2. Опасные — к этой группе относятся интенсивно развивающиеся трещины, из-за которых значительно ослабляется несущая способность конструкции, появляется риск частичного или полного разрушения постройки.
  3. Промежуточные — группа трещин, из-за которых портится внешний вид постройки, а также частично снижается расчётная несущая способность ответственных конструкций, однако, не грозящие последствиями в виде частичного или полного разрушения.

Степень опасности определяется в ходе обследования зданий на этапе наблюдения за трещинами. В зависимости от характера наблюдение может продолжаться в течение нескольких дней или недель, что даёт возможность установить динамику и спрогнозировать возможные последствия.

Нормативная документация

Информационной и регламентной базой для специалистов при наблюдениях за трещинами в кирпичных стенах и бетоне служит следующая нормативная документация:

  • СП 13-102-2003 «Правила обследования несущих строительных конструкций зданий и сооружений».
  • ГОСТ 24846-2012. Грунты. Методы измерения деформаций оснований зданий и сооружений.
  • ГОСТ 26433.2-94 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений параметров зданий и сооружений.

В качестве источников дополнительной справочной информации также может использоваться «Пособие по оценке физического износа жилых и общественных зданий» и последняя редакция внутреннего стандарта СТО СРО-С 60542960 00043-2015 «Геодезический мониторинг зданий и сооружений в период строительства и эксплуатации» (в котором более точно и детально проработаны нюансы наблюдений, а также поправлены недостатки официальных государственных стандартов и правил).

Методы и средства наблюдения

Первоначально трещины выявляются методом визуального осмотра конструкции. Если это необходимо для получения более точных данных, в местах образования дефектов частично удаляется декоративная отделка. Далее, как правило, осуществляется наблюдение с помощью маяков.

Цели наблюдения — установить:

  • положение трещины;
  • направленность;
  • длину;
  • ширину;
  • глубину;
  • динамику развития;
  • причину образования.

Для фиксации полученные данные фиксируются в журнал наблюдения за трещинами в стенах.

Для измерения физических параметров трещин используются:

  • Щелемеры — приспособления, позволяющие измерить текущее состояние и динамику развития трещины.
  • Маяки — сигнальные или измерительные — наиболее распространённый тип инструмента для наблюдения за трещинами, о которых детальнее рассказано дальше.
  • Микроскопы — применяются для точного измерения раскрытия трещины.
  • Линейки, рулетки, штангенциркули — для линейных измерений текущих размеров трещины.
  • Иглы — для определения глубины трещины.
  • Проволочные щупы — для определения глубины.
  • Ультразвуковое оборудование — применяется для бесконтактного определения параметров трещин (глубины).

Выбор методики обследования трещин и инструментальной базы осуществляется в зависимости от конкретных условий, в которых будут проводиться измерения, а также с учётом запрашиваемой точности, материала и характера повреждений. Экономическая целесообразность использования той или иной методики или инструментальной базы и возможности заказчика также учитывается перед началом наблюдений.

Виды маяков

Наиболее распространёнными приспособлениями для рассматриваемого вида наблюдений являются маяки. Маяк — это устройство или приспособление, которое позволяет установить факт расширения трещины, а также измерить динамику (если позволяет тип маяка). Некоторые типы маяков позволяют пронаблюдать за изменением дефекта вдоль его длины или относительно основной плоскости.

Виды маяков для наблюдения за трещинами:

  1. Для однократного применения — цементные или гипсовые.
  2. Для систематического наблюдения — пластинчатые, точечные, со стрелочными указателями, электронные.

Маяки первого типа позволяют лишь установить факт расширения трещины, либо то, что повреждение стабильное и не развивается. Второй вид инструментов даёт возможность точно измерять динамику развития дефекта, и даже спрогнозировать процесс на будущее. Точность зависит от конкретной разновидности маяка, а также от соблюдения правил использования инструмента.

Основные разновидности маяков:

  • Гипсовые — самые простые и дешёвые в использовании, однако, позволяют выявить лишь факт расширения трещины, тогда как точно проследить за динамикой с их помощью нельзя.
  • Пластинчатые — отличаются простотой установки и лишены многих недостатков, которыми обладают гипсовые и цементные маяки. Имеют измерительную шкалу для фиксации изменения ширины. В зависимости от модели позволяют измерять в одной или нескольких направлениях одновременно.
  • Точечные — позволяют зафиксировать на поверхности базовые точки, измеряя расстояние между которыми, можно определять динамику развития трещин. Не требуют подготовки поверхности, не зависят от влажности и перепадов температуры, малозаметные и недорогие.
  • Механические — зачастую имеют шкалу часового типа со стрелкой, что позволяет вести наблюдения без применения вспомогательных инструментов. Считаются наиболее наглядными инструментами в этой области, однако часто страдают от хулиганов и вандалов при установке на малой высоте.

маяки для наблюдения за трещинами

маяк для наблюдения за трещинами

маяки для наблюдения за трещинами

Рис. 1. Конструкции маяков и щелемеров: а — пластинчатый маяк; б — щелемер конструкции ЛенГИДЕПА;

в — маяк конструкции Белякова:

1 — трещина; 2 — гипсовые плитки; 3 — пластинки; 4 — скоба; 5 — измерительная шкала; 6 — запеканка

конструкция щелемера

конструкция щелемера

Рис. 2. Конструкции щелемеров: а — с мессурой; б — для длительных наблюдений;

1 — трещина; 2 — мессура; 3 — марка; 4 — фланец; 5 — анкерная скоба

Щелемер для измерения широких трещин и швов

Рис. 3. Щелемер для измерения широких трещин и швов

Стрелочный рычажный прибор для определения интенсивности

Рис. 4. Стрелочный рычажный прибор для определения интенсивности

Помимо маяков для наблюдений используются электронные системы, состоящие из датчиков, устанавливаемых на трещинах, и приёмного устройства, постоянно принимающего сигналы с датчиков. Есть модели с компенсацией температурных изменений и другими дополнительными функциями, повышающими точность измерений.

Правила установки маяков

При использовании маяков следует придерживаться таких правил:

  • Гипсовые маяки устанавливаются на одну трещину в количестве не менее двух штук, либо на удалении друг от друга в один метр.
  • Гипсовые маяки нельзя использовать как на улице, так и в помещениях с высокой влажностью или резкими перепадами температуры.
  • Перед установкой маяка исследуемую поверхность необходимо надлежащим образом подготовить, чтобы обеспечить надёжность крепления инструмента или приспособления.
  • Монтаж маяков осуществляется перпендикулярно направлению, в котором развивается трещина.
  • В процессе наблюдения необходимо контролировать, не отошёл ли маяк от поверхности и, в случае отрыва устанавливать новый.
  • Если гипсовый или цементный маяк разорвался, то следует устанавливать новый, так как это свидетельствует об активном развитии трещины.
  • Габаритные размеры гипсовых маяков могут варьироваться в соотношении ширины к длине, как 1:3 до 1:5.
  • Толщина маяка не должна превышать 15 мм, а в месте образования трещины иметь как можно меньшую толщину (6 мм).

Для механических маяков или электронных систем наблюдения за трещинами правила использования приводятся в руководствах по эксплуатации, прилагаемых к инструментам производителями.

Заключение

Наблюдение за трещинами является важнейшим этапом общего обследования зданий и конструкций. Цель мероприятия — выявить трещины, определить их параметры, динамику развития и причину, а также составить рекомендации относительно дальнейшей эксплуатации конструкции. Для наблюдения за трещинами в стенах используются измерительные инструменты и маяки — гипсовые, пластинчатые, механические и электронные.

Методы и средства наблюдения за трещинами

При обследовании строительных конструкций ответственным этапом является изучение трещин, выявление причин их возникновения и динамики развития.
По степени опасности для несущих и ограждающих конструкций трещины делят на три группы:

  • трещины неопасные, ухудшающие только качество лицевой поверхности;
  • опасные трещины, вызывающие значительное ослабление сечений, развитие которых продолжается с неослабевающей интенсивностью;
  • трещины промежуточной группы, которые ухудшают эксплуатационные свойства, снижают надежность и долговечность конструкций, но не способствуют полному их разрушению.

При наличии трещин на несущих конструкциях зданий и сооружений необходимо организовать систематическое наблюдение за их состоянием и возможным развитием с тем, чтобы выяснить характер деформаций в конструкции и степень их опасности для дальнейшей эксплуатации.

Трещины выявляют путем осмотра поверхностей, а также выборочного снятия с конструкций защитных или отделочных покрытий. Следует определить положение, форму, направление, распространение по длине, ширину раскрытия, глубину, а также установить, продолжается или прекратилось их развитие.

На трещине устанавливают маяк, который при развитии трещины разрывается. Маяк устанавливают в месте наибольшего развития трещины. При наблюдении за развитием трещины по длине концы трещины во время каждого осмотра фиксируют поперечными штрихами. Рядом с каждым штрихом проставляют дату осмотра. Расположение трещин схематично наносят на чертеж развертки стен здания или конструкции, отмечая номера и дату установки маяков. На каждую трещину составляют график ее развития и раскрытия.

По результатам систематических осмотров составляют акт, в котором указывают дату осмотра, чертеж с расположением трещин и маяков, сведения об отсутствии или появлении новых трещин.
Маяк представляет собой пластину длиной 200-250 мм, шириной 40-50 мм, высотой 6-10 мм, наложенную поперек трещины. Изготавливают маяк из гипса или цементно-песчаного раствора. В качестве маяка используют также две стеклянные или металлические пластинки, закрепленные одним концом каждая с разных сторон трещины, или рычажную систему. Разрыв маяка или смещение пластинок по отношению друг к другу свидетельствует о развитии деформаций.
Маяк устанавливают на основной материал стены, удалив предварительно с ее поверхности штукатурку. Рекомендуется размещать маяки также в предварительно вырубленных штрабах. В этом случае штрабы заполняют гипсом или цементно-песчаным раствором.
Осмотр маяков производят через неделю после их установки, затем не реже одного раза в месяц. При интенсивном трещинообразовании обязателен ежедневный контроль.

Ширина раскрытия трещин в процессе наблюдений измеряется при помощи щелемеров или трещиномеров. В журнале наблюдений фиксируют номер и дату установки маяка, место и схему расположения, первоначальную ширину трещины, изменение со временем длины и глубины трещины. В случае деформации маяка рядом с ним устанавливают новый, которому присваивают тот же номер, но с индексом. Маяки, на которых появились трещины, не удаляют до конца наблюдений.
Если в течение 30 суток изменение размеров трещин не будет зафиксировано, их развитие можно считать законченным, маяки можно снять и трещины заделать.

Читайте также: