Допустимо ли строительство однослойных кирпичных стен в условиях сибири

Обновлено: 17.05.2024

Как построить теплый дом в Сибири

Насколько хорошо наружные стены «хранят» тепло внутри дома показывает значение сопротивления теплопередаче. Рекомендуемое значение сопротивления теплопередаче внешней стены дома согласно Таблице из СНиП 23-02-2003 зависит от размера градусо-суток отопительного периода данного района, т.е. зависит от региона, в котором строится дом.

Значения сопротивления теплопередаче наружных стен для жилых зданий некоторых регионов:

Город Необходимое сопротивление теплопередаче по новому СНИП, м2·°C/Вт
Москва 3,28
Краснодар 2,44
Сочи 1,79
Ростов-на-Дону 2,75
Санкт-Петербург 3,23
Красноярск 4,84
Воронеж 3,12
Якутск 4,05
Волгоград 2,91
Астрахань 2,76
Екатеринбург 3,65
Нижний Новгород 3,63
Владивосток 3,25
Магадан 4,33
Челябинск 3,64
Тверь 3,31
Новосибирск 3,93
Самара 3,33
Пермь 3,64
Уфа 3,48
Казань 3,45
Омск 3,82

Таблица плотности и теплопроводности некоторых стеновых строительных материалов

Материал Плотность кг/м3 Теплопроводность (Вт/м·0C)
Теплоизоляционные материалы
Минераловата
-плиты 200 0,08
-плиты 125 0,07
Пенополистирол
-Пенопласт ПСБ-С 15 До 15 0,043
-Пенопласт ПСБ-С 25 15,1-25 0,041
-Пенопласт ПСБ-С 35 25,1-35 0,038
-Пенопласт ПСБ-С 50 35,1-50 0,041
Бетоны и растворы
Железобетон 2500 2,04
Бетон 2500 1,30
Цементо-песч. 1800 0,93
Керамзитобетон 1200 0,58
Пенобетон 100 0,37
Гипсокартон 800 0,21
Газосиликат 500 0,12
Кирпичная кладка на цементно-песчаном растворе
Керамический кирпич:
-сплошной 1800 0,81
-пустотный 1600 0,64
-пустотный 1400 0,58
-пустотный 1200 0,52
Селикатный кирпич:
-сплошной 1800 0,87
-14 пустот 1400 0,76
Глинянный кирпич:
-обыкновенный 1400 0,56
Дерево и другие органические материалы
Сосна и ель
-поперек волокон 500 0,18

Из таблицы теплопроводности материалов видно, что пенополистирол обладает очень хорошими теплоизоляционными свойствами. При таких теплоизоляционных свойствах пенопласт, имеет хорошие физические свойства - прочность, упругость, легкость. Пенополистирол намного дешевле остальных утеплителей и экологически безвреден.

Как вычислить реальное сопротивление теплопередаче внешней стены дома R0?

Чтобы определить сопротивление теплопередаче стены, нужно разделить толщину материала (м) на коэффициент теплопроводности материала (Вт/(м·°C)). Если стена многослойная, то полученные значения всех материалов нужно сложить, чтобы получить общее значение сопротивления теплопередаче всей стены.

Допустим, у нас стена построена из крупноформатных керамических блоков (коэффициент теплопроводности 0,14 Вт/(м·°C)) толщиной 50 см, внутри гипсовая штукатурка 4 см (коэффициент теплопроводности 0,31 Вт/(м·°C)), снаружи цементно-песчаная штукатурка 5 см (коэффициент теплопроводности 1,1 Вт/(м·°C)). Считаем:

R0 = 0,5 / 0,14 + 0,04 / 0,31 + 0,05 / 1,1 = 3,57 + 0,13 + 0,04 = 3,74 м2·°C/Вт

Рекомендуемое значение Rreq для Красноярска 4,84, таким образом наша стена не удовлетворяет для нашего региона СНиП 23-02-2003.

Наша компания предлагает строительство теплых дом ов из 3D-панелей.

P1100323

Принцип строительства несъемной опалубки.

P1060228
P1090482

Армированный блок, состоящий из 2-х армированных панелей, размер блока 1,2 м на 3 м.

Backup_of_Схема 3дпанели как несъемная опалубка

Толщина стены 0,55 м, коэффициент сопротивления теплопередачи стены 8,8 Вт/(м·°C). Расход тепла 15 Вт на 1 м 2 площади пола .

Наши дома комплектуются приточно-вытяжной вентиляцией, в окна ставятся двойные рамы (см. фото здесь) с коэффициентом сопротивления теплопроводности 2,2, от земли цокольный этаж и пол утепляется пенополистиролом 20 см, потолок - 40 см, этим мы добиваемся минимальной потери тепла, дом получается комфортный и теплый

Кирпичная стена - с утеплителем или без?

Решаю вопрос с устройством наружных стен. Выбираю между двумя вариантами:
1. Кирпич пустотелый 380мм + 100мм пенополистирол + облицовка 120мм;
2. Кирпич пустотелый 640мм.

По стоимости материалов и работы выходит практически 1:1 - в районе 2тыс руб за 1 м2 стены. Ясно, что полностью кирпичная будет тяжелей на 25% стены с утеплителем. С другой стороны к ней доверия больше. Насколько я понимаю, кирпич, пусть даже пустотелый (пустотность около 35% - ЛИКолор) толщиной 640мм не проходит по современным СНиП-ам. Но мне для себя, индивидуальное строительство, никому сдавать не придется. Отопление будет газ. Я слышал, что стены в доме являются далеко не самым узким местом потери тепла - качественное утепление сверху и снизу в большей степени влияет на окончательные цифры.

Вообще, мне больше импонирует сплошная стена, но я не строитель/архитектор/конструктор, поэтому мои умозаключения не многого стоят. Товарищи (господа) специалисты, дайте плз свою оценку.

Форумы - это такое место, где несколько людей могут убедить в своих заблуждениях тысячи.

ОСОБЕННОСТИ СТРОИТЕЛЬСТВА В УСЛОВИЯХ ЭКСТРЕМАЛЬНОГО СЕВЕРНОГО КЛИМАТА

Автором рассмотрены факторы, препятствующие активному освоению территории распространения многолетнемерзлых грунтов. Представлена информация об основных принципах и методах проектирования и строительства на вечномерзлых грунтах, а также о мероприятиях для обеспечения высокой несущей способности оснований и фундаментов зданий и сооружений. Описаны часто применяемые типы фундаментов и материалов для утепления ограждающих конструкций в условиях северных широт. Приведены модульные здания из блоков-контейнеров, как отдельный вид строительных объектов для Крайнего Севера.

Россия – северная страна, почти 2/3 которой находится в области вечной мерзлоты. Грунты и горные породы здесь находятся в постоянно мерзлом состоянии, оттаивая лишь на небольшую глубину летом (примерно на 1-3м) [1]. Исключительностью Российского Севера являются суровые климатические условия, которые становятся существенными преградами для строительства. Строительная инфраструктура здесь активно развивается с 30-х гг. XX в., со времени начала добычи полезных ископаемых в этом регионе. В сооружениях, возводимых на вечномерзлых грунтах без принятия особых, отличных от обычных условий, мер и методов, возникают совершенно недопустимые деформации, затрудняющие эксплуатацию сооружений и приводящие к их полному разрушению. Известны случаи обрушения неправильно построенных домов в Чите, а в Канаде, например, жителям пришлось покинуть целых два небольших города, построенных в годы войны: их дома вечная мерзлота буквально вывернула из земли [2].

Инженерная геокриология, как отрасль геокриологии, занимается особенностями проектирования и строительства различных инженерных сооружений в зоне распространения вечномерзлых грунтов. Развитие ее началось в 20-х годах XX века благодаря стараниям таких ученых, как М.И. Сумгин, В.А. Обручев и В.И. Вернадский. Большой вклад внес Николай Александрович Цытович, который является основоположником инженерного мерзлотоведения, сформулировавший основные принципы механики мерзлых грунтов.

Рис. 1 Цытович Николай Александрович

Разработки, выполненные им в начале 30-х годов и позднее, привели к созданию нового научно обоснованного метода строительства с сохранением мерзлого состояния грунтов, усовершенствованный в дальнейшем учеными мерзлотоведами и конструкторами строителями. На основе этого метода в военное время, а особенно в послевоенные годы были возведены многие многоэтажные здания, промышленные предприятия в Якутске и в других местах. Так, благодаря Н.А. Цытовичу и другим ученым-мерзлотоведам были построены один из самых северных городов планеты Норильск и крупнейший в мире Норильский горно-металлургический комбинат. Под руководством этого выдающегося ученого кафедра механики грунтов, оснований и фундаментов МИСИ достигла больших успехов, и благодаря его работам и трудам других сотрудников она продолжает стремительно расти. [3]

При проектировании и строительстве зданий и сооружений на вечномерзлых грунтах, выделяют 2 основных принципа использования этих грунтов в качестве оснований:

  • I принцип - сохранение мерзлого грунта в основании здания или сооружения в течение всего срока строительства и эксплуатации без допущения его оттаивания.
  • II принцип - возможность оттаивания грунта в основании здания или сооружения до начала строительства или в период эксплуатации здания на некоторую допустимую величину, определяемую специальным расчетом. [1]

Как показывает практика, здания и сооружения в условиях Крайнего Севера строятся в основном по первому принципу, так как в мерзлом состоянии грунт имеет высокую несущую способность. В настоящее время при проектировании и расчете оснований и фундаментов зданий и сооружений на вечномерзлых грунтах применяют несколько методов [4]:

  • метод сохранения мерзлого состояния грунтовых оснований;
  • метод конструктивный (учета осадок оттаивания грунтов);
  • метод предпостроечного оттаивания и улучшения оснований.

В качестве варианта, предлагается использование грунтов оснований в вечномерзлом состоянии, как способ обеспечения их эксплуатационной пригодности и долговечности [5]. Технология метода заключается в организации мероприятий по уменьшению температуры грунтового основания до расчетных значений:

  • При ширине зданий до 10 м используют теплоизоляцию поверхности и возведение зданий на подсыпках. Вследствие этих инженерных решений происходит понижение температуры грунта из-за притока холода с боковых сторон и происходит снижение тепловых поступлений от существующего здания в мерзлый грунт.
  • Устройство холодных подполий со среднегодовой отрицательной температурой. Пол первого этажа в этом случае устраивается на перекрытии, приподнятом над поверхностью грунта. По режиму охлаждения холодные подполья подразделяются на невентилируемые, вентилируемые только в летний период и вентилируемые круглый год. Наиболее применимым на практике является последний вид. Основное охлаждение грунтов основания в подпольях в таком случае осуществляется путем вентилирования в зимнее время холодным наружным воздухом. [6]
  • На основании соответствующих теплотехнических расчетов и технологических требований взамен холодных подполий предусматривают устройство холодных первых этажей. Для лучшего охлаждения стен выполняют их из теплопроводных материалов, окна- с одинарным остеклением.
  • Искусственное понижение температуры окружающего грунта с помощью саморегулирующихся колонок или холодильных установок, которые работают на основе циркуляции специальной жидкости (керосина) или газа (фреона). Как правило, этот метод применяют в качестве вспомогательного средства.
  • Устройство теплоизоляционного материала под полом отапливаемых зданий, в следствие чего, глубина оттаивания уменьшается. [7]

Основным типом фундаментов для вечномерзлых грунтов являются свайные фундаменты. Возможно использование свай следующих типов:

  • буроопускные – сваи, которые свободно погружаются в скважины с диаметром не менее, чем на 5 см превышающим размер поперечного сечения сваи, свободное пространство заполняется раствором.

Рис.2. Схемы погружения свай в вечномерзлые грунты: а - в оттаянный грунт; б - в скважину с обсадной трубой; в - забивка в лидирующую скважину

  • опускные – сваи, которые свободно или с пригрузом погружаются в предварительно оттаянный грунт.
  • бурозабивные (забивные) – сваи, погружаемых забивкой в лидерные скважины (созданные для последующего погружения забивной железобетонной сваи) с диаметром меньшим наибольшего поперечного сечения сваи.
  • бурообсадные – полые сваи и сваи-оболочки, которые погружаются в грунт путем его разбуривания в забое через полость сваи с периодическим осаживанием погружаемой сваи.
  • винтовые – полые сваи с винтом или одной или несколькими лопастями, которые погружаются завинчиванием в лидерные скважины (без лидерных скважин). [8]

Но и они подвергаются разрушению под действием многих конструктивных и природных факторов: 1) неправильная планировка подполий и окружающей территории, не обеспечивающая отвода поверхностных, надмерзлотных и аварийных вод от фундаментов; 2) напорное давление надмерзлотных вод при промерзании грунта в начале зимнего периода; 3) образование трещин в сваях под действием температурных деформаций ростверков; 4) превышение расчетных напряжений в бетоне, значительно снижающее его морозостойкость.

Это привело к исследованию альтернативного типа фундаментов поверхностных вентилируемых пространственных фундаментов- оболочек. Они обладают рядом преимуществ, среди которых: совместимость функции несущей и охлаждающей грунт конструкции, что осуществляется посредством отсыпаемого на мерзлом основании промежуточного слоя; выполняемый из непучинистого материала промежуточный слой под пространственным фундаментом, значительно снижающий интенсивность криогенных процессов при тепловом и механическом взаимодействии зданий с мерзлым основанием; возведение фундаментов без нарушения мерзлотно-грунтовых условий на строительных площадках, что позволяет ликвидировать временной технологический разрыв, который необходим при устройстве свайных фундаментов.

Так, опыт эксплуатации четырехэтажного здания каркасно-панельного административно-бытового комбината (АБК), возведенного на фундаменте-оболочке монолитной конструкции на сильнольдистых высоко-температурных грунтах показал, что произошло не только промерзание промежуточного слоя, но и понижение температуры грунтов ниже его подошвы.

Рис.3. Часть строящегося здания АБК на поверхностном фундаменте- оболочке в г. Норильск

Верхняя граница вечной мерзлоты установилась на глубине 1,8 м. Средняя осадка фундамента-оболочки составила 2,1 см, что является хорошим результатом. А значит и поверхностные фундаменты являются прекрасным решением для суровых условий наших северных регионов. [9]

Возведение фундамента – не единственная проблема, с которой сталкиваются инженеры при строительстве зданий в условиях Крайнего Севера. Аномально низкая температура, сильные ветры и суровые метели – еще одна особенность северного климата. Для обеспечения максимального комфорта кварталы городов в таком случае строят замкнутым контуром, с минимальным числом площадей и узкими разрывами между домами, что позволяет значительно снижать скорость ветра.

При строительстве на вечномерзлых грунтах основным типом возводимого здания является здание каркасного типа. Высокая скорость монтажа – вот главное его достоинство. В связи с этим, элементы каркаса выполняют из сборного железобетона и металла, причем металлические конструкции более эффективны и обладают рядом преимуществ перед железобетонными. Так, это отсутствие мокрых процессов, которое дает возможность вести строительство при низких температурах без устройства тепляков, также меньшая нагрузка на фундамент, так как при равных эксплуатационных условиях здание из стального каркаса будет легче железобетонного. Элементы здания из металлического каркаса можно демонтировать, усиливать несущие конструкции полосами стали, в случае необходимости, производить модернизацию здания под новые требования производства, а повторное использование металла после демонтажа позволяет использовать его гораздо экологичнее и эффективней. [10]

Что касается ограждающие конструкции и теплоизоляции стен, то выполняют их из облегченных, утепленных панелей. Наилучшим решением во многих случаях является сэндвич- панель, которая имеет трёхслойную структуру, состоящую из двух листов жёсткого материала (металл, ПВХ, ДВП, магнезитовая плита) и слоя утеплителя между ними. Принцип сэндвич-технологии был описан ещё в 1950-х годах, однако активное применение сэндвич-панелей в строительстве в России началось лет через 30. Появление в России изделий, в которых в качестве утеплителя используется плита из каменной ваты, позволило эффективно решить проблему сохранения тепла. Производство в России панелей по западным технологиям с принятыми за рубежом классами точности (и соответствующих нормативам для нашего климата) сделало этот материал оптимальным выбором для строительства в районах с суровым климатом. В настоящее время индустриальными методами возводится подавляющая часть городов и посёлков Сибири и Дальнего Востока. [11] Важным элементом является теплоизоляция не только фундаментов, стен и кровли, но и светопрозрачных конструкций, и конструкции оконных блоков с заполнением инертными газами находят сегодня широкое применение в практике строительства на российском Севере. В частности, специальная программа по внедрению энергосберегающих окон действует в Красноярске. [11]

Рис.4. Крепление сэндвич панелей

Также основные технологии сегодняшнего строительства - монолитный железобетон или же каменная кладка – в меньшей степени подходят при возведении зданий в удаленных местностях Северного климатического пояса. Поэтому все более востребованными становятся быстровозводимые или модульные здания, очень напоминающие «конструктор».

Они очень популярны в условиях Крайнего Севера в силу своих многочисленных достоинств, а именно:

  • максимально ускоренные сроки строительства;
  • минимальные материало-, трудо- и энергоемкость;
  • повышенная конструктивная безопасность, устойчивость зданий и сооружений с фундаментами на многолетних мерзлых грунтах;
  • обеспечение экологической и пожаробезопасности, долговечности зданий и сооружений;
  • энергосбережение при эксплуатации зданий и сооружений;
  • минимизация стоимости строительства.

Модульные здания, обладающие способностью выдерживать самые сложные эксплуатационные и природные условия, в суровом северном климате используются довольно успешно. Они имеют большой срок службы и могут долго сохранять эстетичный внешний облик. По уровню комфорта современные модульные здания для Севера практически ничем не уступают стандартным офисным и жилым помещениям. Основой их конструкции является блок-контейнер. Он может быть изготовлен любого размера и иметь любое соотношение сторон. Представляет из себя модуль, состоящий из внешней обшивки, изготовленный из профилированного стального листа, несущих стальных конструкционных деталей, теплоизолирующих минеральных материалов и панелей внутренней отделки (довольно часто модули изготавливаются из сэндвич-панелей) [12]. Одним из направлений применения таких блоков-контейнеров являются современные вахтовые поселки, которые пользуются наибольшей популярностью среди нефте- и газодобывающих компаний. Сроки постройки таких городков предельно сжаты, а требования к качеству проживания людей довольно высоки. Строить стационарные здания слишком дорого и не имеет смысла - по окончании вахтовых работ их придется оставить. Поэтому, оптимальным вариантом для создания таких городков остаются быстровозводимые вахтовые поселки на блоках-контейнерах. [13]

Рис. 5 Модульное здание г. Чита

Сегодня в условиях крайнего севера действует несколько десятков различных полярных станций, все они построены из модульных быстровозводимых зданий на свайном типе фундамента. Самым знаменитыми объектами являются станция «Арктический трилистник» на острове Земля Александры архипелага Земля Франца-Иосифа и военная база «Северный клевер», размещенная на о. Котельный архипелага Новосибирские острова.

Основываясь на приведенных выше сведениях, можно сделать вывод, что динамика строительства городов на Крайнем Севере будет расти, что подразумевает дальнейшее изучение данных территорий и подталкивает к проектированию и созданию новых типов фундаментов, более технологичных и менее энерго- и материалоёмких. Как вариант, поверхностных фундаментов, совмещенных с несущими и ограждающими модульными конструкциями, в силу компактности и большой жесткости последних.

Почему не стоит утеплять стены из газобетона?

Однослойные стены из газобетона всё популярнее в частном домостроении. С ростом популярности растёт и число вопросов по их свойствам. Будет ли промерзать дом без дополнительного утепления? Придётся ли переплачивать за отопление? Давайте разберёмся.

Обратимся к строительным нормам - СП 50.13330.2012 «Тепловая защита зданий». Стены из газобетонных блоков марки D400 толщиной 375 мм в средней полосе России могут удовлетворять требованиям этого СП без дополнительного утепления. Такие стены вполне способны обеспечить необходимое сопротивление теплопередаче.

Расчёт: SmartCalc Расчёт: SmartCalc

Речь идёт о стенах, возведённых в соответствии с технологией тонкошовной кладки, то есть с помощью клеевого раствора, наносимого слоем не более 3 мм. В этом расчёте представлено условное сопротивление теплопередаче ограждающей конструкции, без учёта объёмно-планировочных, конструктивных особенностей конкретного здания и климатической зоны, где ведётся строительство. Данное значение сравнивается с базовым (RT).

Подробную информацию о проектировании и технологии сооружения зданий из газобетона можно получить на Плюсы однослойных стен

Итак, нормы разрешают делать однослойные стены из газобетона. Если дом с такими стенами правильно спроектирован и построен, вы не будете переплачивать за отопление зимой. И сэкономите на строительстве, ведь вам не придётся отдавать деньги за теплоизоляционный материал и сопутствующие ему крепёж и монтажные работы.

Проект "Дессау” от YTONG Проект "Дессау” от YTONG Фото: Дом из газобетона с деревянными перекрытиями Фото: Дом из газобетона с деревянными перекрытиями

· Высокая скорость монтажа. Чтобы построить многослойную стену, приходится покупать и доставлять различные материалы и крепёж, поэтапно выполнять работы, что затягивает процесс строительства. Если теплоизоляция паронепроницаемая (пенополистирол – обычный или экструдированный), то надо ждать от двух месяцев до полугода после возведения стен, прежде чем приступать к её монтажу. Это нужно, чтобы из газобетона успела выйти так называемая «производственная» влага: если «запереть» её в кладке паронепроницаемым слоем, возможно ухудшение эксплуатационных свойств стены, повреждение отделки.

В случае однослойной стены ждать не нужно, а потому дом будет закончен быстрее. Добавим, что монтаж фасадной теплоизоляционной системы сложнее, чем оштукатуривание газобетона. В частности, поверх утеплителя придётся наносить сначала базовый штукатурный слой, утапливая в него армирующую сетку, а затем декоративный слой. В то время как кладку из газобетона можно сразу отделывать декоративной (толстослойной) штукатуркой, при условии, что стена выполнена ровно. Экономия времени и средств.

Фото: YTONG Фото: YTONG

· Долговечность. Срок службы утеплителя – вопрос открытый, но очевидно, что фасадной теплоизоляционной системе капитальный ремонт потребуется раньше, чем газобетонной стене.

· Возможность крепления любых элементов к фасаду.
Утеплённый фасад – не столь прочная конструкция, как газобетонная кладка. Поэтому для закрепления на нём тяжёлых элементов, например, камер видеонаблюдения, потребуются дорогостоящие решения – дистанционные дюбели и пр. Кроме того, если опирать на такой фасад лестницу, есть риск повредить его. В случае однослойных стен из газобетона подобных проблем нет.

· Отсутствие металлического крепежа, то есть «мостиков холода». Утеплитель фиксируют к стене клеем и тарельчатыми дюбелями с металлическими сердечниками (не менее 4 шт./м ² ). Дюбели уменьшают теплотехническую однородность стены. Насколько – это зависит от конкретного крепежа и качества монтажных работ. По оценкам экспертов НИИСФ, дюбели могут увеличивать теплопотери через стены на 30% и более*. Иными словами, есть вероятность, что крепёж в нормативном количестве в сочетании с тонким слоем теплоизоляции сведёт на нет положительный эффект от утепления. И напротив, отсутствие таких «мостиков холода» – несомненный плюс в плане теплозащиты.

Павел Пастушков, ведущий научный сотрудник НИИСФ РААСН:

«Утепление стен – не единственный, а один из нескольких способов повысить энергоэффективность газобетонного здания. И актуальный только тогда, когда дополнительное утепление – это оправданное, то есть окупаемое мероприятие. К проектированию дополнительного утепления следует относиться внимательно, чтобы из-за неграмотного крепежа, который снизит теплотехническую однородность ограждающей конструкции, не растерять ту прибавку к сопротивлению теплопередачи по глади стены, которая достигается за счёт слоя утеплителя».

Фото: Pixabay Фото: Pixabay

Конечно, однослойные стены из газобетона – не панацея. Есть ситуации, когда без дополнительного утепления кладки не обойтись. Например, в регионах с суровыми зимами. Или в регионах, где проблематично купить блоки с маркой по плотности D400 и менее. Чтобы соответствовать нормам, стена из более плотных блоков D500 должна иметь толщину около 500 мм (чем плотнее газобетон, тем хуже его теплозащитные свойства и тем толще должна быть стена из него). Не каждый застройщик решится на коттедж с полуметровыми наружными стенами.

Впрочем, для малоэтажного домостроения вполне достаточно блоков D400 толщиной 375 мм: их прочности с избытком хватает, чтобы сооружать здания высотой в 3 этажа.

Фото: YTONG Фото: YTONG

Мифы о необходимости утепления

В интернете встречается немало мифов, связанных с утеплением газобетонных стен.

Миф 1. Если домовладелец хочет меньше платить за отопление, то у него нет другого выбора, кроме как теплоизолировать стены из газобетона

Так ли это? Давайте посмотрим, на чём действительно можно сэкономить. В доме больше всего тепловой энергии потребляют системы отопления, горячего водоснабжения и вентиляции**.

Этот график относится к многоэтажным зданиям, но даёт представление о соотношении источников потерь тепловой энергии. Отличие частного дома в том, что потери через окна и стены будут выше. В любом случае наибольший экономический эффект мы получим, если оптимизируем инженерные системы. И только во вторую очередь имеет смысл вкладываться в ограждающие конструкции. Причём, как мы видим на графике, потери тепла через окна такие же, как через стены. А значит, нужно уделить внимание теплозащите окон в той же мере, что и стен: устанавливать окна с максимально энергосберегающими стеклопакетами, обязательно предусматривать четверти с наружной стороны оконных проёмов, утеплять откосы со стороны помещений. Стоит рационально относится и к площади остекления: чем она больше, тем больше затраты на обогрев дома. Притом помещения с большой площадью остекления лучше обращать на юг, чтобы использовать для обогрева ещё и тепловую энергию солнца.

Фото: Pixabay Фото: Pixabay

Наконец, нужно эффективно утеплять крышу, фундамент или перекрытие первого этажа, периметр межэтажных перекрытий. Главное – надо подходить к вопросу комплексно и «прорабатывать» самые слабые элементы в тепловой оболочке здания, а не утеплять то, что и так хорошо удерживает тепло. Подчеркнём ещё раз: однослойные стены из газобетона по теплотехнике вполне подходят для центрального региона России. Если здание построено качественно, по тщательно рассчитанному проекту.

  • применение однослойной кладки из укрупненных блоков марки D400 толщиной 400 мм;
  • использование газозолобетона в качестве строительного материала (расчетная теплопроводность при условиях эксплуатации А согласно исследованиям НИИСФ РААСН составляет 0,116 Вт/(м∙°С));
  • применение тонкошовной кладки на теплоизоляционном клею;
  • применение сборно-монолитных плит перекрытия из газозолобетона;
  • использование окон с повышенным уровнем теплозащиты».

Миф 2. Расходы на дополнительное утепление окупятся быстро, учитывая высокие цены на энергоносители

Проверим это утверждение расчётом. Приведём пример конкретного загородного дома со стенами из газобетона. Дом находится в Московской области. Его отапливают с помощью электричества – самого дорогого энергоносителя, используя тепловой насос «воздух-воздух».

Дом В. Борисова Дом В. Борисова

Виктор Борисов, инженер, построил дом своими руками в 2012 году:

«Площадь моего дома 72 м ² , общая площадь ограждающих конструкций 246 м ² . Фундамент в виде монолитной бетонной плиты с утеплением толщиной 200 мм. Кровля плоская, сборно-монолитная с утеплением 225 мм. Окна с пятикамерными профилями и двухкамерными стеклопакетами с теплоотражающим напылением, площадь окон – 11,3 м ² . Стены – однослойные, из газобетона D400 толщиной 375 мм, блоки уложены на тонкошовный клей. Фасад отделан цементной штукатуркой с пенополистирольными шариками, толщина слоя – 20 мм.

Согласно расчёту, потери тепла в доме составляют 7718 кВт·ч/год. Чтобы компенсировать их, я трачу 12000 руб. в год, отапливая тепловым насосом «воздух-воздух» (и тратил бы 30000 руб. в год, если бы отапливал электричеством), при усреднённом тарифе 3,89 руб. за 1 кВт·ч.

Целесообразно ли дополнительно утеплить дом? Самый бюджетный вариант теплоизоляции – пенополистирол ПСБ-25 толщиной 100 мм вместе с крепежом и монтажом – обойдётся как минимум в 60000 руб. После утепления ежегодная экономия на отоплении составит 2300 руб. То есть даже если тарифы на электроэнергию будут расти, дополнительное утепление окупится не раньше, чем через 20-25 лет. Считаю, в нём нет экономического смысла».

Подробности этого расчёта можно узнать здесь .

Другие расчёты также показывают, что минимальный срок окупаемости дополнительного утепления – не менее 20 лет.

Миф 3. Когда в расчёте теплопотерь учитывают влияние линейных и точечных теплотехнических неоднородностей, стены из газобетона не «дотягивают» до нормативов по теплозащите

В доме есть особо промерзающие части – углы, откосы, стыки элементов, в том числе примыкания стен к перекрытиям, места крепления к стенам балконных плит и пр. Ухудшение теплозащиты из-за подобных узлов оценивают коэффициентом теплотехнической однородности***. Производители теплоизоляции обращают особое внимание на этот коэффициент, ведь он повышает требования к ограждающим конструкциям. Это даёт основания убеждать потребителей в необходимости утепления стен.

Фото: Pixabay Фото: Pixabay

Действительно, грамотный расчёт обязан учитывать коэффициент теплотехнической однородности. Но даже с этой коррективой стена из газобетона вполне может соответствовать нормам, без какого-либо утепления. Вот пример теплотехнического расчёта условного здания с однослойной стеной из газобетона (D400, 375 мм), без отделки, с учётом усреднённого коэффициента однородности 0,7 (такой показатель характерен, в частности, для домов с очень большой площадью остекления или с недостаточно энергосберегающими стеклопакетами, либо с железобетонной балконной плитой, не имеющей термовкладыша, либо с недостаточным слоем утепления по периметру межэтажного перекрытия и пр.):

Расчёт: SmartCalc Расчёт: SmartCalc

Как мы видим, приведенное сопротивление теплопередаче ограждающей конструкции (2,46 Вт/(м·°С)) больше нормируемого значения поэлементных требований (1,98 Вт/(м·°С)). То есть удовлетворяет требованиям тепловой защиты здания, согласно СП 50.13330.2012.

Причём, можно без особого труда улучшить сопротивление теплопередаче - только за счёт грамотной проработки некоторых конструктивных узлов, прежде всего, оконных блоков, балконов, примыканий плиты перекрытия к стенам.

Добавим, что при расчёте нормируемого значения используется коэффициент, учитывающий регион строительства****, который для средней полосы России понижает требования к кладке. Не стоит забывать о нём, делая теплотехнический расчёт. Если принимать во внимание оба коэффициента (его и коэффициент однородности), однослойная газобетонная стена в большинстве случаев будет соответствовать требованиям по теплозащите и даже превышать их.

Проект “Кёльн” от YTONG Проект “Кёльн” от YTONG

Алексей Аверин, инженер по применению продуктов YTONG:

«Нередкая ситуация: производители теплоизоляционных материалов представляют в интернете теплотехнические расчёты, оправдывающие необходимость утепления стен из газобетона. Расчёты зачастую оказываются недостоверными, поскольку для теплоизоляции там указаны коэффициенты теплопроводности, полученные этими производителями в ходе испытаний. А для газобетона берутся справочные коэффициенты из СП 50.13330.2012. Между тем данные по теплопроводности газобетона, полученные в ходе испытаний, могут отличаться от справочных. Так как при расчете теплотехники стены нужно учитывать эксплуатационную влажность кладки в 4-5%.

Обращайте внимание на такие детали. Объективным можно считать только тот расчёт, где данные для всех материалов взяты либо из нормативов, либо из протоколов испытаний».

Миф 4. Стена из газобетона имеет высокую влажность, из-за чего обладает более высокой теплопроводностью, чем указывают изготовители газобетона

Это не так. Избавившись в первые месяцы после строительства дома от производственной влаги, газобетон постоянно стремится к равновесной влажности (то есть, впитывая «лишнюю» влагу, затем отдаёт её). Согласно результатам многочисленных натурных испытаний, эта влажность составляет 4-5% в зависимости от климатических условий в регионе, где построен дом. Данное значение сохраняется на протяжении всего срока эксплуатации дома. Так что переувлажнённый газобетон – это миф.

Фото: YTONG Фото: YTONG

Единственный нюанс: влага, которая содержится в блоках при выходе из автоклава, должна беспрепятственно покинуть свежеуложенную кладку. Поэтому не стоит закрывать только что построенную стену паронепроницаемыми материалами – будь то утеплитель из экструдированного пенополистирола, цементная штукатурка плотностью более 1300 кг/м ³ или облицовочный керамический кирпич, уложенный вплотную (без вентзазора) к газобетонной стене.

Отметим и такой момент: когда стена выполнена из одного материала (газобетона), производственная или эксплуатационная влага быстрее удаляется из неё за счёт большого градиента температур снаружи и изнутри кладки. Как следствие – более низкая теплопроводность стены. Если же кладка закрыта утеплителем и находится исключительно в «тёплой» зоне, процесс удаления влаги замедляется.

Что же в итоге? Конечно, хозяин своего дома сам выбирает, утеплять его или нет. Но, принимая решение, помните, что однослойные стены из газобетона сами по себе достаточно тёплые. И что энергоэффективность дома зависит не только от стен, но и от окон, крыши, фундамента, систем отопления и вентиляции, архитектурно-конструктивных особенностей здания, от качества выполненных работ и других факторов.

Приглашаем Вас оставить комментарий или задать вопрос в форме ниже нашему эксперту, а также подписаться на наш канал, где мы будем выкладывать и другие экспертные статьи по теме строительства.

* “Современный автоклавный газобетон”. Сборник докладов V научно-практической конференции, г. Пятигорск, 16–18 октября 2019 г.

** Согласно МГСН 2.01-99 “Энергосбережение в зданиях”.

*** СП 230.1325800.2015 “Конструкции ограждающие зданий. Характеристики теплотехнических неоднородностей”.

Нужно ли утеплять стены из кирпича. Часть 2.

В предыдущей статье мы выяснили, что ни одна из применяемых толщин кирпичных кладок (380 мм, 510 мм, и даже 640 мм) не проходят по современным нормам теплозащиты.

Но как же старые дома, сталинки-хрущевки-брежневки, выполненные из кирпича и просто оштукатуренные, ведь они десятилетиями стоят и люди в них не мерзнут? Все дело в том, что СП (Свод Правил) применяемый строителями, как и СНиПы (Строительные Нормы и Правила) на которых и основаны СП, из года в год перерабатываются. Вводятся новые нормы, создаются новые ГОСТы, которые также включены в СНиПы и СП. И за десятилетия были внесены такие изменения, из-за которых прежние материалы для строительства стали энергоНЕэффективными, более того, были разработаны более энергоэффективные материалы, чем кирпич или бетон. В старых домах тепло и комфортно зимой, но для достижения этого комфорта на дом тратится значительно больше энергии при отоплении, чем на дома, построенные с применением современных технологий и энергоэффективных утеплителей.

А что же такое энергоэффективность? Энергоэффективность - эффективное (рациональное) использование энергетических ресурсов - использование меньшего количества энергии для обеспечения того же уровня энергетического обеспечения здания. Соответственно чем выше энергоэффективность здания, тем меньше энергии тратится на его отопления, а значит меньше "топлива" (угля, газа, электричества, дров). Утеплители же и призваны увеличить показатель энергоэффективности, при снижении толщины стен и расхода дорогостоящих строительных материалов.

Теперь же давайте вернемся к вопросу о необходимости утепления кирпичных стен. Как я уже говорил минимальная толщина кирпичной кладки наружной несущей стены составляет 380 мм, вот эту толщину стены мы и возьмем для расчетов. Толще стены брать не стоит, так как затраты на строительство стен из кирпича большей толщины, будут выше, чем применение утеплителя большей толщины. Для начала попробуем минераловатный утеплитель толщиной 100 мм (и не забудем про гидроизоляцию).

А вот как выглядела наша стена БЕЗ утепления:

Из рисунков 1.1 и 1.2 видно, что разница сопротивления теплопередаче кладки БЕЗ утепления и С утеплением огромна. Сопротивление теплопередаче конструкции с применением 100 мм утеплителя составила 3,11 (м.кв.*град.С)/Вт, что выше более чем в 4 раза, чем у стены без утеплителя (0,73). А как изменяется график тепловых потерь:

Читайте также: