Выходной трансформатор для лампового усилителя своими руками

Обновлено: 15.05.2024

Выходной трансформатор для лампового усилителя своими руками

Каждый радиолюбитель, пожелавший собрать ламповый усилитель, сталкивается с вопросом, а какой же ТВЗ ему применить для своей конструкции?
Как рассчитать, как намотать или заказать трансформатор по расчётным данным?
Ведь в интернете он наверняка вычитал, что ТВЗ – это чуть ли не самый главный элемент всего устройства. И от его качества и параметров зависит в целом качество звука всего усилителя.

Так какие же параметры важнее всего в выходном трансформаторе? Как их рассчитать?
Этому и будет посвящена данная статья.
В ней нет ничего нового. Все данные для расчётов взяты из учебников 50 х годов прошлого столетия. А я лишь постараюсь «простым , доступным языком», изложить их здесь с учётом того, что современные носители звука используют полный звуковой диапазон от 20 Гц до 20 кГц, а наш усилитель и ТВЗ в том числе должен с запасом как вниз, так и вверх перекрывать этот диапазон.


Итак, Его величество – выходной трансформатор.
Какие же параметры выходного трансформатора главней всего?
Да практически все. Это:

- Активные сопротивления первичной и вторичной обмоток r1 и r2,

- полное сопротивление анодной нагрузки, т.е. нагрузка, на которую будет нагружена лампа во время работы с вашим ТВЗ и подключенной к нему акустикой.

- а - коэффициент «альфа», отношение Ra/ Ri, сопротивления нагрузки к внутреннему сопротивлению лампы в рабочей точке.

- L - индуктивность первичной обмотки,

- Ls - индуктивность рассеяния,

- n - коэффициент трансформации

- Rвых – выходное сопротивление усилителя, определяется внутренним сопротивлением выбранной лампы и параметрами выходного трансформатора.

- Кд – коэффициент демпфирования. Отношение Rн / R вых. Сопротивления нагрузки (динамика) к выходному сопротивлению усилителя.Чем он больше, тем лучше, и при определённых значениях и более, ваш усилитель будет одинаково хорошо звучать с любой по сложности импеданса акустикой.

Итак, для примера я выбираю лампу 300В одного из производителей. Её предельно допустимые электрические параметры следующие:
Ua = 450 вольт,
Ia = 100 ma.
На её ВАХах с помощью программы «TubeCurve» строю нагрузочную линию (обозначена красным).

highslide.js

Согласно своим желаниям. Определяю режим работы лампы.

Ua = 400,53 V,

Ia = 91,78 ma,

Ug1 = – 80 V

Pa = 36,76 watt,

Ra = 5,99 kOm,

Ri = 0,67 kOm,

Pout = 6,304 watt,

КНИ = 2,586%.
Не превышает предельно допустимых.

Это можно проделать и вручную, распечатав ВАХи принтером на листе бумаги.
Определяем коэффициент «Альфа» = а – коэффициент нагрузки.
а = Ra / Ri = 5,99 kOm / 0,67 = 8,94

Многие могут возразить: Ведь коэффициент «Альфа» выбирается 3 – 5 Ri.
Отвечу: альфа = 3 - не "хайэнд", альфа = 5-7 - неплохо, альфа = 9-10 - для особых гурманов.
Не причисляю себя к особым гурманам, поэтому выбрал режим неплохой, но очень близкий к последним.
Если вы заметили, я ещё данным режимом потерял немного выходной мощности.
Лампа 300В обычно без труда выдаёт 8 ватт при анодной нагрузке 2,5 – 3 кОм.
Хочу заверить, что потеря мощности ввиду увеличения анодной нагрузки, практически не заметна по слуховым ощущениям. Да и на 6 ватт мне вряд ли когда доведётся эту лампу слушать.

Далее: определяем коэффициент трансформации .


Сопротивление моей нагрузки (динамика) Rn = R2 = 8 Ом.
Отсюда n = √ 8 / 5990 = 0,0365, или Ктр = 27,36.

Расчёт целесообразней всего начинать от КПД – коэффициента полезного действия.
Многие именитые могут заявить: «Да плевать нам на этот КПД, подумаешь, потеряем немного выходной мощности, мы в "хайэнде" за мощностью не гоняемся!»
При этом забывают, что КПД зависит напрямую от активных сопротивлений r1 и r2, это во-первых, а во-вторых - от этих же сопротивлений зависит R вых оконечного каскада усилителя.
Чему же равен КПД? (η)


Вычисляем: КПД = 27,36 * 27,36 * 8 Om / 5990 Om =0,99.
Пусть вас не пугает эта цифра. Она говорит только о том, что мы на правильном пути.
Пугать должна цифра 0,85 или даже 0,8. А мы, от идеального трансформатора перейдём к более реальному и зададимся КПД = 0,95. Можно взять и больше, но габариты такого трансформаторы будут неимоверно увеличиваться в размерах. О чём каждый может потом посчитать.

Леонид Пермяк с «Хаенд – борды» составил и любезно предложил график определения R вых. % выходного сопротивления усилителя от КПД трансформатора и выбранного коэффициента «Альфа».

highslide.js

Тогда, при КПД = 0,95 и «Альфа» = 0,89 R вых = 17% от нагрузки 8 Ом.
R вых = 1,36 Ом. И это очень хорошее значение для нагрузки 8 Ом.
Хочу отметить, что этот результат не точный. Он прикидочный, чего нам ожидать.
После вычисления активных сопротивлений первичной и вторичной обмоток, получим более точный результат выходного сопротивления.
Кд (коэффициент демпфирования) при этом будет = 8 / 1,36 = 5,88.

Для нагрузки 4 Ом, R вых. Должно быть меньше 1 ома.
А как же нам получить эти 1, 36 Ом . Для этого вычислим максимально допустимое сопротивлений первичной r1 и вторичной r2 обмоток.


r1 = 0,5 * 5990 * (1 – 0,95) = 149, 75 Ом. Вполне выполнимая задача. И она благодаря высокому выбранному Ra - сопротивлению анодной нагрузки.

r2 = 0,5 * 8 * (1 – 0,95) / 0,95 = 0,21 Ом.

Итак, максимально допустимые активные сопротивления первичной и вторичной обмоток равны 149,75 Ом и 0,21 Ом соответственно. Меньше эти значения могут быть. Это приведёт к улучшению параметров всего ТВЗ. А увеличение этих значений – к ухудшению.

Теперь можно вычислить, какое будет R вых. усилителя.


R вых. = 0,21 + (670 Ом + 149,75 Ом)/ 27,36 ² = 1,17 Ом. Замечательный результат.
Выходное сопротивление уменьшилось, значит увеличится коэффициент демпфирования.
Далее вычисляем минимально необходимую индуктивность первичной обмотки L1 для нижней частоты. Для этого воспользуемся формулой сопротивления эквивалентного генератора для нижней частоты.


r1 – активное сопротивление первичной обмотки;

r2 - активное сопротивление вторичной обмотки;

r’2 = r2 * Ктр² - активное сопротивление вторичной обмотки, приведённое к первичной цепи;
R’2 = R2 * Ктр² – сопротивление нагрузки, приведённое к первичной цепи.
R2 – сопротивление нагрузки (динамика). Вычисляем Rэн.

Вычисляем минимально необходимую индуктивность первичной обмотки L1.

Приняв Fн=10Гц и спад на этой частоте -3 дБ (выражение под квадратным корнем при спаде – 3 дБ = 1, Мн – коэффициент частотных искажений ), вычисляем минимально допустимую индуктивность первички:

L1 = 723,17 / 6,28 * 10 = 11,52 Гн. Округлю до 12 Гн.

Кто-то может возразить, что уж больно мала получилась индуктивность первичной обмотки. Она должна быть как минимум раза в 3 больше. Но, параллельно первичке (и приведённой к ней нагрузке) у нас прежде всего подключено Ri лампы, равное в данном случае 670 Ом. И оно хорошо демпфирует первичку, от которой теперь уже не требуется большой L1.

Потому-то я и старался применить лампу с маленьким Ri - чтобы не потребовалось большой индуктивности и многих витков первички.
Применённая мной формула Rэн есть выражение для двух параллельно соединённых сопротивлений - Ri и Ra c учётом паразитных активных сопротивлений.

Однако, в этой бочке мёда есть и ложка дёгтя. И выражается она в том, что норма на спад величиной -3 дБ слишком слабая. Дело в том, что если на какой-то НЧ-частоте такой спад, то ощутимый спад начинается где-то на декаду выше этой частоты, т.е., если такая норма заложена на частоте 10 Гц, то начало спада - где-то на 100 Гц.
Вот картинка, только из очень древней книги:

highslide.js

Именно поэтому, для того, что бы получить «полноценную» частоту 40 Гц, многие ГУРУ, рассчитывают ТВЗ для нижней частоты Fн = 5 – 6 Гц.
Не буду пересчитывать на Fн = 5 Гц и продолжу расчёт как задумал. А каждый желающий может это проделать самостоятельно, и посмотреть что из этого вышло.

Мотаем выходной трансформатор для однотактного лампового усилителя.

Решил улучшить полосу у однотактного лампового усилителя.

Стояли вот такие самонамотанные выходные трансформаторы. С индуктивностью 19,5 Гн. Сперва поставил ТВ-2Ш2, а потом заменил их на самонамотанные трансформаторы на кинаповском железе от дросселей - с таким же сечением провода и количеством витков, только с двойным секционирование вторичной обмотки. За счет чуть большего размера трансформаторного железа(отборного и хорошего качества) получил такую индуктивность. но данный прибор немного привирает и непонятно на какой частоте меряет и по какому алгоритму, поэтому позднее перешёл на более точный прибор DE-5000.

А заменил трансформаторы на такие же, только собранные из двух комплектов такого трансформаторного железа (площадь сердечника 8 кв.см.). Получил по прибору DE-5000 индуктивность 25 Гн на частоте измерения 100 Гц.

Мотал на таком станке (у меня есть статья про этот намоточный станок):

Итак более подробно - на данном однотактном усилителе SE 6AU6(6ж4п)+EL86(6п43п) стояли выходные трансформаторы изготовленные из одного кинаповского дросселя для накалов ламп - (у кинаповского дросселя провод намотан в навал, диаметр провода 0,505 мм по лаку, индуктивность маленькая и он для анодного напряжения не подходит).

В принципе звуком был доволен, когда сделал первоначальные выходные трансформаторы из дроссельного железа. Потом были ещё несколько выходных трансформаторов из таких же дросселей, с таким же количеством витков, но с другим секционированием. И звук на них получился чуть получше. Поэтому решил их перемотать на другое секционирование и увеличить в двое площадь сердечника. По прикидкам по размерам должны войти в защитные колпаки выходных трансформаторов.

Начал делать секционирование по приведённой картинке из учебника.

Здесь, которые стояли были сделаны по схеме - правый столбец, вторая сверху.

Системы секционирования выходных однотактных трансформаторов для ламповых усилителей. Системы секционирования выходных однотактных трансформаторов для ламповых усилителей.

А более поздние были сделаны по схеме - правый столбец, верхняя картинка.

Пробовал варианты с разным сечением первички и вторички. Количество витков было на основе очень мне понравившегося трансформатора ТВ-2Ш2, только было добавлена вторая вторичная обмотка, а сечения проводов соблюдены. Секционирование сделано по картинке , приведённой выше.

После всех экспериментов решил опробовать схему секционирования из правого столбца, 6 сверху. Но тут пришлось уменьшать диаметр жил вторички, чтобы хоть как то вошло нужное количесвто витков в каркас катушки трансформатора..

Стоял вопрос по сечениям сердечника - выбор был либо уменьшить количество витков первички и остаться на диаметрах вторички от ТВ-2Ш2, либо что то другое.

Тут вспомнил о такой методичке.

Прикинул сечения провода.

По диаметрам - вторички - решил опереться на сечение. То есть - 0,75 мм это 0,442 мм2, а 0,5мм по лаку это скорее всего - 0,45 мм по меди-0,142 мм2 - то есть три провода по ,142*3=0,426 мм2- ну. почти одинаково по сечению.

Начал мотать, а тут кончился провод 0,16 на катушке ПЭТВ-2, быстро купить удалось только 0,18 ПЭВ. ну и вся технология поехала , те пропитки , которые применял для ПЭТВ-2 просто растворяют лак изоляции провода ПЭВ. Да ещё провод чуть толще - вроде запаса на каркасах на запланированное количество витков хватало по ширине, но уже впритык. и пришлось несколько раз переделывать.

На фото - каркасы, железо и корпуса от кинаповских дросселей, а также катушки - которые стояли на одинарном наборе от дросселей и на двойном наборе дросселей.

А также втулка под каркас для намоточного станка. Провод от кинаповских дросселей использовал как вторичку для двойных трансформаторов - провод был пропитан составом на основе воска или парафина - масса серого цвета. Убиралась тряпочкой в спирте. Но что то оставалось на проводе и после рядной намотки, за счет этого "что-то", провод прилипал друг к другу..

Было несколько неудачных попыток пропитки не подходящими пропиточными составами для провода ПЭВ.

Вот катушку разломал пропитанную ПВА -у ней утечка между первичкой и вторичкой -20кОм. Но на усилитель поставил - на тестовые колонки - получил потенциал 285 вольт на вторичке и корпусом усилителя. Но если осторожно, то можно было послушать. Баса было больше, ВЧ хуже. Меандр кривой. Фото меандра не сделал.

Но дергает по пальцам - при случайно прикосновении к акустическим проводам, хорошо хоть не сильно. Но достаточно , чтоб разломать катушку. Катушка высохла и стала как камень с трудом отодрал стенку каркаса и чуть чуть бумагу с боков, чтоб пакеты посмотреть - после обжимки - на пустоты и прочие непотребства, но не смог отодрать. Нужно напильником стачивать но пока нет времени и желания - и так что хотел - увидел.

Также нельзя пропитывать провод ПЭВ лаком для волос - самый удобный вариант пропитки в бытовых условиях при намотке проводом ПЭТВ-2, который вполне хорошо пропитывается данным аэрозольным лаком. На фото в галерее - видно как слезла изоляция с провода ПЭВ при обработке лаком для волос. Причем растворяет он её медленно - то есть когда намотаешь трансформатор, прибор нормально показывает все параметры, а потом минут через 15-20 - раз и межвитковое короткое замыкание. Почему лак для для волос, а не рекомендованные лаки для пропитки? - а где их быстро купить? И не в большой таре, а в маленьком объёме. Так что для бытовых условий лак для волос самое то - только надо брать без отдушек, а то трансформатор будет первую неделю благоухать духами - пока весь запах не выйдет. Если кто предложит достойный альтернативный вариант для применения в домашних условиях - буду очень благодарен. Так с подбором пропиток намучался сильно, а для провода ПЭВ так ничего толком и не подобрал - кроме восковой пропитки провода.

Ламповый усилитель. Своими руками. (продолжение 3)

Дроссели я собрал на железе от старого повышающего трансформатора ИБП фирмы APC 550-WT Трансформаторы данной фирмы (до 2000 года) имели разборный сердечник. Сердечник был разобран и поделен пополам. Для каждой половины сделан свой каркас. Намотка произведена проводом ПЭТВ-155 0.35мм по 3100 витков в навал.

Дроссели и блок предохранителей. Дроссели и блок предохранителей.

Силовой трансформатор ТС-180 немного излишний по мощности для этой схемы, к сожалению меньшего размера не нашёл. Его обязательно надо перемотать!

ТС180 Изображение Яндекс картинки. ТС180 Изображение Яндекс картинки.

Сматываем всю обмотку до экрана. Остается экран и первичная обмотка.

Изолируем желтым китайским скотчем для импульсных трансформаторов (3 кВ напряжение пробоя)

Мотаем на каждый каркас анодную часть по 870 витков провода ПЭТВ-155 диаметром 0.35мм

Я умышленно сократил напряжение анодной цепи на 12 вольт, что бы, лампы не работали на предельных режимах.

Питание накала кенотрона 5 вольт и 5 ампер намотал 2 обмотки соединённых параллельно проводом ПЭТВ-155 0.9мм по 16 витков

6.3 вольта накал ламп усилителя намотал 2 обмотки проводом ПЭТВ-155 0.9мм по 20 витков

+ я намотал 1 обмотку проводом ПЭТВ-155 0.4 38 витков на 12 вольт

Возможно, что трансформатор после перемотки и разборки у вас будет гудет, даже на холостом ходу. Самое лучшее лекарство от гудения (плотная и качественная намотка) перед сборкой щечки сердечника намажем секретной мазью. Берем феррит от сердечника любого импульсного трансформатора. Истираем его в пыль, мешаем с жидким клеем ПВА и мажем на стыки сердечника трансформатора. Собираем, стягиваем штатным креплением. Катушки трансформатора нужно закрепить к сердечнику клинышками из очень плотного картона или текстолита, так чтоб они очень плотно держались. Трансформатор надо обязательно после перемотки проверить. На холостом ходу и тем более под нагрузкой он НЕ должен издавать посторонних звуков.

ТС180-2 хорош тем, что у него есть в первичной обмотке секция для подключения 127 вольт.

У меня в сети дома (возможно и у Вас 235 – 240 вольт) Я убрал перемычку между контактами 2 и 2”( поставил между 3 и 3”) Тогда все расчетные напряжения пришли в норму.

Провод питания выходного трансформатора (какой бы он не был величины) скручен! Питание накала только переменка провод скручен. Экранирование проводов с входным сигналом лучше применить везде, где это возможно! Провод я применил экранированный МГТФ. На питание анодов и накала от старых компьютерных блоков питания (Только медь, есть провода с луженой медью, они хуже качеством). Выбирал нелуженую медь, и сечение максимальное.

Панельки ламп я применил СССР 68 года октальные керамические ПЛК-8 с посеребренными выводами.

Корпус, сделал из листового алюминия. Корпуса на трансформаторы не одевал, Если сделать все очень качественно, то Вы и не заметите разницу в экранировании трансформаторов.

Ну как полагается, прикрутил к усилителю Китайский девайс. Оптический аудио конвертер.

Расчет и намотка выходного трансформатора для лампового усилителя


Дырки для выводов, для фторопластового провода, чтобы намоточный тонкий не ломался. Дырки для крепления-пайки под голую медь 0,75-1,0 мм, потом залудим.

Замеряем:



Пример: 34,5х10 мм, дно = 34,5 мм, высота = 10 мм.

Секционирование – соединение обмоток ТОЛЬКО ПОСЛЕДОВАТЕЛЬНОЕ! Любой слой заполняется только полностью и без просветов.

РАСЧЕТ

34,5 : 1,09 = 31,65 – 1 виток = 30 витков слой вторички.

Таких слоя будет 3 (три).

Вычисляем витки первички. Через Ктр, для 8 Ом = 25, для 16 Ом = 17.

(Ктр = кв.корень [5к : Ra]) = корень (5000 : 8) = корень 625 = 25 для 8 Ом, и соответственно 16 Ом = 17.

Прикидываем равенство первичек.

Два слоя вторички = 60 витков (на 8 Ом) х 25 (Ктр 8 Ом) = 1500 витков – прикидочная первичка на 8 Ом.

Три слоя вторички = 90 витков (на 16 Ом) х 17 (Ктр 16 Ом) = 1530 витков – почти одинаково. Выбираем среднее (да простят ГУРУ инета) = итого первичка 1515 витков.

Расчет диаметра первички

Реальная площадь окна = 34,5 х 10 = 345 мм 2 .

Из практики на вспучивание и изоляцию эту площадь делим на 1,4 и получаем чисто под провод первички = 172,5 : 1,4 = 123,21 мм 2 , делим его на количество витков и получаем площадь для одного витка = 123,21 мм 2 : 1515 витков = 0,08133 мм 2 . Извлекаем квадратный корень и получаем искомый диаметр провода первички по лаку: √0,08133 = 0,2852 мм.

По таблице по лаку ищем ближайшее меньшее, получается по меди: 0,25 – 0,23 мм.

Т.к. провод по меди 0,23 «держит» не менее 110 мА = нам хватит, его и применяем.

ИТОГО: карта намотки = 758 (1515:2) витков 0,23 мм – изоляция – 30 витков 1 мм – изоляция – 379 (1515:4) витков 0,23 мм – изоляция – 30 витков – изоляция – 379 витков 0,23 мм – изоляция – слой 0,23 мм – изоляция – 30 (5+5+5+5+5+5) 1.

Мотаем:


Под начало и в конце любого слоя кладем немного клея, чтобы провод не «микрофонил» и укреплял бумагу.

Резвой – «длинные обмотки укладываем аккуратно кучками в четверть высоты, заполняем слой»

При очень длинных обмотках возможно применение межслойного канцелярского скотча в один слой.

Выводы тонкого обмоточного провода желательно маркировать разноцветными кембриками:


Собираем

Пушпул = без зазора, однотакт = с зазором.

Выводы толстых проводов соединяем и формуем как клеммы подключения, придумывать ничего не надо. Тонкие – зачищаем обжигом и аккуратно чистим мелкой наждачкой. Залуживаем и надежно припаиваем к подготовленной панельке из текстолита с закрепленными голого провода около 1 мм клеммами. Эту панельку для удобства крепим на болтах в ближайшем месте от выводов из катушки.

Не забываем маркировку – на «пузе» катушки с удобной стороны под скотч приклеиваем бирку карты намотки и расположения контактов.

Ответы на вопросы «Почему?» ищем в первоисточниках и не дай божЕ слушаем инетовских ГореГуру (а есть и с сангиг образованием), только через разрядку 450 В конденсаторов на собственных пальцах = другого пути нетУ!

Ламповые усилители без выходного трансформатора

Наибольшие искажения возникают в выходном каскаде усилителя, причем основной причиной искажений является выходной трансформатор.

Выходной трансформатор ограничивает диапазон воспроизводимых усилителем частот как со стороны низких, так и со стороны высоких частот. В предварительных каскадах УНЧ нелинейные искажения невелики в связи с малыми уровнями сигнала, а частотные искажения могут быть значительно снижены правильным выбором элементов усилителя.

Для расширения частотной характеристики в сторону низших частот требуется значительное увеличение индуктивности первичной обмотки трансформатора, однако при этом возникает индуктивность рассеивания, ограничивающая частотный диапазон в области высших частот. Зависимость величины магнитной проницаемости материала сердечника трансформатора от величины тока через обмотки приводит к нелинейным искажениям воспроизводимого сигнала.

Одним из основных способов уменьшения как частотных, так и нелинейных искажений является отрицательная обратная связь (ООС). Однако беспредельно увеличивать глубину ООС нельзя, так как наличие фазовых искажений на крайних частотах уменьшает стабильность работы усилителя и может даже привести к его самовозбуждению. Для улучшения фазовой характеристики усилителя стараются исключить из него элементы, создающие фазовые сдвиги. Одним из таких элементов и является выходной трансформатор.

Если еще учесть, что выходной трансформатор является довольно дорогостоящей в производстве деталью, то становится понятным стремление конструкторов к созданию схем выходных каскадов УНЧ без выходных трансформаторов. При использовании громкоговорителей с сопротивлением звуковой катушки 5-10 Ом осуществить бестрансформаторный выход довольно трудно, так как для получения выходной мощности порядка 5-10 Вт выходные лампы должны обеспечивать ток через нагрузку около 1-1,5 А.

Создание таких ламп представляет довольно трудную задачу, поэтому более удачным решением оказалось увеличение сопротивления звуковой катушки громкоговорителя до 400-800 Ом и создание выходных каскадов, обеспечивающих согласование с такими громкоговорителями. Наибольшее распостранение получил так называемый последовательный двухтактный каскад, описание которого приведено ниже.


Рис. 1: а) обычный двухтактный усилитель б) двухтактный усилитель с параллельно включенными частями нагрузки; в) последовательный двухтактный усилитель

В обычной двухтактной схеме (рис.1а) нагрузка Rн состоит из двух частей, включенных последовательно.

Если использовать в качестве нагрузки высокоомную звуковую катушку громкоговорителя, то она должна иметь сопротивление Rн, вывод от средней точки и, кроме того, должна быть изолирована от корпуса усилителя. Части нагрузки, имеющие сопротивление Rн/2 каждая, могут быть включены и параллельно (рис.1б).

Очевидно, что в этом случае результирующее сопротивление нагрузки будет равно Rн/4. Вывод от средней точки катушки становится ненужным. Недостатком схемы рис.1б является необходимость иметь два отдельных источника анодного питания. Поскольку постоянные составляющие анодного тока через обе лампы равны, то источники питания могут быть объединены (рис.1в).

Так как в этом случае через нагрузку протекают только переменные составляющие анодных токов ламп, то она может быть включена через разделительный конденсатор и один вывод ее может быть заземлен. Усилитель по схеме рис.1в и представляет собой последовательный двухтактный каскад, который имеет следующие преимущества перед обычным двухтактным каскадом: приведенное сопротивление нагрузки оказывается в четыре раза меньше, не нужен вывод от средней точки нагрузки, один из концов нагрузки может быть заземлен. Эти достоинства облегчают применение высокоомных громкоговорителей в качестве нагрузки.

Недостатком последовательного двухтактного каскада является необходимость удвоенного напряжения анодного питания, так как по постоянному току лампы включены последовательно. Поэтому, чтобы осуществить бестрансформаторный усилитель с обычным напряжением источника питания 250-300 В, необходимо иметь лампы, которые при низком анодном напряжении 100-150 В имели бы малое внутреннее сопротивление и отдавали достаточную мощность.

Из выпускаемых нашей промышленностью ламп в бестрансформаторных усилителях может быть использована лампа 6П18П. Последовательный двухтактный каскад, собранный на этих лампах при напряжении источника питания 310 В, отдает мощность порядка 6-8 Вт и согласовывается с нагрузкой, имеющей сопротивление около 800 Ом. При намотке звуковых катушек громкоговорителей проводом диаметром 0,05 мм можно получить сопротивление звуковой катушки порядка 300-400 Ом.

Так как современные усилители НЧ, как правило, используют систему из нескольких громкоговорителей, то сопротивление звуковой катушки громкоговорителя такой величины оказывается в большинстве случаев достаточным. Ниже приводится таблица параметров отечественных высокоомных громкоговорителей для бестрансформаторных схем. Громкоговорители отличаются от аналогичных низкоомных только моточными данными звуковой катушки, которая при необходимости может быть изготовлена самим радиолюбителем.


Особенность двухтактного последовательного каскада является то, что если для обычного двухтактного каскада, при отсутствии сигнала, напряжения на анодах равны, а токи ламп могут несколько отличаться, то для последовательного двухтактного каскада в начальной рабочей точке токи ламп равны, а анодные напряжения могут отличаться друг от друга.


Рис. 2. Схема усилителя без фазоинверсного каскада. Мощность 2 Вт

Предварительный усилитель выполнен на лампе 6Н2П и имеет раздельные плавные регуляторы тембра. Как видно из схемы, усилитель не содержит специального фазоинверсного каскада. Напряжение возбуждения подается только на лампу Л3, а на лампе Л2 это напряжение образуется за счет падения напряжения на сопротивлении R22. Выбранная величина этого сопротивления 180 Ом обеспечивает симметричную работу обеих ламп. Усилитель охвачен ООС глубиной 19 дБ, напряжение которой подается с нагрузки усилителя в цепь катода предоконечного каскада через сопротивление R18.

Низкое выходное сопротивление усилителя 90 Ом достаточно хорошо демпфирует акустическую систему. Выходная мощность усилителя 2 Вт при коэффициенте нелинейных искажений около 1,5%. Чувствительность усилителя 230 мВ, среднее звуковое давление, развиваемое акустической системой, более 10 бар.

Рис. 3. Частотная характеристика усилителя, приведенного на рис. 2:


Недостатком усилителя без фазоинвертора является несимметричность напряжений, поступающих на сетки оконечных ламп, так как на управляющую сетку лампы Л2 поступает напряжение с нелинейными искажениями, возникшими в лампе Л3. В результате не происходит характерной для двухтактного каскада компенсации четных гармоник. Кроме того, такой усилитель может работать только в классе А.


Рис. 4. Усилитель двухканальный безтрансформаторный. Мощность: 6 Вт

Рис. 5. АЧХ усилителя приведенного на рис.4:


Некоторые трудности в бестрансформаторных усилителях вызывает питание экранной сетки верхней (по схеме) лампы. Для получения пентодного режима экранная сетка должна быть по переменному току замкнута на катод (через конденсатор С13). Однако при этом сопротивление R23 оказывается включенным (по переменному току) параллельно нагрузке и на нем бесполезно рассеивается часть выходной мощности. Увеличение сопротивления R23 уменьшает постоянное напряжение на экранной сетке, в результате чего уменьшается мощность, отдаваемая лампами.

На схеме (рис.4) показана схема более совершенного безтрансформаторного усилителя. Усилитель выполнен по двухканальной схеме.


Рис. 6. Безтрансформаторный усилитель мощностью 7 Вт.

ПОС в усилителе осуществлена подачей части напряжения из катодной цепи Л1б в цепь катода Л1а через сопротивление R7. Напряжение ООС подается с выхода усилителя в цепь катода Л1а через сопротивление R11. Между анодом фазоинвертора и управляющей сетки лампы выходного каскада Л2 осуществлена связь по постоянному току. Величина отрицательного смещения на управляющей сетке этой лампы определяется разностью между напряжением на катоде и напряжением, снимаемым на управляющую сетку с делителя R8, R13.

Рис. 7. АЧХ усилителя по схеме на рис.6:


Частотная характеристика усилителя прямолинейна от 20 Гц до частот свыше 100 кГц, что является характерным для бестрансформаторных усилителей. При выходной мощности 7 Вт нелинейные искажения не превышают 0,5%. Все это обеспечивает воспроизведение всего звукового диапазона частот практически без искажений.

Рис. 8. Зависимость КНИ от выходной мощности:


В заключение следует отметить, что бестрансформаторные усилители, построенные по последовательной двухтактной схеме, могут как и обычные трансформаторные двухтактные усилители работать не только в классе А, а также в классах АВ и В.

Так, например, для работы в режиме, близком к классу В, в схеме на рис.3 нужно исключить R17C12 и, отключив R13 от корпуса, подать через него на управляющую сетку Л3 отрицательное смещение порядка 15 В от постороннего источника. При этом будет достигнут дополнительный выигрыш в мощности 10-20%. К выходу усилителя подключаются два, последовательно соединенных громкоговорителя 5ГД-16.

Проектируем выходной трансформатор для лампового усилителя.

Далее рассчитываем ТВЗ применительно к железу.
Обычно, для лампы 300В берут сердечник от ОСМ 400 ватт. В крайнем случает от ОСМ 250 ватт.
Ввиду того, что мной выбрано Ra достаточно большое и = 5990 Ом, амплитуда тока в связи с этим уменьшилась. Выходная мощность тоже упала.
Попытаюсь использовать имеющиеся у меня стандартный сердечник ШЛ 25 х 50. из электротехнической стали 3408, толщина ленты 0,3 мм.
Такой сердечник согласно справочных данных имеет габаритную мощность при индукции В = 1,6 Тесла, 230 Ватт.
Данный сердечник имеет внушительное окно, что позволит вместить не мало провода.


Для того, что бы продолжать расчёт, необходимо определить пригодность имеющегося железа для данного трансформатора.
Для этого необходимо знать его габаритные размеры и электрические параметры, начальную магнитную проницаемость Мю 0 или индукцию насыщения сердечника.
Чтобы это узнать, необходимо будет провести небольшую лабораторную работу и собрать небольшую схему.


На каркас трансформатора намотать пробные 100 витков. Постепенно увеличивая напряжение с ЛАТРа, отследить по осциллографу тот момент, когда синусоиду начнёт «ломать». Затем допустимое значение индукции рассчитывают по формуле:


где U1 — показания прибора, В; S — площадь сечения магнитопровода, см2 (чистого железа). Однако, не все смогут воспользоваться этим способом, ввиду отсутствия необходимых приборов. Поэтому будем рассчитывать более доступным, но уже приблизительным способом.
Зная, что железо из шихтованных пластин, «Ш» - образное, насыщается при 1,2 Т (Тесла =12000 Г (Гауссов)), а ленточных ШЛ, ПЛ при 1,6 Т = 16000 Г, для ТВЗ однотактных усилителей, примем значение максимальной индукции в сердечнике равное половине максимальной индукции насыщения.
Т.е. от 0,6 Т для Ш железа до 0,8 для ШЛ, ПЛ железа. Итак, имеется сердечник ШЛ 25 х 50 из электротехнической стали 3408, с толщиной ленты 0,3 мм.


-Площадь сечения рабочего керна - Qж = 2,5 * 5 * 0,95 = 11,875 cm2 0,95 - Кст – коэффициент заполнения сердечника сталью. Так обещает завод производитель. -Длина средней магнитной силовой линии lж = 21,3 см - взято из справочника. но можно рассчитать по формуле:


- Средняя длина витка lв = 21,00 см. Зависит от размеров каркаса и зазоров между элементами каркаса и сердечника. но можно рассчитать по формуле:


Тогда, индуктивность первичной обмотки по магнитопроводу будет равна


Где Мю 0, при неизвестном железе автор советует от 400 - до 600, возьму по минимуму 400.
Зазор в сердечнике. при токе 100ма возьму lз = 0,02cm, что будет соответствовать 0,1 мм под каждую подкову. А после всех расчётов зазор подкорректирую.
Исходя из того, что минимально допустимая индуктивность у меня 12 Гн, считаю количество витков W первичной обмотки: W1 = 2448 витков, вторичной, W2 = 2448 / (Ктр = 27,36) =89,47 витков. = 89.
Учитывая то, что средняя длина витка намотки 21 см, а максимально допустимое активное сопротивление 149,75 Ом получаем общую длину провода первичной обмотки 2448 витков * 0,21 м = 514,1 метра.
Тогда:

149,75 Ом : 514,1м = 0,291 Ом/метр.
По этому параметру, согласно таблице определяем диаметр провода. Это между 0,265 и 0,28.
Выбираем больший = 0,28 по меди и для ПЭТВ 0,33 по лаку.
Там же по таблице смотрим, что провод диаметром 0,28, при плотности тока 2 А/мм? соответствует току 124 мА. Ток покоя лампы равен 91,78 мА. Подходит.

Вторичная обмотка: W2 = 89 витков * 0,21 метр = 18,7 метра.
0,21 Ом : 18,7 м = 0,011 Ом/метр.
Соответствует проводу диаметром 1,45 мм по меди 1,56 по лаку. Сечение 1,651 мм?.
Данные по вторичной обмотке в последующем могут быть преобразованы при конструктивном расчёте.
В зависимости от желаемого секционирования, провод может быть применён значительно меньше по диаметру (сечению), но суммарное сечение всех обмоток должно остаться не меньше. 1,651 мм?.

Конструктивный расчёт. (Или, как разместить всё это на каркасе сердечника).

Хочу предупредить, что я делаю намотку очень плотной. Изоляцию между слоями не делаю. Между секциями применяю очень тонкую, 25 микрон пропиленовую изоляцию в несколько слоёв.
После намотки катушку пропитываю в лаке МЛ-92 с последующей сушкой.
Итак, габариты намотки по каркасу 59 х 23 мм. Это значит, что провода первичной обмотки, диаметром 0,28 по меди, 0,33 по лаку уместится 59 : 0,33 = 178 витков, реально
175 витков.
2448 : 175 = 13,988, округляем = 14 слоёв.
Высота намотки = 14 * 0,33 (по лаку) = 4,62 мм без учёта изоляции и вспучивания.

Для укладки вторичной обмотки выберем такой вариант, уложим все витки вторички в одном слое.
59 : 89 = 0,66 мм – мах. Диаметр провода по лаку. Реально столько витков не уложить.
Реально уложится провод диаметром 0,56 мм по меди, 0,62 по лаку.
Провод 0,56 имеет сечение 0,247 кв. мм . А нам необходимо минимальное сечение 1,651 кв.мм. Значит 1,651 : 0,247 = 6,68, округляем = 7 слоёв в параллель.
Высота намотки = 7 * 0,62 = 4,34 мм.
Общая высота намотки = 4,62 + 4, 34 = 8,96 мм. * 1,2 – 1,3 коэффициент вспучивания, зависит от того, кто как мотает = 10,76 – 11,65 мм + толщина изоляции, смотря кто сколько её кладёт.
Вот если это всё уместится на вашем трансформаторе, то можно сказать, что получился удачным, с минимальными необходимыми требованиями.
Если же про расчёте на каркасе остаётся много места, как получилось у меня. То, смело увеличивайте количество витков о одновременным увеличением диаметра провода, так, что бы активные сопротивления обмоток не превысили заданных значений. Меньшие их значения приведут только к улучшению параметров ТВЗ.

Что получилось у меня.
W1 - 3384 витка, провод 0,355 по меди, 0,385 по лаку, r1 = 128 Ом, 24 слоя, (3 - 6 - 6 - 6 - 3). Все последовательно.
W2 - 123 витка, провод 0,425 по меди, 0,47 по лаку, r2 = 0,16 Ом. 20 слоёв, по 5 слоёв между первичкой. Все параллельно. На нагрузку 8 Ом.
Итого 9 слоёв.
Изоляция только между слоями, пропилен 25 микрон, по 3 слоя. Пропитка в лаке МЛ92, с последующей сушкой.
Индуктивность первички могу посчитать пропорционально.
3384 / 2448 = 1,38 1,382 = 1,9. Ранее рассчитанные 12 Гн * 1,9 = 22,8 Гн.
За секционированием не следует сильно гнаться. В данном случае хорошие результаты получаются при общем количестве секций равном 7.
И последнее, уточняем немагнитный зазор.


8 * 3384 * 92 * 10-7 = 0,25мм.
Так как магнитный поток прерывается дважды, толщина прокладки будет вдвое меньше и = 0,125мм под каждую подкову.
Теперь, зная длину провода, можно рассчитать его вес, заодно и стоимость.
Спасибо за внимание. На этом расчёт закончен.
Хочу обратить внимание, что для пентодов, тетродов - расчёт производится точно так же, с учётом их характеристик.
Сопротивление нагрузки Ra выбирается оптимальное, по ВАХ и наименьшим нелинейным искажениям.
Если напряжение на аноде не соответствует паспортным значениям, то необходимо их сначала преобразовать под соответствующие напряжения. Задача довольно хлопотная.

И ещё, можно так же рассчитать индуктивность рассеяния Ls и вычислить частоту среза по ВЧ. Но это потом, при необходимости.

Не судите строго, может быть о чём-то забыл упомянуть.

Один маленький интересный совет.
Если есть возможность, то для уменьшения активного сопротивления обмоток, при том же количестве витков, следует выбирать сердечник квадратного сечения.
Для примера:
Сердечник 16 кв см.
Если стороны рабочего керна равны между собой и равны 4 и 4 см, то длина витка (не считая каркаса) = 16 см.
Изменим размеры сторон. 2 и 8 см = 16 кв.см. Периметр = длине витка =20 см.
4 лишних см. х 2500 витков = 100 лишних метров провода(это только по периметру сердечника).
Для провода 0,3 по меди это 24,8 Ом лишних.

Читайте также: