Жесткость монолитной плиты перекрытия

Обновлено: 13.05.2024

Плитный фундамент с ребрами жесткости вниз

Фундаментные плиты, как имеющие обширную площадь опирания, относят к категории жёстких конструкций. При возведении стен из лёгких кладочных материалов, прочность которых снижена из-за малой плотности, рекомендуется использовать именно жёсткие схемы формирования оснований. Фундамент плита - с ребрами жесткости вниз, или просто плавающая, может обустраиваться практически на любых грунтах, поэтому и считается лучшим выбором для жилого дома из теплоэффективных каменных материалов. Об особенностях данной конструкции можно узнать из этой публикации.

Характеристика плитного фундамента, основные требования к глубине заложения

Правила проектирования оснований (СП 22.13330) рекомендуют возводить на плитных фундаментах не только здания, конструкции которых чувствительны к неравномерным осадкам, но и объекты, строящиеся на сильнопучинистых грунтах. Классифицирующим признаком плит являются технологические особенности их строительства. Например, бывает сплошная плита, решётчатая, сборная, монолитная, а так же фундаментная плита с ребрами жесткости вниз или вверх.

В качестве второго признака рассматривают глубину заложения:

  • Нормальная (глубокая). Такая плита, как и лента, закладывается ниже отметки промерзания, и чаще всего применяется при проектировании зданий с подвалом или цокольным этажом.
  • Мелкая (поверхностная). Этот вариант заглубляется не более чем на 50 см, и называется плавающим. Такой фундамент способен перемещаться вместе с подвижным грунтом, потому и получил такое название.
  • Незаглублённый вариант. Подошва такой плиты вообще не заглубляется, а находится на уровне планировочной отметки грунта. Для её устройства снимается всего лишь верхний слой почвы на толщину трамбуемой песчаной подушки. А сама плита будет на поверхности.


Вот и вся глубина котлована

Глубина заложения плиты определяется в зависимости от таких факторов:

  1. Наличия подвала.
  2. Характера и величины воздействующих нагрузок.
  3. Глубины фундамента примыкающего здания или закладки коммуникаций.
  4. Рельефа застраиваемого участка.
  5. Результатов геологических изысканий, которые выявляют не только прочностные и физические свойства верхнего слоя грунта, но и характер напластований, наличие пустот и слоёв, склонных к разжижению и скольжению.
  6. Гидрогеология стройплощадки (наличие верховодки, залегание водоносных слоёв и агрессивность грунтовой воды).
  7. Уровень промерзания в регионе с учётом типа грунта (если в Москве суглинки промерзают на 1,35 м, то крупные пески на 1,76, а крупнообломочные грунты и вовсе на 2 м).

Виталий Кудряшов

Мнение эксперта
Виталий Кудряшов
строитель, начинающий автор

Глубина заложения считается от планировочной отметки грунта (при наличии подвала - от его пола), до подошвы фундамента или, если имеется подбетонка, до её низа.

При выборе глубины заложения следует учитывать, что под подошвой плиты не должно быть низкопрочных слоёв малой толщины. Такой слой лучше вообще удалить и заменить его более толстой песчаной подушкой – либо просто углубить фундамент. Во избежание лишних затрат на водопонижение, закладывать плиту всегда лучше выше отметки расположения грунтовых вод.

Если деформируемость грунта и его невысокая несущая способность вынуждают слишком заглублять фундамент, имеет смысл отдать предпочтение свайному основанию, на которое может опираться не только ростверк, но и сама плита.

Взаимное расположение УГВ (подземные воды) и УПГ (отметка промерзания) является определяющим фактором. При промораживании любой грунт увеличивается в объёме, давая значительную осадку при оттаивании. А если он ещё и водонасыщенный (например, в районах с обильным таянием снегов), этот процесс сопровождается формированием прослоек льда с переменной толщиной. Их таяние вообще приводит к резкому уменьшению несущей способности грунта, и как следствие, существенным деформациям в нём.

Избежать подобных проблем можно только благодаря правильно рассчитанной глубине заложения. Уменьшить её можно только таким путём:

  • предусмотреть постоянную тепловую защиту фундамента;
  • произвести дренирование грунта по периметру (кольцевой дренаж);
  • частичная или полная замена в котловане пучинистого грунта на непучинистый;
  • защитить обмазкой и приклеенным рулонным материалом не только горизонтальную поверхность плиты, но и вертикальную, так как в этих места плита может смерзаться с грунтом.

Виды фундаментных плит


Схема классической плавающей плиты

Это обычная плавающая незаглубляемая плита. На картинке представлен вариант на песчано-гравийной подушке. Она обычно устраивается там, где высока вероятность деформации грунта в продольном направлении, из-за которой может возникать скольжение. Насыпная подушка как раз и призвана предупредить такой вариант развития событий.

Важно: Без подстилающего песчаного слоя плиту можно формировать только в том случае, когда грунт по структуре и прочности способен справляться с передаваемыми нагрузками без неравномерного осаживания.


Плита на сваях


Плитный фундамент с ребрами жесткости вниз

Фундамент плита с направленными вниз ребрами жесткости рекомендуется для строительства на ослабленных и способных к скольжению грунтах. Рёбрами называют трапециевидные или прямоугольные утолщения по нижнему периметру и внутри него, которые позволяют уменьшить толщину горизонтальной части конструкции до 125 мм, тогда как у обычных плит она минимум 200-300 мм.

Варианты устройства могут быть такими:

  1. С одним подстилающим слоем из смеси песка и щебня 60:40 (толщина от 50 см).
  2. С двумя подстилающими слоями. Это всё те же песок и щебень, только не смешанные, а уложенные и утрамбованные по отдельности: снизу слой щебня, а песок только в пространстве между рёбрами. Вариант применяется на переувлажнённых грунтах.


Утепляемая плита с рёбрами вниз


Фундаментная плита с ребрами жесткости вверх

Плитный фундамент с ребрами жесткости вверх выглядит так, как будто поверх обычной плиты выполнили ленточный фундамент. В этом случае роль рёбер играют стенки цоколя, но они должны быть обязательно монолитными, связанными с основной плитой закладной арматурой.

Располагают их под всеми будущими стенами – как наружными, так и внутренними. Такой вариант плиты может возводиться и с малым заглублением, но при глубоком заложении плиты для устройства в доме подвала, он вообще единственно возможный. В этом случае стены подвала - и есть рёбра жёсткости.


Фундамент коробчатой конструкции

Данный вид фундамента можно рассматривать и как разновидность плитного, и как вариант ленточного, у которого подушки расширены настолько, что сливаются в сплошную плиту. Такие фундаменты выдерживают большие нагрузки, а потому нередко проектируются под высотными зданиями. В малоэтажном строительстве подобный конструктив оправдан только при строительстве на неоднородных грунтах с малой несущей способностью и в сейсмоопасных районах.

Коробчатая плита может быть как плоской, так и с рёбрами, направленными вниз или вверх. В последнем случае промежутки между ними заполняют песчано-гравийной смесью или полистирольным утеплителем, поверх которого устраивают бетонную подготовку.

На заметку: При большом заглублении такой фундамент проектируют с рёбрами-стенами, между которыми вполне может располагаться погреб или подземный гараж. Но при неравномерных осадках грунта, рёбра формируют не в виде стен, а в виде пересекающихся под прямым углом балок.

Плюсы и минусы плитного фундамента

В общих чертах достоинства сплошной фундаментной плиты можно охарактеризовать так:
Плюсы Минусы
При малом заглублении - минимум земляных работ. Более высокая, чем у всех других фундаментов цена. Но когда в приоритете долговечность и надёжность, альтернатив плитному фундаменту просто нет.
Если всё правильно спроектировано и залито, срок службы не менее 150 лет. Сложность формирования опалубки.
Максимальная несущая способность.
Устойчивость к опрокидыванию.
Возможность строительства на пучинистом грунте.
Позволяет предусмотреть цокольный этаж.
Избавляет от необходимости устройства чернового пола.
В плиту можно заложить греющую систему пола.

Устройство плитного фундамента с ребрами жесткости внизу

О достоинствах плитных фундаментов, как таковых, уже было сказано. Недостатков кроме высокой цены практически нет, да и та компенсируется за счёт получаемых преимуществ. Однако у ребристой плиты, у которой рёбра направлены вниз, есть ещё один персональный недостаток. Это сложность формирования опалубки, которая должна иметь два уровня, и котлована, в котором должны быть нарезаны ещё и траншеи. Естественно, усложняется и армирование, и при всём при этом надо ещё произвести заливку за одну рабочую смену.

Конструкция фундамента

Рёбрами жёсткости называют выступы под плитой на глубину до 80 см. Вся трудность заключается в том, что им зачастую надо придать не прямоугольную, а трапецеидальную форму, помогающую снизить касательные нагрузки, которые фундаменту приходится воспринимать со стороны грунта. Рёбра обычно располагают по периметру и внутри него - на определённом расстоянии, либо только под несущими стенами. Конкретную форму рёбер, их количество, а так же глубину и расположение проектируют исключительно исходя из данных геодезического исследования.


Вариант структурирования ребра жёсткости

Технология устройства плитного фундамента

На такой фундамент (да и на любой другой) должен быть проект, а уже его воплощение частный застройщик, обладающий определёнными навыками, может взять и на себя. Естественно, потребуются помощники, нужна будет землеройная техника, понадобится заказывать товарный бетон и организовывать для его подачи бетононасос.

Вот из каких этапов состоит подобная работа.

Разработка котлована

Когда у плиты есть рёбра жёсткости, под неё роется котлован с траншеями. При поверхностном расположении глубина котлована будет незначительной, как и под обычную плавающую плиту. На дне производится разметка контуров рёбер, по которым и будут выкапываться траншеи. Их глубина рассчитывается исходя из толщины самой плиты, высоты насыпных подушек и подбетонки.


Принцип устройства основания под ребристую плиту

Виталий Кудряшов

Мнение эксперта
Виталий Кудряшов
строитель, начинающий автор

Важно: При выполнении земляных работ очень важно, чтобы грунт на дне разработки оставался нетронутым. Поэтому, чтобы не выбрать лишнего, с помощью геодезических инструментов определяют нужный уровень, забивают в дно колышки и при зачистке дна ориентируются на них.

Если материковый грунт слишком влажный или пористый, а плита строится без заглубления, перед устройством насыпных слоёв его застилают геотекстилем – дабы предотвратить заиливание и расползание песчаной подушки. Под ребром тоже должна быть песчаная подушка, поэтому на дно выемок насыпают песок, и хорошо уплотняют щебнем. Такая подушка устраивается не только в траншеях, но и по всей площади котлована.

Для рёбер жёсткости опалубку делают несъёмную, в основном используют плоский шифер – это лучший вариант тонкого, но прочного и недорогого материала. С его помощью наилучшим образом удаётся обеспечить рёбрам правильную геометрию, и вывести их по всем траншеям на одну высоту.

Гидроизоляция

Во избежание потери бетоном цементного молока, грунт на дне траншеи перед заливкой пропитывается разогретым битумом, или же устраивают подготовку толщиной 5-6 мм из тощего бетона. После застывания подбетонку грунтуют и застилают листовыми полимерными или битумными материалами с перехлёстом в 15-20 см.

Профильные мембраны укладывают в один слой, их края склеивают специальным скотчем. Гладкие полимерные мембраны в местах стыковки полотен свариваются. Битумные материалы укладывают в два взаимно перпендикулярных слоя. Их приклеивают на мастику или наплавляют посредством подогрева горелкой - то есть, тут всё зависит от вида применяемого материала.


Гидроизоляционный ковёр для фундаментной плиты с рёбрами вниз

Площадь гидроизоляционного ковра должна быть больше, чем площадь плиты. Полотна должны выходить за контуры фундамента с таким расчётом, чтобы после можно было их завернуть и оклеить вертикальные (боковые) поверхности.

Формирование конструкции: опалубка, закладные, армирование

Далее приступают к монтажу опалубки для самой плиты, которая теперь уже будет съёмной. Собирают её из доски, листового материала, или используют инвентарные щиты. Высота опалубки должна хотя бы на 50 мм превышать отметку заливки, которая и наносится на внутреннюю поверхность щитов разметкой. Опалубку выставляют по уровню, контролируя вертикаль, и обеспечивая устойчивость с помощью подпорок.

Виталий Кудряшов

Мнение эксперта
Виталий Кудряшов
строитель, начинающий автор

Очень важно, чтобы натиск бетона не смог выдавить щиты, иначе геометрия плиты будет нарушена.

  • В процессе формирования опалубки производят закладку гильз под вводы инженерных коммуникаций. На них ставят заглушки и оборачивают полиэтиленом, чтобы труба не забилась бетоном и могла легко выниматься.
  • Далее начинается процесс армирования, который и обеспечивает фундаменту необходимую прочность. Сначала устанавливается арматура на рёбрах, в которые закладывается два или четыре продольных стержня, связанных между собой поперечной арматурой.
  • Расстояние между ними определяется с таким расчётом, чтобы со всех сторон образовался защитный слой бетона толщиной 50 мм. Для связи рёбер с плитой устанавливаются специальные гнутые элементы.
  • Каркас самой плиты формируется классически – двумя горизонтальными решётками из перпендикулярно связанных стержней, образующих ячейки размером 200*250 мм. Стержни нижней решётки укладываются на специальные пластиковые фиксаторы, а отступ от них верхней сетки обеспечивается за счёт вертикальных прутьев заданной длины, которые могут фиксироваться как проволокой, так и с применением полипропиленовых хомутов или стяжек.


Армирование ребристой плиты

Все параметры армирования, в том числе вид и диаметр арматуры, регламентируются проектом. Задача строителей состоит только в том, чтобы в точности перенести конструкцию плиты с чертежа на грунт, соблюдая при этом технологии производства работ.

Бетонирование

Для заливки фундаментных плит обычно используют бетон марки М300. Его основные характеристики: класс прочности на сжатие В22,5, подвижность П3, класс по водостойкости W8.

Очень важно залить плиту за один день, поэтому бетонщики работают, если надо, и в ночную смену. В ППР (раздел производства работ в проекте) представлена подробная схема укладки бетона, нужно её лишь придерживаться.


Чтобы успеть залить плиту, работать приходится дотемна

Случаются, конечно, форс-мажорные ситуации, когда или бетон не доставили вовремя, или бетононасос сломался. В этом случае приходится устраивать рабочие швы бетонирования. Они могут быть предусмотрены и проектом, но в основном только для плит большой площади.

Виталий Кудряшов

Мнение эксперта
Виталий Кудряшов
строитель, начинающий автор

На заметку: Рабочий шов образуется за счёт установки двух параллельных плоских каркасов, на которые проволокой крепится металлическая сетка с мелкой ячейкой 10*10 мм. Для лучшей адгезии с бетоном, во избежание выпучивания сетки, её следует обезжирить. Если рабочие швы не были предусмотрены проектом, требуется соблюсти такое правило: после рабочего шва должно быть уложено не менее 25 см бетона.


Структура рабочего шва
  • Укладка бетонной смеси производится горизонтальными слоями, с направлением в одну сторону. Бетон подаётся бетононасосом – это наиболее удобный вариант, так как может применяться в любых стеснённых условиях и местах, где другие средства механизации бесполезны.
  • Уложенный слой бетона равномерно распределяется по всей площади конструкции, отдельные выступы могут возвышаться над общим уровнем заливки не более чем на 10 см. Перераспределять и разравнивать с помощью вибраторов поданную в опалубку смесь нельзя. Этот прибор предназначен только для уплотнения бетона после того, как он уже перераспределён.
  • Каждый новый слой должен укладываться до того, как смесь в предыдущем слое начнёт схватываться. Если перерыв всё же произошёл, и он превысил время начала схватывания уже уложенного и уплотнённого бетона, придётся опять же устраивать рабочий шов. Только в этом случае, чтобы продолжить работы, придётся ждать, пока бетон наберёт определённую прочность.
  • Конкретный показатель будет зависеть от того, каким именно способом будет очищаться цементная плёнка. Если промывкой, то достаточно прочности 0,3 МПа, при использовании металлических щёток – 1,5 МПа, а с применением механических средств очистки бетона (например, пескоструя), он должен набрать до 5 МПа. Определяет прочность строительная лаборатория, она и даёт добро на продолжение работ.
  • Если никаких непредвиденных остановок работ не случилось, уплотнение очередного слоя осуществляется вибратором так, чтобы он был погружен минимум на 5 см в предыдущий слой. При этом недопустимо соприкосновение уплотняющего устройства с закладными изделиями или арматурой.
  • Шаг перестановки вибратора составляет не более 1,5 радиуса его действия, чтобы границы уплотняемого участка взаимно пересекались с уже уплотнённым ранее. Вибрирование продолжается до тех пор, пока бетонная смесь прекратит оседание, а на поверхности заблестит цементное тесто.

Высота каждого уплотняемого слоя составляет не более 25 см. Если учесть, что толщина плиты с рёбрами вниз бывает даже меньше этого значения, то заливается она в один приём. Послойной заливки требуют её рёбра, так как их глубина составляет порядка 70-80 см.

Заключение

По окончании бетонирования массив укрывают полиэтиленом – так его защищают от размывки дождём. При температуре воздуха выше + 15 градусов, начиная со второго дня, его трижды в сутки проливают водой - для предотвращения быстрой потери влаги и растрескивания. Примерно через неделю опалубка снимается – и можно приступать к гидроизоляции поверхности фундамента. Завернув края изоляционного ковра, выступающего из-под плиты, его фиксируют на торцах и обрезают по верхней грани.

Для поверхностной (горизонтальной) изоляции может тоже использоваться рулонный материал, но гораздо проще и дешевле будет применение материалов для обмазки или напыления. Более подробно с этим вопросом можно ознакомиться из отдельной публикации на нашем сайте по теме гидроизоляции фундамента.

Монлитная железобетонная плита по металлическим балкам

это реконструкция. так получается, что шаг главных балок 6м, а второстепенных 7,2м. не хочется терять высоту и расходовать материал.

спасибо. я СНиП смотрел.

Есть вот здесь литература по этому поводу
А вот здесь - расчет в Excel
(там ниже раздел расчеты)
По поводу эффективности и материалоёмкости - эффективно и более экономно. Щелково МО если система так прелестна и легка (эффективна и экономна), то когда Вы (S_konstr) в последний раз применяли стад-болты и профлист с рифами?

там про разгружающее действие свободно лежащей ЖБ плиты на МК балочную клетку.
Forrest_Gump там участвовал, может прояснит .

если система так прелестна и легка (эффективна и экономна), то когда Вы (S_konstr) в последний раз применяли стад-болты и профлист с рифами?

Спокойствие! Не надо нервничать. Никто не собирается наезжать на "стад-болты" и уж тем более на "профлист с рифами". Вы, видимо, не читали вопрос автора темы, - его несколько другое интересует. Попробуйте задавать вопросы в соответствующих темах (ну или новые создайте).

Forrest_Gump там участвовал, может прояснит
Да, присоединяюсь, было бы интересно. Щелково МО А что Вас (S_konstr) так обидело в моем вопросе? Если технология интересная и выгодна. то ее с удовольствием будут применять. Вот только, что касаемо технологии Bamtec, что применение профлиста с рифами, что применение стад-болтов - не вижу широкого применения подобных систем. Отчего бы? Вот и спрашиваю, может Вы их применяете? Если нет, то зачем советовать к применению?
P.S. разгружающее действие свободно лежащей ЖБ плиты на МК балочную клетку - ну ежели плиты не разрезается балочной клеткой на независимые участки, то тогда плита выступает не только как передатчик нагрузки от перекрытия на балки, но и как несущий элемент, воспринимающий часть нагрузки.
А что Вас (S_konstr) так обидело в моем вопросе? Если технология интересная и выгодна. то ее с удовольствием будут применять. Вот только, что касаемо технологии Bamtec, что применение профлиста с рифами, что применение стад-болтов - не вижу широкого применения подобных систем. Отчего бы? Вот и спрашиваю, может Вы их применяете? Если нет, то зачем советовать к применению?

Я не уверен что Вы не перепутали тему, хотя возможно Вы не читали вопрос автора темы и уж наверняка не ходили по приведённым ссылкам, а посему про "стад-болты" и "профлист с рифами" без комментариев, ибо оффтоп.

По поводу "разгружающего действия плиты". Посредством жестких и гибких упоров создается совместная работа проката и ж.б. плиты по типу элементов с жесткой арматурой. При этом нейтральная ось сечения проката смещается выше его геометрической оси, а эпюра сжимающих напряжений в плите принимает прямоугольный (как при расчете изгибаемых ж.б. элементов), трапецевидный или ломаный вид. Жесткость рассчитывается по приведённым (через альфа) к стали характеристикам.
В случае шага балок 7.2х6 м эффективность не очевидна, из-за того что получится достаточно "толстая" плита, т.к. в направлении перпендикулярном балкам она рассчитывается независимо.

Учёт жесткости монолитной плиты при расчёте балок

Здравствуйте!
Проектирую здание станции техобслуживания. Металлокаркас с монолитными перекрытиями. Сетка колонн 6x6 (максимум). Перекрытия в архитектуре даны 200мм толщиной.
Посетила меня дурацкая авантюрная мысль учесть жёсткость плиты перекрытия при расчёте балок, считал в Лире. Читал на форуме пару веток (сейчас к сожалению не нашёл их), где народ говорил, что такое можно делать при обеспечении реальной совместной работы балок с плитой путём приварки гнутых деталей к балкам и привязкой арматуры плиты к ним. Решил так и сделать.
В принципе подход показался логичным с той точки зрения, что при проектировании монолитного каркаса перекрытие толщиной 200мм и шаге колонн 6м легко обходится без всяких балок, да и армирование не такое уж сильное. Вот и подумалось: "А чем металл хуже? И зачем закладывать столько металла при том, что перекрытие и само неплохо справляется? Получается, что отличие от монолита только в сопряжении плиты с колонной.."
На этой волне накидал чертежи км и кж. Скоро сроки выдавать документацию, но меня стали терзать сомнения типа "а не стоит ли посчитать по классической схеме и перекроить всё напрочь?"

Поэтому и спрашиваю совета. Сталкивался ли кто-нибудь с подобными случаями, имеет ли схема право на жизнь?
Понятное дело - посчитать балки на полную нагрузки и от веса плиты в том числе проще и спокойней (сильно меня не ругайте, я и сам уже понимаю что зря ввязался в это ноу-хау). Но вот мысль о том, что перекрытие может работать и само тоже не даёт покоя. По сути ведь это та же плита с опиранием в точках на колонны (в моём случае объединённых балками).

В общем, приветствуются все мысли, доводы, опыт, критика по теме! Заранее спасибо за помощь.

При шаге колонн 6х6 и толщине плиты 200 балки вобщем-то не нужны (при отсутствии экстремальных нагрузок)
Аккуратненько просчитать зону примыкания к колонне и все. (лучше при таких пролетах толщину принять 220мм, тогда вообще красота) Ростов-на-Дону

Полезную нагрузку на перекрытие принимал 500*1,2=600кг/м2, полы принимал как 10см цементного р-ра, +нагрузка от перегородок порядка 75 кг/м2.
Просто никогда не делал монолитного перекрытия по металлическим колоннам. Поэтому есть факт паники)))
Узлы примыкания балок к колонне считал руками, проходили при минимальных катетах шва.
При расчёте не расшивал узел примыкания плиты к колонне. Но я так понимаю от этого появятся только пиковые усилия и увеличится армирование в этих зонах, что по идее пойдёт в запас?

Вложил файл расчёта. Правда не помню, крайний ли это вариант - на работе, к сожалению лиры нет
Лир-СТК выдаёт сечения балок очень маленькие, в виду чего можно правда подумать, что они там и вовсе не нужны.. В КМ-е давал их из двутавра 35Б1 на всякий случай.

Если у кого есть грамотный узелок примыкания монолитной плиты к металлической колонне - очень прошу поделиться. Да вообще хотелось бы посмотреть чертежи таких конструкций, хотя б в литературе, что-ли..

Последний раз редактировалось Kandello, 01.03.2011 в 13:17 . Можно обойтись без балок.
Нужно организовать (рассчитать и сконструировать) опорную "площадку" для плиты перекрытия из расчёта на Q (только и всего). К сожалению - ничего подобного в литературе пока не встречал. Но уверен - делать так можно.
Толщины плиты 200мм вполне достаточно. Ростов-на-Дону

Считал узлы примыкания балок к колоннам.
Правильно ли я полагаю, что при вот таком узле примыкания нагрузка будет распределяться равномерно на швы без учёта 0,3/0,7 по перу/обушку??
Полная расчётная нарузка на перекрытие с учётом веса плиты 1413 кг/м2. На одно примыкание балки к колонне в худшем случае с грузовой площадью 18м2 будет приходиться 1413*18=25,5т.

Длина шва Lw=[(100-10)+(240-10)]*2=640мм.
Минимальный катет шва по табл 34 для ручной сварки Kf=5мм.
Betta f=0.7; Betta z=1
Gamma wf= Gamma wz= 1 для IIIВ климатического района.
Rwf=0.55*Run/Gamma wm
Gamma wm принимаем для ручной сварки = временному сопротивлению разрыву метталла шва по ГОСТ 9467-75 для электродов Э42. Rwun=42кг/мм2.
Т.к. Rwun<5000кг/см2 то Gamma wm=1.25
Rwf=0.55*42/1.25=18.48кг/мм2
Rwz=0.45*38=17.1кг/мм2.
Проверка по металлу шва:
[N]=18.48*1*1*0.7*5*640=41 395кг >25.25т
Проверка по границе сплавления:
[N]=17.1*1*1*1*5*640=54 720кг >25.25т

Последний раз редактировалось Kandello, 02.03.2011 в 10:54 . Интересно наблюдать как расчитывают сварные соединения. Все уже давным-давно посчитано и имеются таблицы с несущими способностями сварных соединений. Ростов-на-Дону

Евгений Москва, я просто хотел проверить именно свой узел. Ну и поделитесь таблицами, коль уж заговорили о них.

Ну и просьба к голосующим: "Пожалуйста, не ленитесь приводить свои аргументы, мне это очень важно!"

В таблицах приводится несущая способность 1 см сварного шва, а не целого узла. Таблицу можно посмотреть например в А.И.Будур, В.Д.Белогуров. Справочник конструктора. Стальные конструкции_2004 (стр. 139-141) Ростов-на-Дону

Евгений Москва, спасибо, книжку скачал, буду пользоваться.

Остаются вопросы по узлу примыкания монолитной плиты к металлической колонне, ну и интересуют мнения людей об адекватности схемы в общем.

По поводу узла, может Вам поможет "И.А. Шерешевский. Конструирование промышленных зданий и сооружений". На стр. 77, 78 описано здание, возводимое методом подъема этажей. Ж/б колонну заменяете на стальную, ну и подъема перекрытия у Вас конечно не будет, а узел сопряжения можно использовать.

Считал узлы примыкания балок к колоннам.
Правильно ли я полагаю, что при вот таком узле примыкания нагрузка будет распределяться равномерно на швы без учёта 0,3/0,7 по перу/обушку??
Полная расчётная нарузка на перекрытие с учётом веса плиты 1413 кг/м2. На одно примыкание балки к колонне в худшем случае с грузовой площадью 18м2 будет приходиться 1413*18=25,5т.

Длина шва Lw=[(100-10)+(240-10)]*2=640мм.
Минимальный катет шва по табл 34 для ручной сварки Kf=5мм.
Betta f=0.7; Betta z=1
Gamma wf= Gamma wz= 1 для IIIВ климатического района.
Rwf=0.55*Run/Gamma wm
Gamma wm принимаем для ручной сварки = временному сопротивлению разрыву метталла шва по ГОСТ 9467-75 для электродов Э42. Rwun=42кг/мм2.
Т.к. Rwun<5000кг/см2 то Gamma wm=1.25
Rwf=0.55*42/1.25=18.48кг/мм2
Rwz=0.45*38=17.1кг/мм2.
Проверка по металлу шва:
[N]=18.48*1*1*0.7*5*640=41 395кг >25.25т
Проверка по границе сплавления:
[N]=17.1*1*1*1*5*640=54 720кг >25.25т

Kandello,
из приведенных выкладок никак не могу понять на чем Вы в конечном итоге остановились: плоская жб плита с опиранием на колонны или плита по балкам и профлисту (сталежелезобетон)?

Оба варианта имеют право на существование, при этом второй выигрывает в экономике и технологичности, первый - в строительной высоте перекрытия. Эффективно совместить не получится.

Если остановиться на 1-м варианте, то, как выше отметил MasterZim, для сетки колонн 6х6 при Ваших нагрузках плиты толщиной 200мм будет достаточно. Примеры опорных узлов плиты на форуме были точно - ищите.

PS. Сварной узел примыкания балки к колонне, изображенный у Вас, плох своей "не полной шарнирностью". На эту тему см. кучу информации на форуме. Кроме того (на всякий случай), главная балка 35Б1 на клетку 6х6 под Ваши нагрузки явно мала

Делаем железобетонные перекрытия

По мнению участника форума ontwerper из Москвы, монолитные железобетонные перекрытия не так уж сложно сделать своими силами. Он приводит в качестве аргументов общеизвестные и малоизвестные соображения по их изготовлению. По его мнению, делать перекрытия своими руками выгодно по нескольким причинам:

  1. Доступность технологий и материалов;
  2. Удобство и практичность с архитектурной и инженерной точек зрения;
  3. Подобные перекрытия долговечны, пожаробезопасны и обладают шумоизолирующими качествами;
  4. Финансовая целесообразность.

Монолитные работы

Перед тем как заливать бетон ontwerper советует тщательно продумать весь процесс и прежде всего заказать бетон на заводе. Он лучше самодельного - там есть контроль качества и количества наполнителей, улучшающих бетон и долго не дающие ему расслаивается. Состав должен состоять из тяжелых заполнителей, иметь класс прочности В20-В30 (М250-М400), и морозостойкость от F50.

Не ленитесь и проконтролируйте по документам отпускные параметры, класс-марку и время до момента схватывания бетона.


Если вам нужно подать бетон на второй, третий этаж или на большое расстояние то сделать это без бетононасоса вам не удастся, а перекатывание бетона лопатами по бесконечным желобам очень тяжёлое и неудобное занятие.

В зимнее время бетон можно заказать с противоморозными добавками, учитывая, что добавки обычно повышают время набора прочности, некоторые из них провоцируют коррозию арматуры, но это допустимо, если добавка заводская.

ontwerper предпочитает зимой строительство не вести, и вам не рекомендует. В крайнем случае сами раствор не готовьте, воспользуйтесь заводским бетоном.

Монтаж опалубки

Главное назначение опалубки - выдержать массу свеженалитого бетона и не деформироваться. Для вычисления прочности нужно знать, что один 20 сантиметровый слой бетонной смеси давит на квадратный метр опалубки с силой 500 кг, к этому нужно добавить давление смеси при её падении из шланга, и вы поймете, что все элементы конструкции должны быть надёжными.

Армирование

Для этого ontwerper рекомендует призвать на помощь арматуру периодического профиля A-III, А400, А500. В плите перекрытия всегда имеется четыре ряда арматуры.

Нижний - вдоль пролета, нижний - поперек пролета, верхний - поперек пролета, верхний - вдоль пролета.

Пролет – расстояние между опорными стенами (для прямоугольной плиты по короткой стороне). Самый нижний ряд укладывается на пластиковые сухарики, специально предназначенные для этого, их высота составляет 25-30мм. Верхний ряд – перекрывает его поперек и вяжется проволокой во всех пересечениях.


Затем на очереди – установка разделителя сеток – детали из арматуры с определенным шагом, её можно сделать по своему желанию. На разделители – верхняя поперек, - вязать, на нее верхняя вдоль, - вязать проволокой во всех пересечениях. Верхняя точка каркаса (верх верхнего стержня) должна быть ниже верхней грани стенки опалубки на 25-30 мм, или толщина бетона выше верхней арматуры на 25-30 мм.

После окончания армирования каркас должен представлять жёсткую конструкцию, которая не должны сдвигаться при заливке бетона из насоса. Перед заливкой проверьте соответствие шага и диаметра арматуры проекту.

Заливка бетона

Уход за бетоном

После заливки плиты её нужно укрыть, чтобы предотвратить попадание осадков, и постоянно поливать внешнюю поверхность, чтобы она была влажной. Приблизительно через месяц можно снять опалубку, а в случае крайней необходимости это можно сделать не раньше, чем через неделю и снимать только щиты. Для этого нужно осторожно снять щит, а плиту обратно подпереть стойкой. Стойки поддерживают плиту до её полной готовности, около месяца.

Прочность монолитного перекрытия: расчет

Он сводится к сравнению между собой двух факторов:

  1. Усилий, действующих в плите;
  2. Прочностью ее армированных сечений.

Первое должно быть меньше второго.

Стены на монолитную плиту перекрытия: рассчитываем нагрузки

Произведем расчеты постоянных нагрузок на монолитную плиту перекрытия.

Собственный вес плиты монолитной перекрытия с коэффициентом надежности по нагрузке 2.5т/м3 х 1.2 =2.75т/м3.
- Для плиты 200мм - 550кг/м3

Собственный Вес пола толщиной 50мм-100мм – стяжка – 2,2т/м2 х 1,2= 2,64т/м3
- для пола 50мм - 110кг/м3

Перегородки из кирпича размером 120мм приведите к площади плиты. Вес 1-го погонного метра перегородки высотой 3м 0.12м х1.2х1.8 т/м3 х 3м = 0,78т/м, при шаге перегородок длиной 4м получается примерно 0,78/4= 0,2т/м2. Таким образом приведенный вес перегородок = 300 кг/м2.

Полезная нагрузка для 1-й группы предельных состояний (прочность) 150кг/м3 – жилье, с учетом коэффициента надежности 1.3 примем. Временная 150х1,3= 195кг/м2.

Полная расчетная нагрузка на плиту - 550+110+300+195=1150кг/м2. Примем для эскизных расчетов нагрузку в - 1.2т/м2.

Определение моментных усилий в нагруженных сечениях

Изгибающие моменты определяют на 95% армирование изгибных плит. Нагруженные сечения– это середина пролета, другими словами – центр плиты.

Изгибающие моменты в квадратной в плане плите разумной толщины, шарнирно опертой - незащемленной по контуру ( на кирпичные стены ) по каждому из направлений Х,Y примерно могут быть определены как Mx=My=ql^2/23. Можно получить некоторые значения для частных случаев.

  • Плита в плане 6х6м - Мх=My= 1.9тм;
  • Плита в плане 5х5м - Мх=My= 1.3тм;
  • Плита в плане 4х4м - Мх=My= 0,8тм.

Это усилия, которые действуют и вдоль и поперек плиты, поэтому нужно проверить прочность двух взаимно перпендикулярных сечений.

Проверка прочности к продольной оси

При проверке прочности к продольной оси сечения по изгибающему моменту (пусть момент положительный, т.е брюхом вниз) в сечении есть сжатый бетон сверху и растянутая арматура снизу. Они образуют силовую пару, воспринимающие приходящее на нее моментное усилие.

Определение усилия в этой паре

Высота пары может быть грубо определена, как 0.8h, где h – высота сечения плиты. Усилие в арматуре определим как Nx(y)=Mx(y)/(0.8h). Получим в представлении на 1 м ширины сечения плиты.

  • Плита в плане 6х6м -Nx(y)= 11,9т;
  • Плита в плане 5х5м - Мх=My= 8,2т;
  • Плита в плане 4х4м - Мх=My= 5т.

Под эти усилия подберите арматуру класса A-III (А400) – периодического профиля. Расчетное сопротивление арматуры разрыву равно R=3600кг/см2. площадь сечения арматурного стержня при диаметре Ф8=0,5см2, Ф12=1,13см2, Ф16=2,01см2, Ф20=3,14см2.

Несущая способность стержня равна Nст=Aст*R Ф8=1,8т, Ф12=4,07т, Ф16=7,24т, Ф20=11,3т. Отсюда можно получить требуемый шаг арматуры. Шаг= Nст/ Nx(y)

  • Плита в плане 6х6м для арматуры Ф12 Шаг=4,07т/ 11,9т=34см;
  • Плита в плане 5х5м - для арматуры Ф8 Шаг=1,8/ 8,2=22см;
  • Плита в плане 4х4м - Ф8 Шаг=1,8/ 5=36см.

Это армирование по прочности по каждому из направлений X и Y, т.е квадратная сетка из стержней в растянутой зоне бетона.

Кроме прочности необходимо уменьшить образование трещин. Для плит домов и жилых помещений пролетом до 6м толщиной 200мм, опертых по контуру (т.е. по четырем сторонам) при любом соотношении а/b можно принимать нижнее рабочее армирование из стержней А III по двум направлениям с шагом 200х200 диаметром 12мм, верхнее (конструктивное) - то же из Ф8, тоньше и меньше не следует.

Все это является частным случаем общего подхода, демонстрирующим специфику задачи, но для её реализации необходимо смотреть глубже и обращаться к специалистам.

Читайте также: