Анкерное крепление подпорных стен

Обновлено: 15.05.2024

АНКЕРНАЯ СИСТЕМА КРЕПЛЕНИЯ ПОДПОРНОЙ СТЕНКИ Российский патент 2018 года по МПК E02D29/02

Изобретение относится к области строительства и может быть использовано при возведении малоэтажных зданий и сооружений на слабых глинистых основаниях.

Известно крепление бортов котлована и траншеи, включающее устройство жесткой Г-образной конструкции, выполненной в виде вертикальной подпорной стенки с выступающим в сторону от котлована воротником, и устроенные на нем натягиваемые анкеры, при этом анкеры установлены в направлении, параллельном креплению стены, а величина натяжения анкеров поддержана на расчетном уровне, при этом разработка грунта в котловане произведена после регистрации начала перемещения крепления (Патент РФ №2417284 С1, дата приоритета 04.02.2010, дата публикации 27.04.2011, авторы: Мороз А.И. и др., RU).

Недостатком аналога является то, что такое крепление под давлением грунта получает горизонтальные перемещения несущей стенки и грунта в сторону котлована и требует постоянного контроля над натягиваемыми анкерами.

В качестве прототипа принята анкерная подпорная стенка, содержащая бетонные плиты, соединенные с анкерными тяжами, выполненными из углепластика и имеющими разную длину в зависимости от эпюры давления грунта на подпорные стены, при этом по обе стороны тяжей расположены буронабивные сваи, заполненные бетоном в нижней части с возможностью упора в них грунтовых анкеров (Патент РФ №2405892 С1, дата приоритета 03.08.2009, дата публикации 10.12.2012, автор Шадунц К.Ш., RU, прототип).

Недостатком прототипа является отсутствие визуального контроля упора грунтовых анкеров в буронабивные сваи.

Задачей изобретения является создание анкерной системы крепления подпорной стенки с возможностью осуществления полного контроля крепления, удерживающего подпорную стенку, и использования его на слабых грунтах.

Для решения поставленной задачи предложена анкерная система крепления подпорной стенки, содержащая бетонную плиту, пропущенный через нее и зафиксированный снаружи анкерный тяж, расположенный в грунте и упертый в возведенную за бетонной плитой буронабивную сваю. Новым является то, что анкерный тяж выполнен в виде перфорированной трубки с возможностью заполнения ее цементно-песчаным раствором и использования в качестве грунтового анкера. Кроме того, анкерный тяж отклонен от горизонтального положения и соединен с буронабивной сваей. При этом перфорированная трубка пропущена через выполненное в буронабивной свае отверстие, через пробуренную в грунте скважину и через отверстие в бетонной плите, а также снабжена резьбовыми концами с установленными на них шайбами, прижимными гайками и заглушками, образующими головки анкерного тяжа.

На чертеже схематично изображена анкерная система крепления подпорной стенки, общий вид.

Анкерная система крепления подпорной стены содержит бетонную плиту 1, буронабивную сваю 2, анкерный тяж, выполненный в виде перфорированной трубки 3 с возможностью заполнения ее цементно-песчаным раствором 4. Перфорированная трубка 3 пропущена через выполненное в буронабивной свае 2 отверстие, через пробуренную в грунте скважину и через отверстие в бетонной плите 1, а также снабжена резьбовыми концами с установленными на них шайбами 5, прижимными гайками 6 и заглушками 7, образующими две головки, доступ к одной из которых осуществляется с наружной стороны плиты 1, а к другой - из приямка 8, выполненного для устройства анкерного тяжа.

Возведение анкерной системы крепления подпорной стенки осуществляют следующим образом. Вначале устанавливают подпорную стенку в виде бетонной плиты 1, рядом с ней бурят скважину и возводят буронабивную сваю 2. После набора прочности откапывают околосвайный приямок 8 и через сваю в сторону подпорной стенки бурят скважину, в которую затем вставляется перфорированная трубка 3 с резьбой на концах. На резьбовой конец перфорированной трубки со стороны подпорной стенки устанавливают шайбу 5 и прижимную гайку 6, а торец закрывают заглушкой 7. В конструкцию под давлением заливают цементно-песчаный раствор 4 для повышения несущей способности анкерного тяжа, а резьбовой конец перфорированной трубки со стороны буронабивной сваи закрывают, устанавливая при этом шайбу, гайку и заглушку, образующие вторую головку анкерного тяжа в доступном месте. После окончательного возведения конструкции приямок 8 засыпается из отвала.

Заявляемая система крепления подпорной стенки имеет следующие преимущества по сравнению с аналогами и прототипом:

- возможность осуществления контроля надежности анкерной системы крепления с двух сторон в связи с доступностью к головкам анкерного тяжа;

- повышение несущей способности анкерного тяжа, работающего как грунтовый анкер, за счет использования перфорированной трубки для уплотнения грунта и усиления анкерной функции;

- возможность эффективного использования на слабых глинистых грунтах за счет новой конструкции грунтового анкера.

Таким образом, технический результат, достигаемый при возведении анкерной системы крепления подпорной стенки, заключается в повышении несущей способности анкерного тяжа, являющегося доминирующим элементом анкерной системы, прочно удерживающим подпорную стенку, в том числе, на слабых грунтах, и в повышении надежности крепления подпорной стенки за счет осуществления двухстороннего контроля крепления в доступных местах.

Похожие патенты RU2649347C1

  • Шадунц Константин Шагенович
  • Преснов Олег Михайлович
  • Иванова Карина Александровна
  • Преснов Олег Михайлович
  • Шошина Виктория Алексеевна
  • Рыжкова Ирина Андреевна
  • Васюкевич Леонид Юльевич
  • Стоценко Алексей Александрович
  • Шадунц К.Ш.
  • Маций С.И.
  • Смирнов С.Г.
  • Антонова Лариса Григорьевна
  • Распопин Сергей Николаевич
  • Пинчук Евгений Петрович
  • Аблогин Эдуард Александрович
  • Еремин Валерий Яковлевич
  • Молчанов Кирилл Дмитриевич
  • Сигута Юрий Васильевич
  • Федоровский Виктор Григорьевич
  • Алабушев Олег Владимирович
  • Дорцев Андрей Юрьевич
  • Покладок Игорь Андреевич
  • Помпик Алексей Сергеевич
  • Сёмушкин Анатолий Васильевич
  • Шадунц К.Ш.
  • Мариничев Максим Борисович
  • Ткачев Игорь Геннадьевич

Иллюстрации к изобретению RU 2 649 347 C1


Реферат патента 2018 года АНКЕРНАЯ СИСТЕМА КРЕПЛЕНИЯ ПОДПОРНОЙ СТЕНКИ


Изобретение относится к области строительства и может быть использовано при возведении малоэтажных зданий и сооружений на слабых глинистых основаниях. Анкерная система крепления подпорной стенки содержит бетонную плиту (1), соединенный с ней анкерный тяж (3), расположенный в грунте и упертый в возведенную за бетонной плитой буронабивную сваю (2). Новым является то, что анкерный тяж выполнен в виде перфорированной трубки (3) с возможностью заполнения ее цементно-песчаным раствором (4) и использования в качестве грунтового анкера. Кроме того, анкерный тяж отклонен от горизонтального положения и соединен с буронабивной сваей (2). При этом перфорированная трубка (3) пропущена через выполненное в буронабивной свае (2) отверстие, через пробуренную в грунте скважину и через отверстие в бетонной плите, а также снабжена резьбовыми концами с установленными на них шайбами (5), прижимными гайками (6) и заглушками (7), образующими головки анкерного тяжа. Технический результат, достигаемый при возведении анкерной системы крепления подпорной стенки, заключается в повышении несущей способности анкерного тяжа, являющегося доминирующим элементом анкерной системы, прочно удерживающим подпорную стенку, в том числе, на слабых грунтах, и в повышении надежности крепления подпорной стенки за счет осуществления двухстороннего контроля крепления в доступных местах. 1 ил.

Формула изобретения RU 2 649 347 C1

Анкерная система крепления подпорной стенки, содержащая бетонную плиту, пропущенный через нее и зафиксированный снаружи анкерный тяж, расположенный в грунте и упертый в возведенную за бетонной плитой буронабивную сваю, отличающаяся тем, что анкерный тяж выполнен в виде перфорированной трубки с возможностью заполнения ее цементно-песчаным раствором и использования в качестве грунтового анкера, кроме того, анкерный тяж отклонен от горизонтального положения и соединен с буронабивной сваей, при этом перфорированная трубка пропущена через выполненное в буронабивной свае отверстие, через пробуренную в грунте скважину и через отверстие в бетонной плите, а также снабжена резьбовыми концами с установленными на них шайбами, прижимными гайками и заглушками, образующими головки анкерного тяжа.

Варианты и технология строительства бетонных подпорных стен

Подпорная стенка из бетона

Для улучшения ландшафтного дизайна и удобства эксплуатации участка с перепадами высот используется подпорная стенка из бетона (ПС) нескольких типов. Конструкция необходима для террасирования, зонирования, ликвидации эрозии и укрепления склонов. Подпорными стенами можно защитить столбчатые ростверки, плитные и ленточные фундаменты от воздействия боковых подвижек пучинистых грунтов.

При расчетах необходимо следовать указаниям СП 43.13330.2012 (пункт 5.1).

Особенности конструкции подпорных стен

Неровный ландшафт неудобен в эксплуатации, поэтому большинство застройщиков стремятся выровнять почву на всем участке или создать несколько зон с горизонтальными поверхностями, между которыми можно перемещаться по ступеням или лестницам.

Основной проблемой является давление грунта на вертикальные стены, приводящее к негативным последствиям:

  • потеря устойчивости – опрокидывание конструкции;
  • потеря прочности – разрушение отдельных элементов и осыпание склона.

Виды разрушений подпорных стенок

Проблемы эксплуатации подпорных стен.

Существует две принципиально отличных друг от друга технологии, направленных на компенсацию этого давления:

    массивные стены – имеют большой вес, боковые подвижки почвы не могут сдвинуть конструкцию с места;

Массивная подпорная стена

Массивная стена подпорная.

Варианты тонкостенных подпорных конструкций

Варианты тонкостенных подпорных конструкций.

В первом случае повышается расход бетона и арматуры, во втором увеличивается объем земляных работ. Выбор технологии зависит от имеющегося бюджета строительства, свободного времени, назначения подпорных стен.

Например, при ограниченном бюджете целесообразнее устройство уголковых конструкций с консолью. Если подпорная стена используется для террасирования, на верхних гранях массивных монолитных многоуровневых стен можно разбить цветники, сделать грядки или использовать их в ландшафтном дизайне.

Декоративные стенки

Нюансы для низких подпорных стен (30 – 80 см):

  • для низких конструкций оптимальным вариантом является массивная стена (трапеция или параллелепипед с уширенным основанием);
  • они имеют значительный вес, поэтому силы пучения их сдвинуть не в состоянии;
  • при высоте конструкции до 0,3 м фундамент не нужен, но плодородный слой необходимо заменить нерудным материалом на глубину 0,4 м;
  • если планируемая высота террасы составляет 0,4 – 0,8 м, нижняя часть стены, являющаяся фундаментом, заглубляется на 0,15 – 0,3 м.

Низкая подпорная стена

Низкая подпорная стена.

Технологии их изготовления рассмотрены ниже, в данном разделе приведены лишь правила проектирования. В низких ПС дренаж не обязателен на сухих почвах, при высоком УГВ с внутренней стороны укладываются перфорированные и обмотанные геотекстилем гофротрубы с уклоном в сторону подземного резервуара для сбора стоков.

Средние стены

Обычно загородные участки в коттеджных поселках имеют перепады высоты в пределах 1 м, зато для садовых участков администрация населенных пунктов часто выделяет не пригодные для с/х земли, изобилующие горами и оврагами. Поэтому используются ПС средней высоты 0,8 – 1,5 м, которые так же можно не рассчитывать на сдвиг и разрушение.

Схема выбора конструкции ПС, удовлетворяющей эксплуатационным требованиям, следующая:

  • при высоте в пределах 1 м на рыхлых почвах можно применить массивные конструкции с уширением пяты;
  • если перепад высот больше указанного значения, дешевле обойдется тонкостенная ПС любого типа.

 Средняя стена подпорная

Средняя стена подпорная.

Если в промышленном и с/х строительстве для этих целей чаще используются ж/б панели и плиты, то для индивидуального застройщика они обходятся излишне дорого с учетом доставки, выгрузки и установки спецтехникой. Поэтому проще залить их по месту по нижеприведенной технологии.

Дренаж для ПС средней высоты является обязательным, вместо продольных дренов обычно используются поперечные:

  • полимерные трубы укладываются чуть выше подошвы фундамента, проходят насквозь оба вертикальных щита опалубки;
  • шаг поперечных дренов в пределах 1 м;
  • в узел примыкания ПС и нижней террасы укладываются желоба ливневки для сбора и отведения этих стоков, которые неизбежно разрушат почву и снизят качество эксплуатации участка.

Перфорация внутри дренов не нужна, можно применить канализационные (только рыжие), полиэтиленовые трубы подходящего диаметра.

Высокие стены

На сложном ландшафте могут потребоваться высокие (1,5 – 2 м) подпорные стены, для которых необходим расчет по двум предельным состояниям. Общими принципами проектирования являются:

  • применение тонкостенных конструкций, так как массивные ПС здесь экономически нецелесообразны;
  • элементы, вовлекающие грунт верхнего яруса для создания усилий направленных против опрокидывания (консоль, анкер или контрфорс), выбираются в зависимости от предпочтений застройщика.

Высокая стенка подпорная

Высокая стенка подпорная с контрфорсами.

Объем земляных работ примерно одинаковый, но для контрфорсов и консолей потребуется дополнительное бетонирование.

Технологии строительства

Массивная стенка подпорная

Ниже представлены чертежи массивных стенок для террасирования участка. Общими правилами при строительстве этих конструкций являются:

  • опалубка заглубляется на 1/3 от высоты конструкции ПС при общей высоте 0,4 – 1,5 м;
  • если стена имеет высоту 1,6 – 2 м, минимальное заглубление составляет 0,7 м;
  • минимальная толщина (у трапециевидных в верхней части) ПС составляет 10 см;
  • при террасировании песчаных почв и супесей ширина основания составляет 0,5 от высоты конструкции, для суглинка достаточно 1/3 этого размера, для глины ¼;

Размеры стенки подпорной

Размеры подпорной стенки в зависимости от типа грунта.

Несмотря на то, что прямые контуры предпочтительнее для ландшафтного дизайна, правильно спроектированная стена террасы должна иметь ребра жесткости, углы и ломаные линии, обеспечивающие большую прочность монолитного сооружения из железобетона. Это касается не только массивных подпорных стен.

С уширением пяты

Технология позволяет снизить бюджет строительства за счет меньшего расхода бетона. Производится устройство стен для террасирования участка по схеме:

  • разметка и выемка грунта – в соответствии с проектом на обноски натягиваются шнуры/струны, изготавливаются траншеи шириной в размер уширения подошвы ПС;
  • подстилающий слой и устройство опалубки – нижние 0,4 м пучинистого грунта заменяются щебнем или песком, трамбуются, на нерудный материал стелется рубероид и устанавливаются щиты опалубки для уширения высотой 0,3 м, на них перпендикулярно укладываются куски бруса, на которые устанавливается щитовая опалубка для тела стены, фиксирующаяся с двух сторон укосинами и стяжками;
  • дренаж – щиты просверливаются насквозь, через них с периодичностью в 1 м пропускаются пластиковые трубки на высоте 0,2 м от нижней террасы;
  • армирование и заливка – внутрь опалубки устанавливается каркас с двумя поясами из продольных стержней, обвязанных хомутами или вертикальными и горизонтальными перемычками, бетон укладывается послойно (0,4 м), уплотняется глубинным вибратором.

Подпорная стена с уширением подошвы

Подпорная стена с уширением подошвы.

Марка бетона от М150, при необходимости могут использоваться пенетрирующие добавки. Конструкция ПС имеет плитную часть, которая противостоит силам пучения, не давая выдернуть стену на поверхность.

Трапециевидная

Технология изготовления имеет вид:

  • разметка – по обноскам натягиваются шнуры с учетом изменения горизонтального уровня на нижнем участке и прилежащем к нему верхнем ярусе;
  • отрывка траншей – грунт вынимается на 0,4 м ниже проектного уровня, ширина выработки равна размеру уширения подошвы с учетом типа грунта (например, если стена имеет высоту 0,7 м сверху, на суглинке это составит 0,23 м);
  • подстилающий слой – песок на сухом грунте или щебень при высоком УГВ толщиной 0,4 м (послойная трамбовка виброплитой или ручным инструментом);
  • устройство опалубки – передний щит устанавливается вертикально (в сторону уклона), фиксируется подпорками, задний щит наклонен в его сторону верхним бортом, крепится шпильками или распорками из бруска;
  • армирование – каркас из продольных прутков (рифленка диаметром 6 – 8 мм), обвязанных хомутами через 0,6 – 0,8 м;
  • бетонирование – смесь укладывается слоями по 0,4 м, уплотняется вибратором.

Изогнутая подпорная стена

Изогнутая траектория стенки предпочтительнее прямым линиям.

Уход за бетоном классический – верхняя плоскость укрывается опилками, увлажняемыми из лейки в первые двое суток или закрывается пленкой. Пенетрирующие добавки, вводимые в смесь при изготовлении, позволяют получать абсолютно водонепроницаемый бетон (Пенетрон адмикс). Однако его себестоимость при этом увеличивается на 25-30%, но отпадает необходимость гидроизоляции, на 10% увеличивается прочность бетона, а также морозостойкость, за счет меньшего поглощения влаги.

Обратная засыпка возможна после набора прочности бетоном, распалубка для гидроизоляции – на 7 – 28 день в зависимости от температуры и влажности воздуха. Дренаж аналогичен предыдущему случаю.

Тонкостенные конструкции

При установке обычной плиты на ребро для террасирования участка она неизбежно будет повалена горизонтальными подвижками грунта, даже при некотором заглублении. Поэтому для подпорных стен используется универсальная схема:

  • вертикальная плита жестко связана с горизонтальной;
  • причем, последняя придавлена весом земли верхней террасы;
  • поэтому горизонтальные усилия вспучивания компенсируются самим грунтом.

Конструкция наиболее уязвима в месте сопряжения плит, поэтому армируется в обязательном порядке. Силы пучения снижаются обратной засыпкой нерудным материалом и отводом почвенных вод через поперечные дрены.

Армирование угла подпорной конструкции

Армирование уголковой подпорной конструкции.

Для увеличения пространственной жесткости силового каркаса верхняя часть вертикальной плиты связывается с дальним от нее краем горизонтальной консоли контрфорсом или тросом, крепящимся свободным концом к анкеру.

Консольно-уголковая стенка

Для сооружения консольно-уголковой ПС необходимо выполнить операции:

  • отрыть траншею глубиной 0,4 – 0,6 м, ширина которой равна длине горизонтальной консоли (обычно равна высоте вертикальной плиты);
  • отсыпать 0,2 – 0,4 м щебня или песка и утрамбовать нерудный материал;
  • смонтировать опалубку для консоли из 4 вертикальных досок шириной 10 – 15 см;
  • уложить две арматурных сетки с шагом 0,4 – 0,6 м и обеспечить защитный бетонный слой;
  • выпустить прутки вверх для связи с вертикальной стеной на расстоянии 0,4 м от края, обращенного к нижней террасе;
  • залить горизонтальную плиту, обеспечить уход за бетоном;
  • правильно установить опалубку для подпорной стены в вертикальном положении;
  • уложить внутрь нее арматурный каркас и связать его с выступающими из консоли прутками;
  • забетонировать стену и произвести гидроизоляцию всех доступных поверхностей конструкции.

Консольная подпорная стена

Консольная подпорная стена.

На этапе монтажа верхней опалубки следует произвести устройство дренажной системы из полимерных или асбоцементных труб. Вместо плитной консоли на тяжелых грунтах (глина и суглинок) допускается применение балок с шагом 0,5 м.

Анкерная стена

Для снижения бюджета строительства могут применяться анкерные ПС, сооружаемые по следующей технологии:

  • вертикальная плита заливается внутрь опалубки по месту;
  • в ее верхней части монтируются закладные петли;
  • в грунт верхней террасы дальше призмы осыпания склона устанавливается анкерный якорь (винтовая свая-шуруп, вбитая в почву труба или наклонно расположенный тяж);
  • тросом или проволокой якоря связываются с петлями анкерной стенки.

Анкерная стена подпорная

Анкерная подпорная стена.

Важно! Вертикальную монолитную плиту необходимо заглубить в зависимости от ее высоты на 1/2 – 1/4. Шаг анкеров составляет 0,6 – 1 м в зависимости от грунтовых условий. Дренаж поперечный для данной конструкции обязателен.

Контрфорсная стенка

Последним вариантом для монолитной ПС из железобетона является технология усиления конструкции контрфорсом. Преимуществами метода являются:

  • контрфорс служит ребром жесткости;
  • стабилизирует пространственное положение конструкции;
  • смещает центр тяжести стены в сторону верхней террасы;
  • увеличивает собственный вес ПС и препятствует боковому смещению.

Методика аналогична предыдущей, только вместо закладных петель из стены выпускают прутки арматуры. Контрфорсы треугольного профиля заливают на следующем этапе в собственную опалубку.

Терраса с контрфорсами

Терраса с контрфорсами.

Контрфорсы могут смотреть как наружу, так и внутрь стены, такая конструкция обычно комбинируется с консольной стеной.

Общие нюансы

Независимо от конструкции, есть общие правила:

  • Температурно-усадочные швы каждые 10 метров для бутобетонных стен без армирования, каждые 20 м для монолитных бетонных стен с армированием, 25 м для сборно-монолитных и 30 м для сборных конструкций.
  • Гидроизоляция ПС со стороны грунта обязательна (допустима битумная обмазочная).
  • Обратная засыпка предпочтительна дренирующими грунтами (песок, крупнообломочные). Допустимо использовать супеси и суглинки. Уплотнение обязательно. Глину и чернозем использовать нельзя.

По ссылке можете скачать чертежи типовых решений для монолитных подпорных стен.

Таким образом, подпорную стену можно изготовить для террас различной высоты несколькими способами. Вначале необходимо рассчитать затраты для каждого варианта и выбрать наиболее бюджетный из них.

Разнообразие грунтовых анкеров и их отличия


Грунтовый анкер — крепежное устройство, служащее для передачи растягивающих нагрузок на несущие конструкцию слои грунта от веса всей постройки. Во всех видах работ, таких как крепление подпорных стен, откосов, различных типов фундаментов необходимо проводить проектирование и качественную установку анкеров, тогда они проявляют отличные несущие качества, обладают долгим сроком службы.

Скрыть содержание

Проектирование

Во время производства грунтовых анкеров следует заранее учесть и сопоставить устойчивость сооружения, возможную несущую способность, зависящую от качества производимого анкера и типа грунта. Важную роль играют отдельные элементы, необходимые для монтажа конструкции, например, упорная труба, цементный камень.

Пробные испытания анкеров входят в изначальный план их проектирования. Необходимая длина и наклон высчитываются, когда станут известны показатели устойчивости каждого вида материалов для постройки. Рекомендуется расстояние между отдельными креплениями в 1,5 м и менее.

Специалисты считают, что глубина от поверхности грунта до уровня заделки анкеров должна превышать 4 метра.


Грунтовые буроинъекционные анкера


Анкера способны выдерживать большие нагрузки. Часто используются, исполняя функцию впрессовываемых свай, иногда нужны как грунтовые нагели. С помощью буроинъекционных анкеров можно установить буровые сваи без использования обсадных труб, не потребуется буровой снаряд и армирование. Экономится время, все операции можно провести за рабочий цикл бурения.

Применение:

  1. Укрепление конструкций, содержащих откосы и горные массивы.
  2. Реконструкция и восстановление отдельных элементов железнодорожной транспортной инфраструктуры.
  3. Сооружение и ремонт тоннелей, причальных сооружений.
  4. Укрепление и надежная установка стен для бетонных и шпунтовых котлованов.
  5. Формирование опор матч, содержащих линии электропередач и телефонных сетей, других высотных сооружений, например, ветряных генераторов или горнолыжных подъемников.
  6. Строительство, при необходимости укрепление и реконструкция зданий, сооружений, в том числе и высотных конструкций.

Преимущества:

  1. Перечень необходимых операций в работе значительно сокращается. Тело анкерной сваи устраивается вместе с армированием и предварительным бурением скважины, поэтому все манипуляции делают одновременно.
  2. Производительность труда работников увеличивается в 5-10 раз, если сравнивать создание конструкций с применением традиционных грунтовых анкеров.
  3. Есть возможность обустройства конструкций без обсадных труб, основание которых опирается на анкеры, даже если устройство производится на неустойчивых грунтах.
  4. В качестве техники достаточно использования малогабаритных буровых станков, когда требуется проведение работ по усилению фундаментов из подвалов полностью построенных зданий. Небольшие станки очень удобны, так как подземные сооружения обладают малогабаритным пространством.
  5. На сооруженные фундаменты зданий буроинъекционные анкера не оказывают негативного воздействия.
  6. Работы можно проводить в заводских цехах, для этого нет необходимости в остановке производственного процесса.
  7. Затраты ручного труда значительно снижены.
Анкерный болт: технические характеристики. Об этом читайте в следующей нашей статье.

А в этой статье рассказывается про клиновые анкера.

Самораскрывающиеся грунтовые анкера


Данные анкера применяются для крепления растяжек с использованием новых технологий. Пластины предназначены для принятия растягивающей нагрузки. Их погружают в грунт, используя ударный или вибрационный способ.

Применение:

  1. Постоянное или временное крепление функциональных линий электропередач и телефонных сетей, которые крепятся на растяжках матч. Анкеры необходимы для установки горнолыжных подъемников и ветряных генераторов.
  2. Фиксация неизменного, правильного положения труб и трубопроводов согласно проектам. Кессоны и резервуары также иногда закрепляют с помощью данных средств.
  3. Днища доков, основания колодцев надежно прикрепляются к основе. Самораскрывающимися анкерами фиксируют и ровно устанавливают основания, на которых возводятся подземные сооружения.
  4. Активно применяются для строительства подземных устройств, конструкций и коммуникаций. Фундаментные плиты и шпунтованные ограждения укрепляются, иногда крепятся к поверхности. Котлованы, подпорные стенки и элементы траншеи также разрабатываются по плану, предусматривающему страховку надежности креплений данными анкерами, иногда основным методом крепления для конструкции являются именно они.
  5. Открытые и полузакрытые способы работ иногда применяются для закрепления несущих стен тоннелей, где также используются данные анкера.
  6. Во время сооружения фундаментных мостов, формирования эстакад. Анкера необходимы, когда есть надобность в усилении уже существующих сооружений.
  7. Некоторые операции, входящие в функционал дорожных или ландшафтных работ, нуждаются в надежном креплении элементов.
  8. Используются в постройке и поддержании гидротехнических сооружений, таких как набережные, причальные стенки.
  9. Эрозию почв можно предотвратить, если использовать анкера, благодаря сильной, надежной фиксации георешеток и других систем, защищающих грунт от непредусмотренного движения.

Преимущества:

  1. Возможность проводить работы в ускоренном режиме, простота монтажа анкеров.
  2. Статическое испытание будет достоверно, даже если его проводить сразу после установки.
  3. В разрушении грунта нет необходимости. Специально для установки котлованов для массивных построек земля не роется, что повышает надежность сооружения и облегчает работы.
  4. Высокая несущая способность. Можно применять для возведения зданий любой тяжести и высоты.
  5. Бетонные блоки поставлять на объект и устанавливать необязательно, так как анкера держатся в земле.
  6. В процессе установки есть возможность без дополнительных затрат обеспечить максимальную точность углубления анкеров в землю даже в труднодоступных местах.
  7. В большинстве условий установки доступны для использования.
  8. Когда анкер закреплен, приведен в рабочее положение, может немедленно принимать нагрузки.
  9. Общая стоимость работ по установке считается низкой, так как не требуются затраты на бурение, поставление бетонных блоков или цементацию уже зафиксированных анкеров.



Грунтовые анкера проявили себя как мощные и качественные крепежные элементы, применяемые для любых видов построек. Для гарантии надежности и долговечности здания перед их приобретением нужно удостовериться, что поставщик имеет положенные сертификаты, при необходимости фирма проектирует и устанавливает анкера.

Правильный выбор и монтаж грунтовых анкеров сделают постройку надежной и сохранят на долгие годы.


Расход химического анкера. Их виды. Об этом читайте здесь.

Конструкции подпорных стенок и способы возведения

как сделать подпорную стенку на участке

Обустройство участка

Основная задача подпорной стенки — держать грунт на склоне. Но это общее назначение, существует несколько признаков, которые лежат в основе классификации видов этого сооружения.

Содержание

Виды подпорных стенок

В промышленном строительстве и в сельском хозяйстве подпорную стенку рассматривают как инженерную конструкцию, в ландшафте загородного участка она выполняет и эстетическую функцию. Классификацию видов стенок проводят по нескольким критериям.

По назначению

В зависимости от назначения выделяют следующие три вида:

Особенность частного дома с участком на склоне в том, что подпорная стенка довольно часто выполняет все функции одновременно. Поэтому материал для конструкции выбирают исходя из нагрузки, условий эксплуатации и декоративных качеств. Но в этом случае возникает некоторое противоречие.

По материалам

Как правило, высокие несущие способности и эстетический вид трудно совместить в одной конструкции. Особенно когда она служит одним из центральных элементов ландшафта. Приходится искать компромисс, и когда расчетная высота стенки получается довольно высокой, лучше сделать каскад из нескольких низких террас с опорными стенками из материала, который более точно соответствует стилю ландшафтного дизайна.

Есть следующие виды материалов:

  • Монолитный железобетон. Наиболее высокие несущие способности, при условии мощного фундамента. Долговечность конструкции оценивают в 50 и более лет. Недостатки: высокая трудоемкость, большие материальные и временные затраты на строительство, необходима декоративная отделка.
  • Сборный бетон. Немного меньше устойчивость к сдвигающим нагрузкам, но более высокая, чем у монолитных конструкций, скорость возведения. Также в большинстве случаев необходима декоративная отделка.
  • Природный камень. Долговечность определяется породой камня, из которого сложена стена, срок службы может быть более 50 лет. Требуется мощный фундамент и тщательный подбор материала по форме и размеру для кладки каждого ряда. Достоинство — высокие эстетические свойства. Недостаток — большая продолжительность работ.
  • Габионы. Средние несущие способности — подходит для сравнительно невысоких стенок. Не требуют мощного основания — за счет упругости сетки конструкция довольно хорошо переносит небольшие подвижки и проседание почвы. Структура стенки имеет хорошую водопроницаемость, поэтому дренаж не обязателен. Возможна суффозия грунта и прорастание растений. Долговечность определяется качеством сетки, и может быть не менее 50 лет. Достоинство — быстрый монтаж без применения спецтехники. Недостаток — специфический вид габиона, который не подходит многим видам исторических и этнических стилей ландшафтного дизайна.
  • Строительные блоки. Относительно невысокая прочность к боковым, сдвигающим, нагрузкам. Требуется обустройство фундамента. Не рекомендуется использование силикатного кирпича, а для стенок из керамического кирпича обязательна наплавляемая гидроизоляция со стороны грунта. Достоинство — высокая скорость монтажа.
  • Дерево. Обычно используют бревна, плахи, шпалы или брус, обработанные антисептиком. Есть примеры применения толстой обрезной доски, способной выдержать расчетную нагрузку. Достоинства: возможность использования свайного фундамента, простота монтажа, высокие декоративные свойства (при условии деревянных построек на участке). Недостатки — низкие несущие способности и невысокая долговечность.
  • Профлист. Относительно новый материал для возведения подпорных стенок. Используют для невысоких конструкций. Можно устанавливать на винтовой фундамент. Прочность и устойчивость определяется видом профиля и толщиной металла, долговечность зависит от толщины и вида защитного покрытия. Достоинство — простота монтажа и высокая скорость возведения.

По виду конструкции

Различают следующие варианты конструкции подпорных стенок:

глубина залегания подпорной стенки

  • По высоте: низкие — до 1 м, средние — 1-2 м, высокие — 2 м и выше.
  • По размеру подземной части: глубокого заложения (глубина подошвы фундамента более чем в полтора раза больше толщины стенки), неглубокого заложения.
  • По расположению: отдельно стоящие, связанные с другими сооружениями.

По способу обеспечения устойчивости

Подпорная стенка состоит из подземной части (фундамента) и наземной части. На нее действуют такие силы:

силы действующие на подпорную стенку

  • собственный вес;
  • вес грунта насыпанного на выступ (консоль) основания;
  • силы сцепления основания с грунтом;
  • боковое давление грунта на стенку.

Первые три силы обеспечивают устойчивость конструкции, последняя — стремится стенку сдвинуть и опрокинуть.

По способу достижения устойчивости выделяют следующие варианты конструкции:

подпорные стенки по способу достижения устойчивости

  • Устойчивость к сдвигу достигается за счет массы стенки.
  • Устойчивость достигается за счет массы стенки и веса грунта, лежащего на консоли фундамента.
  • Устойчивость достигается за счет надежного защемления основания в коренном грунте.
  • Устойчивость достигается за счет веса грунта, лежащего на консоли фундамента, масса стенки незначительна.

Общие рекомендации по строительству своими руками

Возведение своими руками оправдано для низких и средних по высоте конструкций. Рекомендованная высота подпорных стенок для приусадебных участков лежит в пределах 0.3-1.4 м. При соблюдении определенных условий, конструкции можно возводить без предварительного расчета:

конструкция подпорной стенки с облицовкой

  • Грунты должны относится к устойчивым — крупнообломочным, суглинки и глины, супеси.
  • Верхний уровень залегания грунтовых вод (верховодки) должен лежать не ближе чем 1.5 м к поверхности.
  • Глубина промерзания должна находиться не ниже 1.5 м.
  • Для стенки из бетона, камня или кирпича должен быть предусмотрен ленточный фундамент. Глубина заложения фундамента должна составлять до 50% высоты наземной части.
  • Для защиты от сил пучения должны быть проведены специальные мероприятия: устройство дренажа и песчано-гравийная засыпка толщиной 40-60 см, отсекающая капиллярный подъем влаги из почвы.
  • При кладке стенки из блоков или кирпича целесообразно профиль конструкции делать с расширением к низу. Минимальная толщина в узкой части должна составлять: 60 см — для кладки из камня, 50 см — для кладки из кирпича, 40 см — для бетонных блоков.
  • Для продления срока службы сборных стенок из камня, кирпича, блоков и дерева со стороны грунта обязателен слой наплавляемой гидроизоляции. У монолитных железобетонных конструкций поверхность обрабатывают битумными мастиками.
  • Следует учитывать, что стенки криволинейной или ломаной конфигурации способны выдерживать большие нагрузки, чем конструкции с прямыми очертаниями.

Строительство подпорной стенки

Ниже приведен общий алгоритм строительства стенок из разных материалов.

Из монолитного железобетона

подпорная стенка из монолита схема

Пошаговый алгоритм строительства выглядит так:

После созревания бетона опалубку снимают, проводят обратную засыпку грунта в пазухи траншеи и за стенку со стороны склона.

армирование грунта для подпорной стенки

Кроме традиционной технологии возможна заливка тонкой стены с продольным армированием одним прутком и вертикальными связями. В этом случае толщина стены может составлять 10 см, но грунт на склоне засыпают слоями, и дополнительно армируют каждый слой георешеткой (геосеткой) с загибом края.

Из сборного бетона

устройство подпорной стенки из блоков

Технология сооружения зависит от вида бетонных блоков. Если используют фундаментные блоки, то их укладывают на подготовленное основание в виде песчано-гравийной подушки.

песчанно гравийная подушка для подпорной стенки

Блоки серии ФБС скрепляют между собой кладочным раствором, а блоки серии БПС монтируют на сухую.

подпорная стенка из фбс

монтаж блоков для подпорной стенки

Кроме фундаментных блоков есть и другие материалы, которые позволяют быстро и без «мокрых» процессов соорудить подпорную стену из сборного бетона.

Очень интересный продукт предлагают компании Geoblok и Tenax. Они разработали систему блочных подпорных стен армированных георешеткой. В ее состав входят:

подпорная стенка из блоков и георешетки

  • бетонные блоки T-blok (Geoblok) для сцепления с георешеткой (первый ряд, и остальные согласно схеме армирования) — с пазом в основании и сверху;
  • бетонные блоки T-blok (Geoblok) рядовые — с пазом в основании и ребром сверху;
  • бетонные блоки T-blok (Geoblok) со сквозным отверстием — для вывода трубы системы поперечного дренажа;
  • георешетка TT SAMP (Tenax);
  • механический соединитель T-Clip (Tenax) для сцепления решетки и паза блока.

Технология изготовления подпорной стены выглядит так:

  1. Проводят выемку грунта на склоне таким образом, чтобы при обратной засыпке можно было уложить армирующую георешетку необходимой ширины приблизительно на высоте первого ряда блоков.
  2. Роют траншею под основание.
  3. Подготавливают основание. Это может быть монолитный или сборный ленточный фундамент, а для невысоких стенок — утрамбованный щебеночный слой.
  4. Укладывают на основание первый ряд блоков. У подножья этого ряда закладывают трубы продольного дренажа, которые засыпают слоем щебня.
  5. Укладывают георешетку на грунт со стороны склона. Она должна с запасом заходит за паз блоков.
  6. Фиксируют решетку к грунту анкерами, а в верхних пазах блоков первого ряда — соединителями.
  7. Рядовые блоки укладывают с перевязкой шва, используя систему «паз-ребро». Кладку ведут на высоту следующего уровня армирования георешеткой. В этом ряду укладывают блоки с пазами снизу и сверху.
  8. Насыпают слой грунта, оставляя место у стены для засыпки дренажного материала (щебня, обломочного грунта).
  9. Трамбуют грунт и дренажный слой.
  10. Закладывают георешетку, фиксируют к грунту и в пазах блоков.
  11. В таком алгоритме возводят стенку на проектную высоту.

Блоки выпускают окрашенными в массе, но, при желании, их можно облицевать любой плиткой для наружных работ — шероховатая поверхность лицевой части обеспечивает хорошую адгезию с клеевыми растворами. Как утверждает компания, система армогрунтованных блочных подпорных стен рассчитана на 120 лет эксплуатации.

Из камня и строительных блоков

подпорная стенка из строительных блоков

Несмотря на разнообразие видов строительных блоков и размеров камня, технология строительства в каждом случае имеет схожую последовательность выполнения работ:

  1. Проводят земляные работы по выемке грунта в пятне фундамента и части склона.
  2. Закладывают один из видов ленточного фундамента (монолитный — из бетона или бутобетона, сборный — из ФБС, бутового камня, полнотелых строительных блоков).
  3. При необходимости обустраивают подземный продольный дренаж.
  4. Возводят стенку на кладочном растворе с перевязкой швов соседних рядов. При необходимости закладывают трубы поперечного дренажа, и обустраивают лотки водоотвода с внешней стороны наземной части.
  5. Проводят гидроизоляцию стенки со стороны склона.
  6. Засыпают и уплотняют грунт (возле стены — дренирующий материал).

Из дерева

Обустройство подпорной стенки из дерева чем-то напоминает забор (стену) из бревна или пиломатериалов большого сечения. Это может быть:

В заключение. Строительство подпорной стены из габионов ничем не отличается от других ландшафтных и укрепляющих конструкций с использованием проволочных сеток и засыпки из обломков скального грунта, крупного щебня или гальки. А подпорная стенка из профлиста проходит по такому же алгоритму, что и строительство забора (с учетом нагрузок на несущие столбы или винтовые сваи).

ПРОЕКТИРОВАНИЕ ПОДПОРНЫХ СТЕН

Основные размеры уголковой подпорной стены

Проектирование подпорных стен уголкового типа в целом заключается в определении всех основных их размеров. Эти размеры назначаются в проекте по результатам расчетов прочности и устойчивости . Однако предварительное определение толщин и длин элементов подпорной стены можно произвести на основании обобщения опыта проектирования сооружений данного типа. Как правило, полученные таким образом значения достаточно часто оказываются близкими к значениям, найденным из расчетов. Это и позволяет использовать такие данные на начальной стадии проектирования.

Ниже приводятся основные способы предварительного определения размеров уголковой подпорной стены. В качестве опорной величины, характеризующей все остальные размеры стены, используется ее полная высота H.

1. Толщина верха вертикальной стенки и торца фундаментной плиты:

2. Толщина корневого сечения вертикальной стенки и фундаментной плиты:

При наличии контрфорсов:

3. Полная ширина фундаментной плиты (75 % ширины — со стороны обратной засыпки , 25 % — с лицевой стороны стены):

4. Выступ с лицевой стороны подпорной стены:

Больший выступ с лицевой стороны подпорной стены увеличивает устойчивость все стены на сдвиг. Маленький выступ позволяет выровнить напряжения в основании.

Читайте также: