Допустимый крен кирпичной стены

Обновлено: 16.05.2024

2. Предельно допустимые дополнительные совместные деформации зданий и их оснований (ч. 1)

Дополнительными осадками зданий (сооружений) принято называть осадки, которые возникают в результате загружения (застройки) смежных с ними площадей. Эти дополнительные осадки развиваются в результате одностороннего приложения нагрузки относительно основания существующих зданий, они всегда и заведомо неравномерны, а поэтому и особенно опасны [29].

Сотников С.Н. О дополнительных совместных деформациях зданий и оснований, возникающих при строительстве в районах плотной застройки // Основания, фундаменты и механика грунтов

Очевидно, что строительство в сложившихся районах города или в промышленной зоне не должно приводить к авариям и повреждениям конструкций существующих домов, поэтому экономичные и безопасные конструктивные решения фундаментов могут быть приняты только на основе расчета оснований новых (проектируемых) и старых (существующих) зданий по деформациям.

В соответствии с требованиями СНиП 2.02.01-83 при проектировании отдельно стоящих зданий должно быть выполнено условие

ssu,


(4.1)

где s — осадка основания, определяемая расчетом; su — предельно допустимая осадка основания зданий, устанавливаемая по прил. 4 СНиП 2.02.01-83 или совместным расчетом системы «сооружение — основание».

При проектировании зданий, располагаемых возле существующих, необходимо удовлетворить и второе условие:

sadsad,u,


(4.2)

где sad — дополнительная осадка от загружения основания существующего здания проектируемым; sad,u — предельно допустимая величина совместной дополнительной деформации здания (сооружения).

Прогнозируемая осадка нового здания на естественном основании Общая характеристика проектного решения Мероприятия
архитектурно-планировочные по фундаментам нового здания по наземным конструкциям организационно-технологические
Менее 5 см Предупредительные меры Новое здание должно быть не выше существующих Устройство ленточных фундаментов перпендикулярно линии примыкания Временное усиление существующих зданий в зоне примыкания Применение шпунта по линии примыкания при расчете на горизонтальные силы. Разработка выемок участками
От 5 до 10 см Специальные меры Нежелательны: примыкания, сложные в плане, в поперечных направлениях, в углах; разноэтажные части. Рационально примыкание посредством легких переходов Максимально возможное удаление фундаментов от существующих зданий. Разрезка оснований конструктивным шпунтом ниже глубины сжимаемой зоны Устройство примыканий на консолях. Применение осадочных швов. Усиление соседних зданий металлическими продольными стяжками. Устройство ниш в фундаментах для установки домкратов или других выравнивающих устройств. Проектирование нового здания по жесткой конструктивной схеме Погружение шпунта вдавливанием (при наличии слоев песка). Первоочередное строительство относительно тяжелых блоков (частей) зданий. Придание конструкциям строительных подъемов
Более 10 см Меры по уменьшению проектной осадки до 5 см Не регламентируются Устройство опор глубокого заложения: свай буровых, винтовых, коротких, забивных, вдавливаемых и забивных с лидирующей скважиной, в тиксотропной рубашке; стен в грунте; опускных колодцев; массивов из закрепленного грунта Те же, что и при осадке менее 5 см Ограничение динамических воздействий

Материалы натурных наблюдений за развитием дополнительной осадки существующих зданий и возникших при этом повреждений строительных конструкций показали, что предельным дополнительным совместным деформациям существующих зданий sad,u требуется придать иное смысловое содержание, чем установленным в СНиП 2.02.01-83 su для отдельно стоящих зданий. Указанное положение обусловлено тем, что дополнительная осадка sad заведомо неравномерна, а ее вид (форма совместной деформации: перекос стен) всегда предсказуем.

В рассматриваемой ситуации целесообразно использовать три показателя: дополнительную осадку точки, наиболее приближенной к линии примыкания нового здания к существующему, sad,a ;

  • дополнительный перекос 1 существующего здания на участке примыкания jad ;
  • дополнительный крен существующего здания в сторону нового iad

Дополнительный перекос определяется по формуле

1 Термину «перекос» по СНиП 2.02.01-83 соответствует определение «относительная неравномерность осадки». Термин «перекос», предложенный Б.И. Далматовым, по нашему мнению, предпочтителен как более лаконичный и лучше отвечающий природе явления. j = (sad,asad,b)/l,


(4.3)

где sad,a — осадка точки существующего здания, находящейся возле линии его примыкания к новому; sad,b — осадка точки существующего здания, отстоящей от линии его примыкания к проектируемому на расстоянии l , которое устанавливается в зависимости от конструкции здания.

Расстояние l (рис. 4.1) назначается для кирпичных и крупноблочных домов с продольными несущими стенами равным расстоянию от линии примыкания до ближайшего проема; для зданий с поперечными стенами — шагу этих стен; для зданий каркасных — шагу колонн и т.п. Обычно это расстояние равно 2—6 м. Теория и опыт свидетельствуют о том, что на участке длиной l перекос стен зданий и вызванные этим повреждения получают наиболее опасное развитие.

Определение максимального перекоса конструкций существующего здания

Рис. 4.1. К определению максимального перекоса конструкций существующего здания 1 — здание более ранней постройки, 2 — новое здание, a и b — точки определения осадки по расчету

Дополнительный крен определяется выражением

iad = (sad,asad,n)/La–n,


(4.4)

где sad,n — осадка точки существующего здания (блока), находящейся на стороне, противоположной линии примыкания к новому зданию; La–n — характерный размер существующего здания в плане (расстояние между точками а и n ).

Величина iad устанавливается для относительно коротких ( L ≈ 20÷30 м), «точечных» зданий или блоков протяженных зданий, разделенных осадочными швами на ряд отсеков.

Сотников С.Н. Проектирование и возведение фундаментов вблизи существующих сооружений

Толщина облицовочного слоя многослойных стен по СП 15.13330.2012 с 1 июля 2015

Здравствуйте!
Решил вынести на обсуждение тему толщины и крепления наружного облицовочного слоя многослойных кирпичных стен!
Обязательный с 1 июля 2015 года пункт 9.32 СП 15.13330.2012 гласит: облицовочный кирпичный слой толщиной 120 мм в трехслойной кладке допускается применять при проектировании на зданиях до 4-х этажей (12 м). На зданиях высотой более 4-х этажей допускается применение двухслойной кладки с лицевым кирпичным слоем толщиной 120 мм при его опирании на перекрытие в соответствии с 9.34. В конструкциях со средним слоем из эффективного утеплителя и гибким соединением слоев предусматривать применение лицевого кирпичного слоя толщиной 250 мм.

В общем прошу разъяснить:
1. Что за конструкция двухслойной кладки имеется ввиду? Внутренний слой скажем из силикатного рядового кирпича, а наружный - из керамического облицовочного? Пункт 9.34 говорит вроде о трехслойной кладке навесных и самонесущих стен на гибких связях (т.к. указано что опирание слоя на перекрытие)? Если я пишу бред - поправьте).
2. В зданиях с несущими стенами высотой более 4-х этажей (12,0 м) облицовочный слой, закрепляемый на гибких связях к несущему должен быть толщиной 250 мм!? Кто такое вообще выдумал? Какие то научные статьи пояснения есть?
3. Допустимо ли выполнение облицовочного слоя в зданиях с несущими стенами высотой более 4-х этажей толщиной 120 мм устройством жестких связей с несущим слоем кладки тычковыми рядами? Это вообще выполнимо?

Если у кого то есть рабочие узлы трехслойной кладки, соответствующей СП 15.13330.2012, буду крайне благодарен за картинки, чертежи эскизы. Вообщем взываю к Великим ShaggyDoc и Ильнуру! и остальным не менее великим)). Спасибо за ответы!

СП 22.13330.2016 Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83* (с Изменениями N 1, 2, 3)

Максимальная или средняя осадка, см

1 Производственные и гражданские одноэтажные и многоэтажные здания с полным каркасом:

то же, с устройством железобетонных поясов или монолитных перекрытий, а также здания монолитной конструкции

то же, с устройством железобетонных поясов или монолитных перекрытий

2 Здания и сооружения, в конструкциях которых не возникают усилия от неравномерных осадок

3 Многоэтажные бескаркасные здания с несущими стенами из:

крупных блоков или кирпичной кладки без армирования

то же, с армированием, в том числе с устройством железобетонных поясов или монолитных перекрытий, а также здания монолитной конструкции

4 Сооружения элеваторов из железобетонных конструкций:

рабочее здание и силосный корпус монолитной конструкции на одной фундаментной плите

то же, сборной конструкции

отдельно стоящий силосный корпус монолитной конструкции

то же, сборной конструкции

5 Дымовые трубы высотой Н, м:

6 Жесткие сооружения высотой до 100 м, кроме указанных в пунктах таблицы 4 и 5

7 Антенные сооружения связи:

стволы мачт заземленные

то же, электрически изолированные

башни коротковолновых радиостанций

башни (отдельные блоки)

8 Опоры воздушных линий электропередачи:

анкерные и анкерно-угловые,

промежуточные угловые, концевые, порталы открытых распределительных устройств специальные переходные

1 Значение предельной максимальной осадки основания фундаментов применяется к сооружениям, возводимым на отдельно стоящих фундаментах на естественном (искусственном) основании или на свайных фундаментах с отдельно стоящими ростверками (ленточные, столбчатые и т.п.).

2 Значение предельной средней осадки основания фундаментов применяются к сооружениям, возводимым на едином монолитном железобетонном фундаменте неразрезной конструкции (перекрестные ленточные и плитные фундаменты на естественном или искусственном основании, свайные фундаменты с плитным ростверком, плитно-свайные фундаменты и т.п.).

3 Предельные значения относительного прогиба зданий, указанных в пункте 3 таблицы, принимают равными 0,5, а относительного выгиба - 0,25.

5 Если основание сложено горизонтальными (с уклоном не более 0,1), выдержанными по толщине слоями грунтов, предельные значения максимальных и средних осадок допускается увеличивать на 20%.

7 На основе обобщения опыта проектирования, строительства и эксплуатации отдельных видов сооружений допускается принимать предельные значения деформаций основания фундаментов, отличающиеся от указанных в настоящем приложении.

Допустимый крен кирпичной стены

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МЕТОДЫ ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ
ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ

Soils. Measuring methods of strains
of structures and buildings bases

Дата введения 1982-01-01

УТВЕРЖДЕНЫ постановлением Госстроя СССР N 96 от 17 июня 1981 г.

ПЕРЕИЗДАНИЕ. Июнь 1985 г.

Настоящий стандарт распространяется на грунты всех видов и устанавливает методы измерения деформаций (вертикальных и горизонтальных перемещений, кренов) оснований фундаментов строящихся и эксплуатируемых зданий и сооружений.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Измерения деформаций оснований фундаментов зданий и сооружений должны проводиться по программе, отвечающей требованиям, приведенным в обязательном приложении 2, в целях:

определения абсолютных и относительных величин деформаций и сравнения их с расчетными;

выявления причин возникновения и степени опасности деформаций для нормальной эксплуатации зданий и сооружений; принятия своевременных мер по борьбе с возникающими деформациями или устранению их последствий;

получения необходимых характеристик устойчивости оснований и фундаментов;

уточнения расчетных данных физико-механических характеристик грунтов;

уточнения методов расчета и установления предельных допустимых величин деформаций для различных грунтов оснований и типов зданий и сооружений.

Программа проведения измерений составляется организацией, производящей измерения, на основе технического задания (рекомендуемое приложение 3), выдаваемого проектно-изыскательской или научно-исследовательской организацией по согласованию с организациями, осуществляющими строительство или эксплуатацию.

1.2. Измерения деформаций оснований фундаментов строящихся зданий и сооружений следует проводить в течение всего периода строительства и в период эксплуатации до достижения условной стабилизации деформаций, устанавливаемой проектной или эксплуатирующей организацией и включаемой в техническое задание.

Измерения деформаций оснований фундаментов зданий и сооружений, находящихся в эксплуатации, следует проводить в случае появления недопустимых трещин, раскрытия швов, а также резкого изменения условий работы здания или сооружения.

1.3. В процессе измерений деформаций оснований фундаментов должны быть определены (отдельно или совместно) величины:

вертикальных перемещений (осадок, просадок, подъемов);

горизонтальных перемещений (сдвигов);

1.4. Наблюдения за деформациями оснований фундаментов следует производить в следующей последовательности:

разработка программы измерений;

выбор конструкции, места расположения и установка исходных геодезических знаков высотной и плановой основы;

осуществление высотной и плановой привязки установленных исходных геодезических знаков;

установка деформационных марок на зданиях и сооружениях;

инструментальные измерения величин вертикальных и горизонтальных перемещений и кренов;

обработка и анализ результатов наблюдений.

1.5. Метод измерений вертикальных и горизонтальных перемещений и определения крена фундамента следует устанавливать программой измерения деформаций в зависимости от требуемой точности измерения, конструктивных особенностей фундамента, инженерно-геологической и гидрогеологической характеристик грунтов основания, возможности применения и экономической целесообразности метода в данных условиях.

1.6. Предварительное определение точности измерения вертикальных и горизонтальных деформаций надлежит выполнять в зависимости от ожидаемой величины перемещения, установленной проектом, в соответствии с табл.1.

На основании определенной по табл.1 допускаемой погрешности, устанавливается класс точности измерения вертикальных и горизонтальных перемещений фундаментов зданий и сооружений согласно табл.2.

Расчетная величина вертикальных или горизонтальных перемещений, предусмотренная проектом

Допускаемая погрешность измерения перемещений для периода

Класс точности измерений

Допускаемая погрешность измерения перемещений

При отсутствии данных по расчетным величинам деформаций оснований фундаментов класс точности измерения вертикальных и горизонтальных перемещений допускается устанавливать:

I - для зданий и сооружений: уникальных; длительное время (более 50 лет) находящихся в эксплуатации; возводимых на скальных и полускальных грунтах;

II - для зданий и сооружений, возводимых на песчаных, глинистых и других сжимаемых грунтах;

III - для зданий и сооружений, возводимых на насыпных, просадочных, заторфованных и других сильно сжимаемых грунтах;

IV - для земляных сооружений.

2. ПОДГОТОВКА К ИЗМЕРЕНИЯМ

2.1. Подготовка к измерениям вертикальных перемещений

2.1.1. Перед началом измерений вертикальных перемещений фундаментов необходимо установить:

реперы - исходные геодезические знаки высотной основы;

деформационные марки - контрольные геодезические знаки, размещаемые на зданиях и сооружениях, для которых определяются вертикальные перемещения.

2.1.2. В зависимости от точности измерений следует устанавливать реперы следующих типов:

для I и II классов точности измерений - глубинные реперы, основания которых закладываются в скальные, полускальные или другие коренные практически несжимаемые грунты;

для III и IV классов точности измерений - грунтовые реперы, основания которых закладываются ниже глубины сезонного промерзания или перемещения грунта; стенные реперы, устанавливаемые на несущих конструкциях зданий и сооружений, осадка фундаментов которых практически стабилизировалась.

При наличии на строительной площадке набивных или забивных спай, верхним концом выступающих на поверхность, допускается их использовать в качестве грунтовых реперов с соответствующим оформлением верхней части сваи.

2.1.3. При установке реперов в особых грунтовых условиях следует:

в насыпных неоднородных по составу грунтах, процесс уплотнения которых не закончен, - применять реперы, заанкеренные или забитые в коренные грунты на глубину не менее 1,5 м ниже насыпной толщи, защищенные колодцами и предохраненные от смерзания с окружающим грунтом;

в просадочных грунтах - заделывать нижний конец репера на глубину не менее 1 м в песчаные или не менее 2 м в глинистые подстилающие грунты, а также не менее 5 м при толщине слоя просадочного грунта более 10 м;

в заторфованных грунтах - применять забивные сваи, погруженные до плотных малодеформируемых грунтов;

в вечномерзлых грунтах - применять: забивные реперы при пластично-мерзлых грунтах без крупнообломочных включений; реперы, погружаемые в пробуренные заполняемые грунтовым раствором скважины, при твердомерзлых грунтах, а также пластично-мерзлых, содержащих крупнообломочные включения. Реперы устанавливаются не менее чем на 2 м ниже расчетной глубины чаши оттаивания под зданием (сооружением) или не менее тройной толщины слоя сезонного оттаивания, если реперы устанавливаются за пределами чаши оттаивания;

в набухающих грунтах - заделывать нижний конец репера на глубину не менее 1 м ниже подошвы залегания набухающих грунтов. При значительной толщине набухающего слоя грунта башмак репера должен располагаться на глубине, где природное давление превышает давление набухания.

2.1.4. Число реперов должно быть не менее трех.

2.1.5. Реперы должны размещаться:

в стороне от проездов, подземных коммуникаций, складских и других территорий, где возможно разрушение или изменение положения репера;

вне зоны распространения давления от здания или сооружения;

вне пределов влияния осадочных явлений, оползневых склонов, нестабилизированных насыпей, торфяных болот, подземных выработок, карстовых образований и других неблагоприятных инженерно-геологических и гидрогеологических условий;

на расстоянии от здания (сооружения) не менее тройной толщины слоя просадочного грунта;

на расстоянии, исключающем влияние вибрации от транспортних средств, машин, механизмов;

в местах, где в течение всего периода наблюдений возможен беспрепятственный и удобный подход к реперам для установки геодезических инструментов.

Конкретное расположение и конструкцию реперов должна определять организация, выполняющая измерения, по согласованию с проектной, строительной или эксплуатирующей организацией, а также с соответствующими службами, имеющими в данном районе подземное хозяйство (кабельные, водопроводные, канализационные и другие инженерные сети).

2.1.6. После установки репера на него должна быть передана высотная отметка от ближайших пунктов государственной или местного значения геодезической высотной сети. При значительном (более 2 км) удалении пунктов геодезической сети от устанавливаемых реперов допускается принимать условную систему высот.

2.1.7. На каждом репере должны быть обозначены наименование организации, установившей его, и порядковый номер знака.

Установленные репера необходимо сдать на сохранение строительной или эксплуатирующей организациям по актам.

2.1.8. В процессе измерения вертикальных деформаций следует контролировать устойчивость исходных реперов для каждого цикла наблюдений.

2.1.9. Деформационные марки для определения вертикальных перемещений устанавливаются в нижней части несущих конструкций по всему периметру здания (сооружения), внутри его, в том числе на углах, на стыках строительных блоков, по обе стороны осадочного или температурного шва, в местах примыкания продольных и поперечных стен, на поперечных стенах в местах пересечения их с продольной осью, на несущих колоннах, вокруг зон с большими динамическими нагрузками, на участках, с неблагоприятными геологическими условиями (рекомендуемое приложение 4).

Конкретное расположение деформационных марок на зданиях и сооружениях, а также конструкции марок должна определять организация, выполняющая измерения, по согласованию с проектной, строительной или эксплуатирующей организацией, учитывая конструктивные особенности (форму, размеры, жесткость) фундамента здания или сооружения, статические и динамические нагрузки на отдельные их части, ожидаемую величину осадки и ее неравномерность, инженерно-геологические и гидрогеологические условия строительной площадки, особенности эксплуатации здания или сооружения, обеспечение наиболее благоприятных условий производства работ по измерению перемещений.

СП 70.13330.2012 Несущие и ограждающие конструкции. Актуализированная редакция СНиП 3.03.01-87 (с Изменениями N 1, 3, 4)

9.18.1 Приемку выполненных работ по возведению каменных конструкций необходимо производить до оштукатуривания поверхностей.

9.18.2 На элементы каменных конструкций, скрытых в процессе производства строительно-монтажных работе, в том числе:

места опирания ферм, прогонов, балок, плит перекрытий на стены, столбы и пилястры и их заделка в кладке;

закрепление в кладке сборных железобетонных и бетонных с композитной полимерной арматурой изделий: карнизов, балконов и других консольных конструкций;

закладные детали и их антикоррозионная защита;

уложенная в каменные конструкции арматура;

осадочные деформационные швы, антисейсмические швы;

На эти работы составляются акты скрытых работ, подписанные представителями заказчика, проектной и подрядной строительной организацией, удостоверяющими их соответствие проекту и нормативной документации.

9.18.3 При приемке законченных работ по возведению каменных конструкций необходимо проверять:

правильность перевязки швов, их толщину и заполнение, а также горизонтальность рядов и вертикальность углов кладки;

правильность устройства деформационных швов;

правильность устройства дымовых и вентиляционных каналов в стенах;

качество поверхностей фасадных неоштукатуриваемых стен из кирпича;

качество фасадных поверхностей, облицованных керамическими, бетонными и другими видами камней и плит;

геометрические размеры и положение конструкций.

9.18.4 При приемке каменных конструкций, выполняемых в сейсмических районах, дополнительно контролируется устройство:

антисейсмического армированного пояса в уровне верха фундаментов; поэтажных антисейсмических поясов;

армирования кладки в местах пересечения наружных и внутренних стен, крепления стен и перегородок к капитальным стенам, каркасу и перекрытиям;

усиления каменных стен включениями в кладку монолитных и сборных железобетонных элементов;

анкеровки элементов, выступающих выше чердачного перекрытия, а также прочность сцепления раствора со стеновым каменным материалом.

9.18.5 Отклонения в размерах и положении каменных конструкций от проектных не должны превышать указанных в таблице 9.8.

Крен кирпичной стены

Крен кирпичной стены

Значительная величина вертикального отклонения – крен (до 40 мм на высоту 1-го этажа) в сторону улицы. Причиной возникновения дефекта является просадка фундамента под стеной здании и общий износ конструкций в следствие отсутствия должной ремонта и эксплуатации.

Рекомендации по устранению дефекта

При проведении визуального осмотра здания были обнаружены многочисленные дефекты по несущим конструкциям здания. Большая часть дефектов относится к критическим, и крайне негативно влияет на общую несущую способность здания. Большая часть конструкций здания нуждается в замене и восстановлению не подлежит. Необходимо ограничить доступ людей в помещения здания до конца работ по демонтажу конструкций здания.

Крен здания – что это?

Статья рассказывает, что такое крен здания, как его обнаружить и есть ли допустимые значения. Вы узнаете, кто предоставляет услуги по выявлению деформаций и как ими воспользоваться.

Что такое крен здания?

Крен – это наклон в сторону от отвесной линии. Насколько здание наклонилось и будет ли склоняться дальше, иногда от ответа на эти вопросы зависит жизнь.

Точно ответить на него могут геодезисты. Крены могут устанавливаться для плоскостей стен и рёбер здания по заданным сечениям.

Дело в том, что когда всё поправимо, то крен здания практически не заметен невооружённому глазу.

Особенно это характерно для невысоких зданий. Например, крен мавзолея в Москве не заметен, но он есть.

Чтобы понять есть наклон или нет. Геодезисты устанавливают на здание или сооружение геодезические марки и проводят по ним высокоточные измерения тахеометрами.

Наклон возникает по нескольким причинам:

  • Неравномерная осадка здания;
  • Подвижные грунты в основании;
  • Транспортные вибрации и неблагоприятные атмосферные явления;
  • Инженерные просчёты во время проектирования;
  • Влияние от нового строительства.

Когда геодезист вооружается точными приборами, то может чётко сказать, что и как происходит со зданием, поставить точный диагноз. И это всё делается на этапе, когда обычный человек ничего не замечает.

Чем измеряется крен здания

В геодезии счет идёт на миллиметры. Это основная величина, которая допустима при деформациях и позволяет избежать критических ситуаций.

Наклон здания измеряют несколькими способами. Выбор каждого зависит от высоты здания и его вида, технических требований, условий для наблюдений.

  • С помощью геодезических инструментов (тахеометров)
  • Инклинометров
  • Тахеометров
  • Автоматизированных систем наблюдения

Кратко расскажем о каждом из них.

Во время строительства на сооружениях устанавливают геодезические знаки опорной сети. Они становятся подспорьем и помощниками при выявлении деформаций. Опорные знаки располагают в таких местах, чтобы они не попадали в зону влияния строительства.

Перед геодезическим мониторингом на здание крепят марки, чтобы определить вертикальные отклонения. Число и места закладки марок определяют геодезисты на предварительном этапе. Перед закладкой учитывают следующие факторы:

  • Высотность зданий
  • Конструктивные особенности
  • Требования проектной и нормативной документации
  • нагрузка на фундамент
  • геологические особенности местности

Для определения крена зданий с помощью тахеометров используют специальные геодезические отражатели, закрепляемые на конструкциях здания. Использование отражателей, позволяет улучшить точность измерений.

Первые измерения кренов зданий проводятся на этапе строительства. В будущем полученные сведения используются для построения графиков крена и отслеживания динамики.

Геодезические знаки и деформационные марки закладывают в характерных точках по углам здания, в несущих колоннах или стенах.

Крен здания высотой до 15 м можно установить с помощью отвеса. На высшей точке сооружения закрепляют нить. Затем с рулеткой с миллиметровой шкалой определяют величину наклона.

Когда здание высотой до 100 м, то для установления крена используют современные тахеометры либо приборы вертикального визирования с лазерным уровнем, точность измерений которого составляет 1 мм.

Мониторинг крена здания позволяет составить чёткие рекомендации проектировщиков.

Наклоны зданий и сооружений могут определяться с помощью датчиков наклона и электронных уровней, что позволяет проводить геодезический мониторинг в автоматизированном режиме.

Допустимые крены здания по высоте сооружения

Наклон здания определяется в зависимости от его высоты. Так в СП 43.13330.2012 и СП 22.13330.2011 установлены предельно допустимые значения деформации конструкций. Величины рассчитываются по специальным формулам после наблюдения и установления реальных значений.

При расчете необходимо учитывать возможные дополнительные деформации.

С помощью геодезического мониторинга устанавливают, насколько сооружение сместилось от вертикальной оси, соблюдается ли допустимый крен здания или нет.

Как заказать услугу мониторинга крена здания в Лаборатории Экспертиз

Для вашего удобства мы предлагаем несколько способов.

Сделать заказ, узнать подробности или получить бесплатную консультацию можно следующими способами

  • Электронной почтой
  • По бесплатному телефону
  • Через сайт заказать услугу с помощью специальной формы.
  • Через страницы Лаборатории Экспертиз в социальных сетях
  • Приехать в офис и заключить договор.

Перед началом работ вы предоставляете информацию по объекту. На её основе специалисты определяют программу наблюдений, способ измерений и необходимое оборудование. Например, возможно проведение мониторинга в течение 1 года 5 циклами. Это позволит сделать точное и подробное заключение и прогнозирование дальнейшей судьбы здания с учётом всех имеющихся факторов.

Приложение 10 (справочное). Предельно допустимые смещения и деформации зданий и сооружений и их элементов за период их эксплуатации

1. Производственные и гражданские здания и сооружения:

Предельно допустимые относительные разности осадок

одноэтажные и многоэтажные здания с полным каркасом железобетонным, стальным; здания и сооружения, в конструкциях которых не возникают усилия от неравномерных осадок; многоэтажные бескаркасные здания с несущими стенами из: крупных панелей, крупных блоков или кирпичной кладки без армирования или с армированием, в том числе с устройством железобетонных поясов

Предельно допустимые крены

Предельно допустимые средние или максимальные осадки

4. Перекрытия железобетонных зданий и сооружений с плоским потолком при пролетах , м

Предельно допустимые прогибы

5. Перекрытия железобетонных зданий и сооружений с ребристым потолком и элементы лестниц при пролетах , м

6. Колонны зданий железобетонных и стальных рамных конструкций

Предельно допустимые относительные разности осадок фундаментов колонн зданий на основаниях из песчаных и глинистых грунтов, имеющих показатель текучести ; в скобках - то же на основаниях из глинистых грунтов, имеющих показатель текучести ( - расстояние между осями фундаментов)

7. Крайние ряды колонн зданий с кирпичным заполнением фахверка

8. Колонны зданий, имеющих конструкции, в которых не возникает дополнительных усилий при неравномерной осадке фундаментов

9. Несущие стены крупнопанельных бескаркасных многоэтажных зданий

Предельно допустимые относительные прогибы (перегибы) несущих стен зданий на основаниях из песчаных и глинистых грунтов, имеющих показатель текучести ; в скобках то же - на основаниях из глинистых грунтов, имеющих показатель текучести ; ( - длина изгибаемого участка стены)

10. Несущие стены крупноблочных и кирпичных неармированных многоэтажных зданий

11. Несущие стены крупноблочных и кирпичных многоэтажных знаний, армированных железобетонными или армокирпичными поясами

12. Стены одноэтажных промышленных зданий и подобных им по конструкции зданий другого назначения

13. Железобетонные конструкции зданий и сооружений

Предельно допустимая ширина раскрытия трещин


<< Приложение 9
(рекомендуемое). Способы складирования тяжеловесных грузов и методика определения эксплуатационных нагрузок на причалы от.

Приложение 11 >>
(справочное). Классификация дефектов покрытий территории и способы их устранения
Содержание
Руководящий документ РД 31.35.10-86 "Правила технической эксплуатации портовых сооружений и акваторий" (утв. Министерством.

Откройте актуальную версию документа прямо сейчас или получите полный доступ к системе ГАРАНТ на 3 дня бесплатно!

Если вы являетесь пользователем интернет-версии системы ГАРАНТ, вы можете открыть этот документ прямо сейчас или запросить по Горячей линии в системе.

ПРЕДИСЛОВИЕ

При эксплуатации зданий и сооружений, а также при их обследовании широко применяются для оценки технического состояния конструкций визуальные обследования. В связи с этим возникает необходимость в установлении надежности обследуемых конструкций по внешним признакам повреждений.

Как показали наблюдения, в процессе эксплуатации конструкций происходит циклическое изменение их надежности, что связывается с изменчивостью величин нагрузок и изменением несущей способности вследствие различных повреждений.

При достижении конструкцией определенного уровня надежности в ней будут наблюдаться необратимые повреждения: трещины, потеря устойчивости сжатых элементов, пластические деформации, коррозионные повреждения и т.п. Повреждения критического характера в конструкциях могут привести к обрушению конструкции и аварии здания или сооружения.

Учет влияния повреждений на надежность конструкции зданий и сооружений обобщен в настоящих рекомендациях.

Для удобства оценки надежности составлены подробные таблицы для различных видов конструкций. Своевременная оценка технического состояния конструкций и сооружений позволит вовремя провести их ремонт и усиление и тем самым обеспечить их надежность при эксплуатации.

Не менее важным вопросом является экспертиза здания или сооружения на предрасположенность к аварии. Выявление таких объектов по предлагаемой в рекомендациях методике позволит эксперту или автору проекта критически подойти к оценке их надежности и принять в случае необходимости дополнительные мероприятия по контролю качества, что в итоге будет способствовать повышению надежности.

1 . ОБЩИЕ ПОЛОЖЕНИЯ

1.1 . Настоящие Рекомендации предназначены для приближенной оценки надежности эксплуатируемых отдельных строительных конструкций и надежности зданий и инженерных сооружений в целом. По результатам этих оценок устанавливается пригодность конструкций зданий и инженерных сооружений для эксплуатации, сроки ремонтов, а также необходимость применения более точных методов установления надежности конструкций.

1.2 . Оценка надежности строительных конструкций при эксплуатации производится на основе имеющихся в них повреждений, устанавливаемых на основе визуальных обследований.

1.3 . Оценка вероятностей аварий зданий и сооружений и их надежность осуществляется по методике экспертных оценок.

1.4 . Под надежностью строительных конструкций понимается сохранение во времени, установленного нормами их качества: необходимой несущей способности, долговечности, деформативности.

2 . ОЦЕНКА НАДЕЖНОСТИ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ПО ИХ ПОВРЕЖДЕНИЯМ

2.1 . Повреждения в конструкции разделяются в зависимости от причин их возникновения на две группы: от силовых воздействий и от воздействия внешней среды. Последняя группа повреждений снижает не только прочность конструкции, но и уменьшает ее долговечность. Основные виды повреждений стальных, железобетонных, каменных и деревянных конструкций приведены на рис. 1 . 31 приложения 6.1 .

2.2 . В зависимости от имеющейся поврежденности и надежности, техническое состояние конструкций разделяется на 5 категорий: нормальное, удовлетворительное, не совсем удовлетворительное, неудовлетворительное, аварийное.

2.3 . Влияние повреждений на надежность конструкций оценивается посредством уменьшения общего нормируемого коэффициента надежности (запаса) g 0 = g m · g c · g f · g n конструкций в процессе эксплуатации, где g m - коэффициент надежности по материалу, g с - коэффициент условий работы, g f - коэффициент надежности по нагрузке, g n - коэффициент надежности по назначению.

Относительная надежность конструкции при эксплуатации у = g / g 0 и поврежденность конструкции e = 1 - у, где g - фактический коэффициент надежности конструкции с учетом имеющихся повреждений.

Значения у и e , а также приближенная стоимость С ремонта по восстановлению первоначального качества в процентах по отношению к первоначальной стоимости для различных категорий технического состояния конструкций приведены в табл. 1 .

2.4 . Оценка технического состояния стальных, железобетонных каменных и деревянных конструкций, на основе имеющихся в них повреждений, приведена в таблицах 2 - 5 . При этом оценка надежности конструкций должна проводиться по максимальному повреждению на длине конструкции. Для оценки категории состояния конструкции необходимо наличие хотя бы одного признака, приведенного в графах 2, 3 таблиц.

2.5 . Общая оценка поврежденности здания и сооружения производится по формуле

где e 1 , e 2 , . e i - максимальная величина повреждений отдельных видов конструкций, a 1 , a 2 , . a i - коэффициенты значимости отдельных видов конструкций.

При оценке величин повреждений учитывают их максимальную величину, так как авария здания или сооружения обычно происходит из-за наличия критического дефекта в отдельно взятой конструкции.

Коэффициенты значимости конструкций устанавливаются на основании экспертных оценок, учитывающих социально-экономические последствия разрушения отдельных видов конструкций, характера разрушения (разрушение с предварительным оповещением посредством развития пластических деформаций или мгновенное хрупкое разрушение). При отсутствии данных коэффициенты значимости a i принимаются: для плит и панелей перекрытия и покрытия a = 2, для балок a = 4, для ферм a = 7, для колонн a = 8, для несущих стен и фундаментов a = 3, для прочих строительных конструкций a = 2.

КАТЕГОРИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ

Описание технического состояния

Относительная надежность y = g / g 0

Читайте также: