Включение трансформатора через симистор

Обновлено: 07.07.2024

Симистор — принцип работы для чайника. Простыми словами показываю устройство, основы формирования электронного ключа, какие условия необходимо создать для его правильного переключения, как оценить работоспособность — 5 методик

Меня до сих пор малость смущает слово «чайник», хотя и применил его в названии статьи: “ Симистор — принцип работы для чайника”. Этот жаргон внедрен поколением людей, выросших вместе с компьютерными технологиями. Так они подчеркивают новичка, которому надо все подробно объяснять.

В этом жанре я постарался изложить всю информацию. Старые, бывалые электрики и так хорошо знают эту тему.

Содержание статьи

Что такое симистор и как он выглядит — кратко

Словосочетание «симметричный триодный тиристор» на английский язык переводится как symmetrical triode thyristor. Его же именуют triode for alternationg current (триод для переменного тока). Или сокращенно — triac (триак).

Все эти названия общеприняты, они встречаются в технической литературе. Вы можете столкнуться с любым из них.

Показываю фотографиями наиболее типичные конструкции корпусов, с которыми выпускаются эти полупроводниковые приборы.

Симистор фото

На фото любого из них хорошо видно три контактных вывода. Они совместно с устройством корпуса изготавливаются под мощность номинальной нагрузки, которую должны передавать и коммутировать в режиме ключа.

Что такое ключ в электронике и электрике — образное пояснение

Сравним его работу с устройством входной двери, закрытой на замок.

Человек без ключа не сможет через нее пройти: замок надежно закрыт. Владелец квартиры и его доверенные люди имеют ключ, открывают дверь, свободно проникают в помещение.

Точно так же работают ключи в электрике, пропуская нагрузку. Только они управляются по команде и бывают трех типов:

  1. Механическими.
  2. Электромеханическими.
  3. Электронными.

Электрический ключ

Электрический ток совершает работу, например, освещает помещение. А ключ позволяет человеку управлять этим процессом за счет использования определенных технологий. Они разрешают коммутировать силовые контакты и даже выполнять дополнительные действия.

Таблица: как работает электрический ключ

Основным недостатком механических и электромагнитных ключей является переключение силовых контактов, вынужденно разрывающих цепь нагрузки.

При этом возникает электрическая дуга, выжигающая поверхность контактирующих металлов.

Подгоревшие контакты

Она же может стать причиной пожара или взрыва горючих сред.

На предприятиях энергетики введена обязательная процедура: ежегодный внутренний осмотр всех реле, контакторов и пускателей с чисткой поверхностей контактов и прожимом контактных соединений.

Электронные ключи работают без дуги. Они имеют уменьшенные габариты, удачно вписываются внутри корпусов электроприборов.

Как происходит управление симистором: основные принципы

Электронные элементы (диоды, транзисторы, тиристоры, триаки) создаются под различные задачи, имеют разное количество полупроводниковых слоев. Понять принципы управления триаком нам поможет метод освоения информации от простого к сложному.

Основы протекания тока в полупроводниках я уже описывал ранее. У диода, состоящего из двух «p» и «n» переходов носителями зарядов выступают дырки и электроны.

Как работает диод

При прямом подключении источника напряжения с нагрузкой образуется ток, а при обратном — прекращается. Этот процесс наглядно описывается вольт-амперной характеристикой (показана справа).

Такой алгоритм заложен в работу одного p-n перехода. По мере усложнения конструкции элементов их количество понемногу увеличивается.

Схема включения транзистора: 2 типа конструкций

Для начала уточняю возможности биполярных моделей.

Как работает биполярный транзистор

В работе этого ключа участвует два полупроводниковых перехода. Биполярный транзистор создается с одной из двух возможных структур:

Кратко привожу пример устройства и работы по первому варианту.


В правой части картинки показаны характеристики зависимости токов через эмиттер и коллектор от приложенного напряжения на участках цепи эмиттер-база и коллектор-база.

Состояние полупроводниковых переходов меняется величиной приложенного к ним напряжения, чем достигают один из четырех режимов:

  1. основной или активный (открыт коллекторный переход);
  2. инверсный (открыт эмиттерный переход);
  3. насыщенный (открыты оба перехода);
  4. отсечка (закрыты оба перехода).

При эксплуатации используют в основном два последних режима за счет изменения тока через базу. Его прекращение закрывает ток через нагрузку, подключенную к коллектору, а подача с номинальным значением — открывает, то есть переводит в режим насыщения.

Конструкции с n-p-n переходами работают по этим же принципам, но направления токов у них меняются.

Как работает полевой (униполярный) транзистор

Рассмотрим на примере n-канальной структуры p-n-p. Для нашего случая этого вполне достаточно.

Как работает полевой транзистор

Ширина канала и тока Ic через сток и исток увеличивается при введении положительного напряжения на затвор (Uзи). Оно может достигать определенного порогового значения, при котором происходит закрытие транзистора.

Выходная ВАХ зависит от напряжения между стоком и истоком (Uси).

Ключ на полевом транзисторе работает за счет изменения его проводимости напряжением, подаваемым на затвор, когда он переходит в режим открытия или закрытия.

Подобные схемы отличаются повышенным быстродействием по отношению даже к биполярным модулям.

Схема включения тиристора: 2 варианта подключения для цепей постоянного и переменного тока

Этой теме я уже посвятил отдельную статью на своем блоге. Здесь же вкратце показываю, что в его структуре работает уже не три, а четыре полупроводниковых перехода, например, p-n-p-n.

Структуры тиристоров

Такую схему можно упрощенно представить составленной из двух одинаковых транзисторов (2 транзисторных ключа, подключенных встречно с коммутацией базы одного на коллектор другого).

ВАХ тиристора имеет две области смещений и 4 режима, из которых нас интересует только два:

  1. открытое (1-2);
  2. или закрытое состояние (0-1).

ВАХ тиристора

Они находятся в первом квадранте. Посмотрите внимательно на эту область. Она нам пригодится при уяснении работы триака.

Использование одного тиристора позволяет управлять одной полуволной синусоидального сигнала или цепями постоянного тока.

Как подключают тиристоры для управления нагрузкой в бытовой сети 220 вольт

Возьмем за основу предыдущую схему и дополнительно включим в нее еще один тиристор со своей цепочкой управления. Так появится двухполупериодное выпрямление на нагрузке R.

Схема двухполупериодного выпрямления

Оно же вырабатывается на триаке.

Схема включения симистора: как создается уникальная ВАХ

Принципиально triac (симметричный управляемый диод) можно представить состоящим из тиристоров, собранных встречно параллельно. Поэтому его на электрических схемах так и обозначают.

Обозначение симистора

Обратите внимание на его электроды анод и катод (+ и -). Они переименовались в Т1 и Т2. Встречаются иные обозначения. Связано это с тем, что triac способен пропускать одновременно обе полугармоники положительного и отрицательного направления переменной синусоиды.

Другими словами: триак работает как с прямым направлением тока, так и обратным.

Структуру его полупроводниковых слоев можно представить следующим видом.

Структурная схема симистора

А их вольт амперная характеристика в первом квадранте работает как у тиристора (прямые токи), а в третьем — симметрично вывернута (обратное направление), что еще раз демонстрирует принцип действия triac.


Такой полупроводник при эксплуатации отличается:

  • высокой надежностью, обеспечивающей ему длительный ресурс;
  • отсутствием подвижных контактных механизмов, создающих помехи в сети;
  • допустимой стоимостью.

При этом надо учитывать, что он:

  • требует отвода тепла (применения дополнительных радиаторов охлаждения), ибо при перегреве может сгореть;
  • подвержен воздействию высокочастотных помех из электросети — в схему встраивается шунтирующая электрические шумы RC цепочка.

Технические возможности триака позволяют создавать на его основе не только электрические ключи, коммутирующие различные цепи, но и всевозможные регуляторы:

  • мощности;
  • изменения яркости освещения ламп;
  • числа оборотов электродвигателей.

Как работает регулятор мощности на симисторе: самая простая схема из пяти доступных деталей и поясняющее видео

Сразу замечу, что новичка может ввести в заблуждение общепринятое слово «регулятор». Технически правильнее назвать сие изделие «ограничитель».

Симисторные и тиристорные модули работают за счет уменьшения величины номинальной мощности. Они не способны ее повышать, ибо банально срезают часть синусоиды.

2 тиристора в цепи переменного тока

Схем, работающих на этом принципе, разработано очень много. Они используются, как в промышленности, так и при самостоятельном изготовлении. Дальше предлагаю ознакомиться с одной из простейших.

Такую конструкцию можно собрать своими руками новичку для получения практических навыков, поместить ее в небольшую коробочку. Она при размещении на теплоотводящем радиаторе позволяет управлять нагрузкой до 5 киловатт.

Регулятор мощности на симисторе

В работе схемы участвует всего 5 деталей:

  1. Симистор BTA-41600B (продается в Китае).
  2. Динистор DB3 можно найти в энергосберегающих лампах или в интернет магазине.
  3. Резистор 500 Ом с мощностью рассеивания тепла от 1 ватта.
  4. Конденсатор 0,1 микрофарада с допустимым напряжением от 250 вольт.
  5. Переменный резистор с сопротивлением от 200 до 500 килоом.

Конструктивно регулятор можно выполнить простым навесным монтажом или разместить на монтажной плате. Это не принципиально, деталей мало.

Эта конструкция позволяет регулировать:

  • температуру паяльника, нагревателей резистивного типа;
  • обороты вращения коллекторных электродвигателей (пылесосы, стиральные машины, дрели, болгарки, перфораторы, шлифовальные машинки, электролобзики;
  • свет от лампочек накаливания;
  • ток зарядки автомобильных аккумуляторов;
  • силу тока на первичной стороне трансформатора, но при этом создается искаженный сигнал, который несколько ухудшит процесс трансформации — электромагнитных преобразований.

В принципе это обычный диммер. Подобные изделия продаются в магазинах для ламп накаливания. Только он отличается небольшими доработками, упрощениями, не подходит к светодиодным и энергосберегающим источникам. Возможно их мерцание.

Схема не обеспечивает сохранение мощности на валу двигателя: при увеличении нагрузки, например, усиленном вдавливании резца в обрабатываемую деталь, обороты ротора падают.

Она вполне рабочая, но упрощена до минимума деталей. В ней даже трудно выделить все 4 основных узла, присущих подобным регуляторам. А это:

  1. частотно задающая RC цепочка;
  2. формирователь импульсов для отпирания симметричного управляющего диода;
  3. силовой элемент — сам симистор;
  4. демпферная RC цепочка (защищает триак от помех, возникающих на индуктивной нагрузке — электродвигателе).

Для любителей смотреть видеоролики рекомендую обратить внимание на видеоматериал Ростислава Михайлова, где он довольно доступно разъясняет эти 4 принципы работы симмисторного регулятора мощности.

Как проверить симистор новичку: 4 популярных способа с показом преимуществ, недостатков и типичных ошибок

Вопрос проверки возникает после того, когда выяснилось, что наш электроприбор стал неправильно работать или вообще отказал. При этом мы вначале осматриваем triac внешне.

Если на корпусе заметны трещины, сколы, следы нагара, то ему открыт путь в утиль. В остальных случаях требуется оценить работоспособность. Нужны проверки электрических характеристик. Для этого необходимо:

  1. посмотреть маркировку полупроводника на корпусе;
  2. уточнить технические характеристикипо даташипу (так принято называть техническую документацию производителя).

Например, в интернете не сложно найти подобные сведения на симистор BTA-41600B, который работает в предыдущей схеме. Показываю их обычным скриншотом.

BTA-41600B

Я взял самый необходимый минимум. Нам важно определиться с критическими значениями параметров, запомнить их, не превысить при проверках. Иначе можем повредить исправный модуль, что новички делают часто.

Во время выполнения электрических проверок понимаем, что в подавляющем большинстве случаев неисправность может проявиться всего двумя дефектами:

  1. замыканием или уменьшением сопротивления между любыми контактными выводами, что свидетельствует о внутреннем повреждении полупроводниковой структуры;
  2. обрывом собранной внутри корпуса заводской схемы.

При этом учитываем, что обычный замер величин сопротивления между контактами не эффективен: требуется оценить в работе открытие и закрытие полупроводниковых переходов.

Дальше привожу четыре методики, которые позволяют с вероятностью до 95% выявить все неисправности. Как довести этот результат до 100% я объясняю в конце статьи.

Как проверить симистор на исправность за 6 шагов: только батарейка и лампочка

Эта методика подходит для триаков, которые стоят в бытовой технике: посудомоечных или стиральных машинах, пылесосах, блоках питания…

Шаг №1. Подготовка к проверке

  1. Источник напряжения в виде батарейки или аккумулятора от полутора до девяти вольт.
  2. Лампочка накаливания от карманного фонарика или автомобильной подсветки.
  3. Три гибких провода длиной порядка 15-20 см, желательно разной расцветки.

Облегчат проверку 5 зажимов типа крокодил (можно воспользоваться прищепками или любым паяльником для сборки схемы).

Подготовка к проверке симистора

Один провод (показал черным цветом) разрезаем посередине и припаиваем к его концам контакты лампочки.

Для удобства работы все концы зачищаем и устанавливаем на них зажимы. На один провод (показал белым цветом) достаточно подключить только один крокодил.

После этого нам нужно убедиться в исправности батарейки и лампочки: крокодилы черного провода подключаем на клеммы источника питания, наблюдаем свечение. Если его нет, то выясняем причину.

Здесь же желательно измерить ток в этой цепочке: такая нагрузка будет подаваться на контакты проверяемого triac. Его нельзя спалить.

Шаг №2. Сборка схемы проверки

Ранее мы уже выяснили: какая клемма у симистора является управляющим электродом (G). Цепляем на нее зажим белого провода. Второй конец никуда не подключаем.

На оставшиеся контакты полупроводника (Т1 и Т2) сажаем зажимы от двух других проводов.

Вторые концы черного и синего проводов соединяем произвольно с клеммами батарейки (+) и (-).

Проверка симистора

Шаг №3. Проверка закрытого состояния полупроводника

Наблюдаем отсутствие загорания нити накала у лампочки. Поскольку она включена в разрыв силового перехода, то делаем вывод об его исправности: закрыт.

Возникновение же свечения будет свидетельствовать об образовании внутреннего шунта, что является дефектом.

Шаг №4. Проверка открытия полупроводникового перехода

Подача команды на запуск триака осуществляется кратковременной коммутацией (легким касанием и быстрым снятием) оголенного конца белого провода (G) на вывод Т2.

Включение симистора

Этим действием мы подаем напряжение управления на симметричный управляемый диод при подключенном к его силовым выводам источнике тока, а затем снимаем.

Исправный triac откроется, лампочка засветится. Отсутствие свечения — явный признак внутренних повреждений.

Еще раз напоминаю: обратите внимание на величину напряжения источника. Она должна соответствовать минимальному значению отпирания перехода, но значительно превышать ее нельзя.

Шаг №4. Проверка закрытия полупроводникового перехода

Выполняется кратковременным шунтированием (установкой перемычки) между силовыми выводами T1 и T2.

Лампочка погасла — переход исправен, осталась гореть — дефект полупроводника или перемычки (иногда «кривые руки» проверяющего).

На этом проверка одной части схемы триака (обычный тиристор) считается законченной.

Шаг №5. Сборка схемы проверки второй части triac

Симистор состоит из двух тиристоров. Дальше нам остается оценить его вторую половинку, проводящую ток в противоположном направлении.

Снимаем и меняем местами зажимы проводов, сидящих на клеммах батарейки (+ и -).

Переключение проводов

Шаг №6. Проверка работоспособности второй части

Повторяем последовательно все действия, расписанные выше в шагах №3, 4, 5. Убеждаемся, что второй переход:

  1. нормально находится в закрытом состоянии;
  2. при поступлении управляющего сигнала открывается;
  3. по команде на отключение закрывается.
На основании положительных тестов всех шести шагов делаем вывод об исправности триака. Если хоть одна из проверок не прошла, то полностью бракуем полупроводник.

Эта методика позволяет источником постоянного тока с низким напряжением оценить косвенным способом состояние полупроводниковых переходов, коммутирующие цепи 220 вольт.

Как проверить симистор тестером: 2 особенности, которые надо знать и учитывать

Показываю на примере своей старенькой, но полностью рабочей цешки Ц4324, отмеченной знаком качества в семидесятых годах прошлого века.

Тестер может измерять сопротивление в двух режимах:

За счет переключателей режимов величина напряжения в разных позициях меняется. Показываю это фотографиями.

В положении омметра я своим карманным мультиметром замерил на выходных клеммах цешки всего 0,14 вольта.

Напряжение тестера: режим омметра

Перевел ее в режим килоометра kΩ×1. Тестер выдает почти 3 вольта (напряжение открытия BTA-41600B составляет 1,5).

Напряжение прибора

В обоих случаях стрелка прибора установилась на значок бесконечности (∞).

Аналоговый тестер в каждом режиме измерения сопротивления выдает свои стабилизированные величины. У всех приборов они могут отличаться.

При проверках triac вам надо учитывать эту особенность, ибо значения 0,14 вольта явно не хватит для открытия полупроводникового перехода. Поэтому вы можете совершить ошибку: забраковать исправный прибор. Уточните характеристики своего тестера заранее.

Дальнейшая технология проверки триака тестером повторяет только что разобранную методику. Просто в нашем измерительном приборе уже имеется встроенный источник питания и внутренняя схема, выполняющая функцию нагрузки.

Индикатором протекания тока через силовые выводы полупроводника служит стрелка цешки, указывающая величину сопротивления подключенной цепочки.

Методика проверки за 5 шагов

Шаг №1. Сборка схемы

Тестер переводим в режим измерения сопротивлений. Его концы соединяем с силовыми выводами триака Т1 и Т2. На управляющий контакт G подключаем отдельный зажим с проводом.

Как проверить симистор тестером

Шаг №2. Оценка состояния закрытого перехода

На тестере смотрим положение стрелки:

  1. позиция «∞» указывает на исправность прибора;
  2. иное отклонение — брак.

Шаг №3. Оценка срабатывания

Закорачиваем вывод G на Т2 и снимаем провод. Наблюдаем открытие триака по отклонению стрелки.

Как сработать симистор

В зависимости от модели и конструкции сопротивление исправного модуля составит примерно 20-80 Ом. При внутреннем обрыве оно не изменится.

Шаг №4. Оценка закрытия перехода

Кратковременно закорачиваем выводы Т1 и Т2. Исправный прибор закроется, стрелка тестера вернется на положение ∞.

Шаг №5. Оценка работоспособности второй части симистора

Чтобы сменить направление тока через силовой переход переключим концы на тестере.

Переключение концов

После этого выполняем шаги №2, 3, 4. Каждый раз анализируем состояние триака.

Как проверить симистор мультиметром

При таком способе также важно оценить выходное напряжение прибора в режиме измерения сопротивлений. Показываю фотографией свой замер, который делал тестером. Результат — 3,6 вольта (9 делений из 30 на шкале +12 V).

Напряжение мультиметра

Существуют модели мультиметров, не способные выполнять подобную проверку из-за маленького уровня выходного напряжения. Его просто не хватит для управления переключением триака.

Важно: до выполнения проверки оцените возможности своего мультиметра.

Если ваш прибор подходит по выходному напряжению, то с его помощью смело проходите все пять шагов, которые я расписал для тестера. Повторятся не вижу смысла.

Тестер проверки симисторов: 2 варианта исполнения

Радиолюбители и промышленность разработали много полезных схем и конструкций для определения работоспособности различных электронных деталей. Новичкам полезно иметь следующий прибор.

Заводской тестер проверки симисторов

В торговле можно приобрести относительно дешево модуль LCR-T4 12864 9V или ему подобный. Он позволяет быстро и наглядно отслеживать состояние различных полупроводников, показывает их внутреннюю схему и характеристики.

Тестер проверки симистора

Тестер проверки симисторов и тиристоров своими руками: как сделать и пользоваться

Привожу относительную простую схему, которую может спаять электрик начального уровня.

Схема тестера проверки симисторов и тиристоров

В качестве входного трансформатора можно использовать любой готовый с двумя выходными обмотками на 9 вольт и нагрузкой порядка 0,3 А. Его же не сложно рассчитать и намотать своими руками.

Со стороны 220 вольт трансформатор защищает плавкая вставка на 0,1 А.

Конденсаторы С1, С2, С5, С6, С7, С8: это электролиты с напряжением на 16 вольт, а остальные — керамические. Диодным мостом может работать любая сборка с напряжением на 50 вольт и током 1 ампер.

Выпрямительные диоды VD2 и VD3 подбираются по току 300 мА и напряжению 25 вольт.

Микросхемы: 7805 (аналог КР142ЕН5А, КР142ЕН5В) и 7905 (аналог КР1162ЕН5А, КР1162ЕН5Б, КР1179ЕН05).

Лампочка сигнализации — на 12 вольт, 0,15 ампера или близкая к этим параметрам.

Как пользоваться тестером

Испытания тиристоров и симисторов выполняются по одному индивидуально. Их устанавливают в соответствующие гнезда «Анод», «Катод», «Управляющий электрод».

Ключ тока управляющего электрода SA2 вначале устанавливают в положение, соответствующее открытию перехода. Переключатель SA1 — «Прямое напряжение».

Включают питание 220.

Как проверять тиристор

Шаг 1. После подачи питания на схему наблюдаем отсутствие свечения лампочки: закрытие полупроводникового перехода.

Шаг 2. Срабатываем кнопку SB2 «Запуск +». Контролируем загорание лампочки. Отпускаем кнопку — наблюдаем, что лампочка не тухнет и продолжает светиться (переход открыт).

Шаг 3. Срабатываем кнопку SB1 «Сброс». Контролируем погасание лампочки (закрытие перехода).

Как проверять симистор

Шаг 1. Устанавливаем модуль в гнезда, выполняем все три шага проверки тиристора.

Шаг 2. Переключаем ключ SA1 в положение — «Обратное напряжение».

Шаг 3. Срабатываем кнопку SB2 «Запуск +». Контролируем загорание лампочки. Отпускаем кнопку — наблюдаем, что лампочка не тухнет и продолжает светиться (переход открыт).

Шаг 4. Срабатываем кнопку SB1 «Сброс». Контролируем погасание лампочки (закрытие перехода).

Заключительный вывод

Основной недостаток всех перечисленных методик состоит в том, что они не могут вскрыть отдельные дефекты полупроводников, которые проявляются под напряжением 220 вольт, ибо работают с величинами до 9-12.

100% результат способна гарантировать только полная проверка в условиях эксплуатации с реальной нагрузкой и замером выходных характеристик.

Для ее выполнения потребуется:

  1. Осциллограф с делителем напряжения, показывающий форму выходного сигнала;
  2. Токоизмерительные клещи или амперметр, оценивающие величину выходного тока на нагрузке.

Только новичкам самостоятельно я не рекомендую делать такую проверку: она опасна и требует навыков работы под напряжением в действующих цепях, умения пользоваться сложными измерительными приборами.

В бытовых условиях проверяйте семистор любой из описанных выше методик пониженным напряжением. Они не представляют повышенной опасности.

Схема управления симистором для трансформаторого сварочного аппарата

Юный пионер

Сейчас перевёл для начала все имеющиеся комментарии в фале листинга и в коде прошивок для 16 канальной системы ДУ. Уже даже сейчас из этих комментариев стала понятна примерная логика работы программ. Теперь ещё сделаю также перевод комментариев на 4 канальную систему. Ну и тогда уже начну разбирать поочерёдно каждую команду с помощью справочника и делая свои приписки что за что отвечает и что делает. Ну а там уже посмотрим что выйдет.

А че тут доказывать? Тебя в Google Maps забанили?

oleg1ma

кто нибудь собирал такую заряжалку для вело, а то мне не очень понятен алгоритм ее работы, кто в теме чиркните пару слов

Wladimir_TS

Вольтодобавка. а не нужно-ли тогда последовательно с R3 включить еще диод, анодом к плюсу. проверьте как оно выйдет. В принципе пол ватта на 8 Ом с 5 вольт выдает - можно макетировать. R6 как-то рассчитывался или от балды ?

ALCHEMIS

Лом..2 супер☺. Обязательно построю в следующем проекте. Есть несколько вопросов: заменили транзисторы в УН на более мощные и более высокочастотные, есть хорошо. Усилили драйвер второй парой, а значит можно на выходе установить вторую пару, тож неплохо. Смущает меня стоимость проекта, т.к. усилитель стал работать с более высоким т.п.,значит нужны хорошие радиаторы, трансформатор питания не меньш 400W, это стоит денег, а я планировал усилитель бюджетный, легко повторяемый. Но проект МК ll меня зацепил!

Включение трансформатора через симистор

Итог с позволения сказать оказался печальным, была припалена первичная обмотка.

Пришлось перемотать полностью весь транс. Первичка 200 витков проводом диаметром 1.8 в стеклоткани, вторичка 6 витков диаметр провода 2.3мм в два провода.


Но теперь для точного подбора температуры нагрева фольги, возникла потребность регулировки тока вторичной обмотки…..
У меня в наличии уже имелись два регулятора построенный по различной схемотехнике, и посему решение было простым, применить симисторный регулятор, построенный вот по этой схеме.

Данной схемой пользуюсь уже лет 10 ни разу не подвела. Делается регулятор за 15-20 минут, буквально на коленке. Вот он собственной персоной.

А вот печаль, постигла меня буквально сразу, симистор стрельнул \на фото восстановленный прибор \.

Но мы не ищем легких путей, у меня в резерве имелся фазовый регулятор на микросхеме КР1182ПМ1, после подключения второй регулятор отправился к праотцам вслед за первым.
Хочу заметить, что симисторные регуляторы, которые могут управлять коллекторными двигателями, не в состоянии управлять трансформаторами.
«Я достаю из широких штанин» \В.Маяковский\. Регулятор на мощных MOSFET транзисторах вот схема. Этот девайс я использую для регулировки паяльника уже года 4-5.
Фото этого девайса, мосфеты стоят другие, мощнее чем IRF840, а так схема


стабильная по всем параметрам. Но с трансформатором отказалась работать, транзисторы грелись изрядно.
Добавлено: 19 июн 2013, 01:14 После трех неудачных попыток, задался вопросом, в чем дело. Почему симисторы отказываются работать на индуктивность, как говорится гуугл в помощь.
Но моя ошибка была в том, что я решил найти готовую схему:
Первая найденная схема:
Симисторный регулятор тока для активной и индуктивной нагрузки

Собранная схема из исправных деталей, даже не вздрогнула и не издала ни одного импульса, плата была проверена несколько раз на безошибочность , ан нет…..вердикт был прост-схема не рабочая. Автора данной схемы не указываю, кому надо найдет.

Далее была найдена схема на сайте уважаемого радиолюбителя, схема представлялась автором как собственная разработка. Ну что ж засучив рукава, собираю и эту схему.

После сборки схемы, сказать, чтоб эта схема не заработала, я не могу, она заработала на 50% до выхода микросхемы 3. Обращение к автору схемы, не внесло дальнейшей ясности в работе схемы. Попытки поднять кпд схемы более 50% не возымели дальнейшего действа. Вердикт – схема не рабочая.

Следующим шагом было теоретическое понимание, как должен работать симистор на индуктивность.

Итак--Идеология управления симистором на индуктивную нагрузку.
При индуктивной нагрузке из-за фазового сдвига тока за период короткого запускающего импульса симистор, не успевает открыться.
Проявляется это как характерное рычание и подпрыгивание трансформатора. Иногда летят симисторы.

Есть только два способа стабильного регулирования индуктивной нагрузки.
1. Это посылать пакет импульсов - не откроется с первого, откроется от второго-третьего импульса.
2. или держать постоянно ток на открывание с момента включения до конца полупериода.

Вот схема которая была взята за основу .
Мощный симисторный регулятор мощности.
Схема найдена была на сайте Радиокот.
Спасибо автору этого девайса.
Она совпадала с идеологией написанной выше.
Описание работы схемы привожу частично, остальная часть статьи посвящена аналогу схемы на дискрете, мне это не нать….


Этой схемой можно регулировать мощность, начиная от микродрели мощностью 10 ватт до 5,5 кВт сварочного аппарата. Схема остаётся та же, ограничения только на симистор, который Вы поставите и импульсный трансик управления им. Но если, к примеру, у Вас запаян ведровый 500 амперный симистор, то таким регулятором можно регулировать практически всё: от паяльника 25ватт до огромного суперсильного 500 амперного сварочного аппарата (естественно трансформаторного). Ну, а если КУ208Г, то сами понимаете - максимум бытовая мясорубка "Помощница". Ну-с продолжим, а то многа букаф, да мало чертежей. Схема первого варианта на сдвоенном операционном усилителе LM358 обозначится на рисунке под номером 1.

Разберём работу схемы более наглядно. Начнём по порядку слева на право. Первое, от качества работы чего зависит работа всего регулятора, синхронизируемый сетью генератор пилы (Рис-2). Диодный мостик формирует импульсы отрицательной полярности, чтоб транзистор T1 знал, в какой момент ему разряжать конденсатор С3. Ведь, все знают, что это должно быть, когда сетевое напряжение переходит через ноль.

Здесь большое влияние на качество работы оказывают коммутационные помехи самого симистора, и ноль тогда определяется не правильно, поэтому все помехоподавляющие конденсаторы С1, С2, С8, С10, С11 устанавливать обязательно!
Далее по схеме - компаратор (Рис - 3). Ну тут все понятно. Смотрим графики и видим что t1 и t2 разные по задержке от начала синусоиды, потому что разные задания. Так, t1 соответствует более раннему открыванию симистора и следовательно большей мощности, а t2 наоборот.

Последний раз редактировалось Serge 19 июн 2013, 08:59, всего редактировалось 2 раз(а).

Добавлено: 19 июн 2013, 01:19 Далее идет управляемый генератор прямоугольных импульсов (Рис - 4), управляемый низким уровнем (12в на входе - генератор дает 0 в на выходе, 0 в на входе - генератор дает прямоугольный сигнал с частотой (1кГц - 2кГц) для заполнения импульса для открытия симистора). Настройка генератора заключается в установке этой частоты конденсатором С5 или резистором R9. Если потребуется подрегулировать ширину генерируемых импульсов, то параллельно R9 запаять диод с последовательно соединенным дополнительным резистором. Анодом к выводу 7.
Трансформатор управления симистором пробовал ставить и ферритовые, и на железе. С мониторов готовые, которые примерно по обмоткам подходили (но только с зазором), и перемотанные. Все работали одинаково хорошо. Единственное условие - больше симистор -больше трансформатор. На очень маленькие трансформаторы надо уменьшать ширину импульсов с генератора. Хорошие результаты с трансформатором типовым ТОТ - 5. Ну, а просто отличные результаты с оптосимисторами. Вместо трансформатора подключают оптосимистор последовательно с ограничительным резистором 56 ом - 470 ом в зависимости от типа симистора.
Эта схема сработала на 80процентов. С небольшими добавлениями просто отличная схема.
Жаль не смог встроить для управления оптосимистор MOC3063 или какой другой….было б совсем круто. Что-то не заладилось….не смог побороть …оптосимистор.

В данную схему были внесены следующие изменения.
Узел, который позволяет получить короткий импульс в момент перехода через "ноль" положительных и отрицательных волн сетевого напряжения. Кастрирован из выше приведенной схемы.
Замена TLP504 - MCT6 или другой близкий по параметрам, аналогов много. Микросхему LM358 смело можно заменить на LM2904.

Описывать мытарства с попыткой установки гальваноразвязки на оптосимисторе MOC3063 не имеет смысла, в итоге был поставлен биполяр и вот результат – схема работающая на все 100%. Вроде как все номиналы деталей указаны, если что, номиналы указаны на плате в лайте, при наведении курсора на деталь.

Теперь закидываю полученный результат в коробочку, ставлю симистор на фильдеперсовый радиатор через слюдяную прокладку и подключаю к трансу.
Троекратно крестимся и включаем в сеть \переменник предварительно ставим на минимальное положение\, транс гудит слегка больше чем ранее. Выводим регулятор постепенно на максимум.
Все работает, просто отлично. Фольга плавно нагревается.
Ура, товарищи, ура. Это победа.

Фотки внутренностей регулятора.


И собранного регулятора вот с таким дивным радиатором.

Что могу сказать, с мощностью симистора я явно перемудрил, под нагрузкой он вообще еле, еле теплый, можно поставить гораздо меньший токовый прибор. С радиатором тоже, он не греется вообще.

Последний раз редактировалось Serge 19 июн 2013, 13:37, всего редактировалось 2 раз(а).

Добавлено: 19 июн 2013, 01:22 Нагууглил еще вот такую схему, она в общих чертах совпадает по идеологии.

Осцилки ее работы

Схема взята с пендосовского сайта и она явно рабочая.
Динистор вместе с кондером \который внутри диодного моста\ формирует пакеты импульсов. Т.е. принцип открывания симистора одинаков с вышеуказанной схемой.
Но схему эту делать не стал, что то мне показалась, что она будет сложна в настройке, а может я и перестраховался.

Вот собственно и вся эпопея по созданию симисторного регулятора работающего на индуктивную нагрузку.

Вдруг кому понадобится регулировать сварочный транс, думаю, будет работать и весьма неплохо.

Добавлено: 19 июн 2013, 09:08 Плата данного регулятора в Лайте 6, если Ваш Лайт не открывает плату ищите эту версию. Ежели кто подведет гальваноразвязку и усовершенствует данный девайс, будет очень неплохо. Добавлено: 26 июн 2013, 15:05 Засек ошибку в схеме, подправил.
Полярность кондера была указана неверно. Добавлено: 21 сен 2013, 16:21 Serge писал(а): Плата данного регулятора в Лайте 6, если Ваш Лайт не открывает плату ищите эту версию. Ежели кто подведет гальваноразвязку и усовершенствует данный девайс, будет очень неплохо.

Не могу распаковать архив печатной платы. Помогите, пожалуйста. Заранее благодарю!

Добавлено: 21 сен 2013, 16:46 vs5
Проверил. Архив распаковывается. Архив в формате Win Rar. Файл в архиве открывается программой Sprint Layout 6.0. Добавлено: 29 сен 2013, 20:26

Про стабилитрон на выходе диодного моста можно чуть подробнее?
Какое на нём обычно должно быть напряжение?

Включение трансформатора через симистор

Регулируемый источник питания является обязательным атрибутом на столе радиолюбителя, но из-за их немалой стоимости многие предпочитают сделать лабораторный блок питания своими руками.
Блоки питания бывают линейными и импульсными, основное преимущество импульсных схем - это их высокий КПД (>90%). Линейные схемы имеют низких КПД, но обеспечивают более чистое выходное напряжение, которые свойственны импульсным источникам питания.

Линейные источники питания лучше, но при конструировании таких источников питания большой мощности возникают проблемы с охлаждением силовых транзисторов.

В чем же заключается основная сложность?. Допустим мы собрали блок питания с регулировкой напряжения от нуля до 30 Вольт и ток от нуля до 5 Ампер. И если мы выставим на выходе малое напряжение и большой ток, например 3 Вольта и 5 Ампер, на выходе получим мощность около 9 Ватт, при этом на транзисторе будет падение напряжения как минимум 27 Вольт, с учетом тока в 5 ампер, получаем около 140 ватт мощности в виде бесполезного тепла, которое нужно отводить.

Есть два основных варианта решения этой проблемы:

  1. Громадный радиатор с вентилятором для охлаждения силового транзистора;
  2. Система переключения обмоток трансформатора.

Второй вариант наиболее предпочтителен, и позволит избавиться от массивных радиаторов и шумного вентилятора.

Принцип работы очень прост - при малых выходных напряжениях на вход также подается малое напряжение. Таким образом мощность рассеиваемая на транзисторе будет гораздо меньше, КПД увеличивается в разы.

Но для того, чтобы задействовать коммутатор, нужно иметь трансформатор с несколькими вторичными обмотками, желательно с полностью одинаковыми параметрами, например три обмотки по 12 Вольт.

Перед вами сейчас самая простая и безотказная схема релейного коммутатора.

Коммутатор обмоток для лабораторного блока питания, принципиальная схема

Имеем пару стабилитронов на одинаковое напряжения и пару реле, которыми управляют маломощные транзисторы обратной проводимости. Точка "А" подключается к выходу лабораторного блока питания. Масса питания общая. Схема коммутатора питается от отдельной, маломощной обмотки.

Схема работает следующим образом, если напряжение на выходе лабораторного блока питание ниже 12 Вольт, стабилитрон закрыт. Если напряжение на выходе лабораторного блока питания больше 12 Вольт первый стабилитрон моментально откроется, сигнал поступит на базу первого транзистора, отпирая его, через открытый переход поступит питание на обмотку реле, как следствие - реле также сработает, коммутируя соответствующую обмотку. Теперь на вход стабилизатора поступает напряжение 24 Вольта.

При увеличении выходного напряжения блока питания до порогового значения, а это сумма напряжений обеих стабилитронов, точно таким же образом откроется второй стабилитрон, что приведёт к отпиранию второго транзистора и сработкет второго реле, и на вход стабилизатора поступит полное напряжение со всех трех последовательно соединенных обмоток трансформатора.

В этот момент первое реле тоже находится во включенном состоянии, но так как питание поступает по второму реле, на выходное напряжение это не влияет. Добавив в схему еще один транзистор со стабилитроном, в эти моменты можно отключать его.

Коммутатор обмоток для лабораторного блока питания, принципиальная схема

Если напряжение на выходе источника питания больше значения суммы напряжений стабилизации стабилитронов откроется третий транзистор, шунтируя базу транзистора, который управляет первой реле на массу питания, тот закроется и отключит реле.

Стоит заметить, что через стабилитроны и переходы база эмиттер протекают ничтожно малые токи.

В схеме использованы реле с напряжением катушки 12 Вольт.

Коммутатор обмоток для лабораторного блока питания, реле 12В
Коммутатор обмоток для лабораторного блока питания, реле 12В

Диоды предназначены для защиты от пробоя управляющих транзисторов напряжением самоиндукции с обмоток реле во время их отключения.

Ток коммутации реле зависит от вашего блока питания, если конструируете лабораторный блок питания на 5 Ампер, реле желательно взять с двукратным запасом, например 10-12 Ампер.

Базовые ограничительные резисторы для транзисторов могут иметь сопротивление от 6,8 до 15 кОм. Сами транзисторы обратной проводимости, можно взять любые малой и средней мощности.

К недостаткам схемы можно отнести использование электромагнитного реле. Должен сказать, что во многих промышленных блоках питания применяется именно такое решение. Реле издают звук во время переключения, а контакты не вечные.

Есть системы, где переключающим элементом является симистор, но такие коммутаторы также не идеальны, часто возникают проблемы с управлением, а на самих симисторах будут потери, следовательно и нагрев, к тому же симисторные схемы довольно сложны.

Питать схему коммутации можно как от отдельной обмоткой, которая намотана на основном трансформаторе, так и от отдельного маломощного блока питания. Напряжение этого источника должно быть от 18 до 20 вольт, при токе в 200-300мА.

Читайте также: