В каком режиме работает измерительный трансформатор напряжения

Обновлено: 04.07.2024

Как работает трансформатор тока

В процессе эксплуатации энергетических систем довольно часто решаются вопросы, связанные с необходимостью каких-либо установленных электрических величин в аналогичные величины с измененными значениями в определенной пропорции. Для этого необходимо знать, как работает трансформатор тока, действие которого основано на законе электромагнитной индукции, применяемого для электрических и магнитных полей. В процессе работы выполняется преобразование первичной величины вектора тока, протекающего в силовой цепи, во вторичный ток с пониженным значением. Во время такого преобразования соблюдается пропорциональность по модулю и точная передача угла.

В каком режиме работает трансформатор тока

Работа трансформатора может осуществляться в нескольких режимах. Одним из них является режим холостого хода, при котором вторичная обмотка находится в разомкнутом состоянии. Потребление тока первичной цепью самое минимальное, поэтому он называется током холостого хода. Магнитное поле холостого хода образуется вокруг первичной обмотки. Данный режим считается абсолютно безвредным для трансформатора.

Как работает трансформатор тока

Основным является режим нагрузки, в который трансформатор переходит из режима холостого хода. Во вторичной обмотке начинается течение тока, создающего магнитный поток, направленный против магнитного поля в первичной обмотке. В первый момент значение этого магнитного потока уменьшается, что приводит к уменьшению ЭДС самоиндукции в первичной обмотке.

Поскольку внешнее напряжение, приложенное к генератору, не изменяется, это приводит к нарушению электрического равновесия между приложенным напряжением и ЭДС самоиндукции, а ток в первичной обмотке увеличивается. Соответственно увеличивается и магнитный поток, а также электродвижущая сила самоиндукции. Однако значение тока в первичной обмотке будет выше, чем в режиме холостого хода. Таким образом, сумма магнитных потоков первичной и вторичной обмоток в режиме нагрузки, будет равна магнитному потоку первичной обмотки трансформатора в режиме холостого хода.

Трехфазные трансформаторы

В режиме нагрузки, когда появляется вторичный ток, происходит возрастание первичного тока. Это приводит к падению напряжения во вторичной обмотке и его уменьшению. В случае снижения нагрузки, при которой вторичный ток уменьшается, наступает уменьшение и размагничивающего действия вторичной обмотки. Наблюдается рост магнитного потока в сердечнике и соответствующий рост самоиндукции ЭДС. Данный процесс, касающийся электрического равновесия, продолжается до тех пор, пока оно полностью не восстановится.


Одним из основных считается и режим короткого замыкания, при котором во вторичной цепи будет практически нулевое сопротивление. Ток во вторичной цепи достигает максимального значения, магнитное поле во вторичной обмотке также будет иметь наивысший показатель. Одновременно, магнитное поле в первичной обмотке уменьшается и становится минимальным. Следовательно, происходит и снижение индуктивного сопротивления в этой обмотке. В то же время возрастает ток, потребляемый первичной цепью. Данная ситуация приводит к возникновению режима короткого замыкания, опасного не только для самого трансформатора, но и для всей цепи. Защита от короткого замыкания обеспечивается путем установки предохранителей в первичной или вторичной цепи.

Особенности работы трансформатора тока в разных условиях:

  • Режим работы приближается к короткому замыканию, поскольку сопротивление нагрузки, подключаемой совместно со вторичной обмоткой, имеет минимальное значение. Фактически, работа трансформатора тока происходит в режиме короткого замыкания.
  • Трансформатор тока своим режимом работы существенно отличается от других трансформаторных устройств. При изменении нагрузки в обычном трансформаторе, значение магнитного потока в сердечнике не изменяется при условии постоянно приложенного напряжения.

В каком режиме работает измерительный трансформатор напряжения

Важнейшими элементами высоковольтных цепей являются измерительные трансформаторы напряжения. Данные устройства предназначены для понижения высокого напряжения, после чего пониженное напряжение может питать измерительные цепи, релейную защиту, автоматику и учет, а также другие элементы. Таким образом, трансформаторы напряжения позволяют измерять напряжение в высоковольтных сетях, от них поступает питание на катушки реле минимального напряжения, счетчики, ваттметры, фазометры, а также на аппаратуру, контролирующую состояние изоляции сети.

Тороидальный трансформатор

С помощью трансформатора осуществляется понижение высокого напряжения до стандартных значений. С их помощью происходит разделение измерительных цепей и релейной защиты с первичными цепями высокого напряжения. Подключение первичной обмотки производится к источнику входного напряжения сети, а вторичная обмотка соединяется параллельно с катушками реле и измерительных приборов. Работа трансформатора напряжения осуществляется в режиме, приближенном к холостому ходу. Это связано с высоким сопротивлением приборов, подключенных параллельно и низким током, потребляемым ими.


Для обеспечения нормальной работы вторичных цепей установка трансформаторов напряжения может выполняться не только на шинах подстанции, но и на каждой точке подключения. Перед началом электромонтажных работ необходимо осмотреть устройство, проверить целостность изоляции, исправность узлов и элементов. С целью дальнейшей безопасной эксплуатации трансформатора, его корпус и вторичная обмотка заземляется. В результате, создается защита от возможного перехода высокого напряжения во вторичные цепи в случае пробоя изоляции.

Каждый трансформатор обладает определенной номинальной погрешностью и классами точности, составляющими 0,2; 0,5; 1; 3. Уровень погрешности зависит от конструкции магнитопровода, размеров вторичной нагрузки и других факторов. Компенсировать погрешность напряжения можно, если уменьшить количество витков первичной обмотки и компенсировать угловую погрешность специальными компенсирующими обмотками.

На какие режимы работы рассчитаны измерительные трансформаторы а) напряжения, б) тока?

1.а) холостой ход; б) короткое замыкание.
2.а) короткое замыкание; б) холостой ход.
3.оба на режим короткого замыкания.
4. оба на режим холостого хода.

Лучший ответ

Трансформатор напряжения работает в режиме, близком к холостому ходу.
Трансформатор тока - на режим, близкий к короткому замыканию.

Остальные ответы

Первый вариант

Трансформатор напряжения. Его выполняют в виде двухобмоточного понижающего трансформатора (рис. 2.72, а) . Для обеспечения безопасности работы обслуживающего персонала вторичную обмотку тщательно изолируют от первичной и заземляют. Условное обозначение трансформатора напряжения такое же, как двухобмоточного трансформатора.

Так как сопротивления обмоток вольтметров и других приборов, подключаемых к трансформатору напряжения, велики, то он практически работает в режиме холостого хода
Трансформатор тока.
Сопротивления обмоток амперметров и других приборов, подключаемых к трансформатору тока, обычно малы. Поэтому он практически работает в режиме короткого замыкания, при котором токи I1 и I'2 во много раз больше тока I0, и с достаточной степенью точности можно считать, чтоI1 = I'2 = I2/k.

Трансформатор тока и напряжения. режим работы трансформаторов тока, трансформаторов напряжения.

Трансформатор напряжения. Основные понятия
Трансформатор напряжения – аппарат, который предназначен для понижения высокого напряжения до стандартного значения: 100 В и 100/корень из 3 ,
которое необходимо для работы устройств защиты и автоматики электрооборудования, учета электрической энергии и подключения измерительных приборов, а также безопасности обслуживающего персонала.
Сопротивление приборов и устройств, подключенных параллельно к трансформатору напряжения, большое, их ток нагрузки небольшой. Из этого можно сделать вывод, что режим работы трансформатора, по сути, близок к режиму холостого хода.
Существует общепринятое диспетчерское наименование аппарата в электроустановках – ТН, в зависимости от рабочего напряжения:
ТН-10кВ, ТН-35кВ, ТН-110кВ и т. п. Первичная обмотка ТН-6кВ и ТН-35кВ подключаются в сеть через высоковольтные предохранители. ТН-110кВ, как правило, подключается к сети без предохранителей, так как повреждение данных аппаратов происходит достаточно редко.
Для защиты вторичной обмотки ТН всех классов напряжения от короткого замыкания устанавливают предохранитель или автоматический выключатель. Последний применяют в том случае, если цепи напряжения ТН подключены к быстродействующим защитам электрооборудования.

Основные меры безопасности при обслуживании трансформатора напряжения

Для обеспечения безопасности обслуживающего персонала от попадания высокого напряжения первичной обмотки на вторичную, одна из вторичных обмоток заземляется.

Для проведения плановых или аварийных ремонтов трансформатора напряжения необходимо вывести в его в ремонт, то есть отключить и заземлить. При выводе ТН в ремонт следует создать видимый разрыв по стороне высшего напряжения – отключением разъединителя или снятием высоковольтных предохранителей, а также по стороне низкого напряжения снятием низковольтных предохранителей или испытательных блоков, а при их отсутствии отсоединением и закорачиванием выводов вторичных обмоток.
Создание видимого разрыва по стороне низкого напряжения необходимо для предотвращения обратной трансформации, то есть появления напряжения на первичной обмотке от напряжения на вторичной обмотки при ошибочном объединении вторичных цепей от другого ТН, находящегося в работе. Трансформатор тока – электромагнитный аппарат, который предназначен для понижения первичного тока до стандартного значения один или пять ампер, приемлемого для подключения измерительных приборов, токовых цепей счетчиков электрической энергии и устройств релейной защиты и автоматики.
В электроустановках всех классов напряжения существует общепринятое диспетчерское наименование трансформатора тока – ТТ-0,4кВ, ТТ-10кВ, ТТ-35кВ и т. п.
Первичная обмотка ТТ подключается в разрыв фазы, то есть по первичной обмотке течет ток нагрузки фазы. Существуют также трансформаторы тока проходного типа, которые одеваются на кабель или шину.
Для того, чтобы подключить ТТ, необходимо убедиться в том, что он соответствует параметрам электрической сети. Номинальное напряжение устанавливаемого ТТ должно соответствовать рабочему напряжению сети. Существует такое понятие как коэффициент трансформации, являющий собой отношение номинального первичного тока ко вторичному:
KTT=I1ном /I2ном
Как правило, в паспорте трансформатора тока указывается коэффициент трансформации дробью, где числитель – номинальный первичный ток, знаменатель – вторичный ток. Приведем пример: 400/5, то есть номинальные значения тока первичной обмотки - 400 А, вторичной обмотки – 5 А. Следовательно, при выборе трансформатора тока необходимо учесть максимальный ток нагрузки линии. То есть для присоединения с максимально возможной нагрузкой В 480 А, ТТ с коэффициентом трансформации 400/5 не подходит. В этом случае подходящим вариантом будет установка аппарата с KTT=6

Измерительный трансформатор напряжения

трансформатор напряжения

Высоковольтный ТН(слева) и низковольтный ТН(справа)

Содержание

Принцип работы

Он состоит из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и 1-ой или 2-х вторичных обмоток(конструкцию конкретного устройства можно посмотреть в паспорте или каталоге от производителя).

В результате изготовления должен быть достигнут необходимый класс точности по:

Измерительный трансформатор напряжения по принципу работы не отличается от силового понижающего трансформатора или от трансформатора тока.

Ещё раз опишем работу трансформатора тока. По первичной обмотке проходит переменный ток, этот ток образует магнитный поток, который пронизывает магнитопровод и обмотки ВН и НН. Если ко вторичной обмотке подключить нагрузку, то по ней начнёт течь ток, который возникает из-за действия ЭДС(электродвижущая сила). ЭДС наводится из-за действия магнитного потока. Подбирая разное количество витков первичной и вторичной обмоток можно получить нужное напряжение на выходе.

Принцип работы трансформатора

Принцип работы трансформатора

Такие устройства работаю только на переменном напряжение. Если на ТН подавать постоянное напряжение, т.к. ЭДС не будет создаваться постоянным магнитным потоком.

Расшифровка ТН

расшифровка маркировки ТН

  • Н — трансформатор напряжения;
  • Т — трёхфазный;
  • О — однофазный;
  • С — сухой;
  • М — масляный;
  • К — каскадный либо с коррекцией;
  • А — антирезонансный;
  • Ф — в фарфоровом корпусе;
  • И — контроль Изоляции;
  • Л — в литом корпусе из эпоксида;
  • ДЕ — с ёмкостным делителем напряжения;
  • З — с заземляемой первичной обмоткой.
Также читайте: Что такое автотрансформатор(ЛАТР)

Коэффициент трансформации

Формула по вычислению коэффициента трансформации

Формула по вычислению коэффициента трансформации

Вторичное напряжение

Напряжения на вторичной обмотки:

Классы точности

Номинальные мощности трансформаторов для любого класса точности следует выбирать из ряда(В·А): 10; 15; 25; 30; 50; 75; 100; 150; 200; 300; 400; 500; 600; 800; 1000; 1200.

Виды и классификации

Основные классификации трансформаторов:

виды изоляции

  1. По числу фаз.
  2. По наличию или отсутствию заземления вывода,
  3. По принципу действия.
  4. По числу ступеней трансформации.
  5. По наличию компенсационной обмотки или обмотки для контроля изоляции сети.
  6. По виду изоляции:
  7. По особенностям конструктивного исполнения.
  • наружная,
  • внутренняя,
  • встроенный в силовой трансформатор,
  • установка отдельным элементом.

Основные признаки трансформаторов и их обозначения приведены в таблице:

конструктивное исполнение трансформаторов

Трёхобмоточный трансформатор следует изготовлять с двумя вторичными обмотками:

  • основной,
  • дополнительной.

Условия выбора ТН

Устройство выбирается по следующим критериям:

  1. Номинальное напряжение ТН = Напряжение уставки.
  2. Схема соединение обмоток должна совпадать со схемой приборов.
  3. По классу точности.
  4. Вторичной нагрузке ТН ⩽ нагрузке приборов.

Более подробно можете прочитать в учебнике(со страницы 301): Смотреть

Режим работы

ТН работает в режиме близко к холостому ходу, так как нагрузка на выходную катушку минимальная.

Цена трансформаторов напряжения

Цены сильно зависят от конструкции и класса напряжения:

Схемы подключения

Схемы соединений однофазных ТН:

однофазные

Схемы соединений трёхфазных ТН:

1

2

3

Схемы и группы соединений обмоток трёхфазных трёхобмоточных трансформаторов с основной и дополнительной вторичными обмотками

Также читайте: Трёхфазный масляный трансформатор - ТМФ

4

5

Испытания на устойчивость к токам короткого замыкания

К первичным обмоткам трансформаторов подводят напряжение, равное 0,9-1,05 номинального, при разомкнутых вторичных обмотках. Затем одну из вторичных обмоток с помощью специального устройства закорачивают и выдерживают режим в течение 1 с. При этом напряжение на выводах первичной обмотки должно сохраняться в указанных пределах.

Видео

Видео про трансформатор напряжения ЗНОЛ.06-10.

Что такое трансформатор

Содержание

Немного истории

В 1876 году русский электротехник П. Н. Яблочков запатентовал трансформатор переменного тока с разомкнутым сердечником. Современному виду устройство обязано англичанам братьям Гопкинсон, а также румынами К. Циперановскому и О. Блати. С их помощью конструкция приобрела замкнутый магнитопровод и сохранила схему до наших дней.

виды-магнитопроводов

Виды магнитопроводов

Конструкция и принцип работы

Обязательными элементами практически любого устройства преобразования напряжения являются изолированные обмотки, формированные из проволоки или ленты. Они располагаются на магнитопроводе, представленном сердечником из ферромагнитного материала. Связь между катушками осуществляется при помощи магнитного потока. В случае работы с высокочастотными токами (100 и более кГц) сердечник отсутствует.

Принцип работы трансформатора

Принцип работы трансформатора

В принципе работы трансформатора сочетаются основные постулаты электромагнетизма и электромагнитной индукции. Его можно рассмотреть на примере простейшего прибора с двумя катушками и стальным сердечником. Подача переменного напряжения на первичную обмотку приводит к возникновение магнитного потока в магнитопроводе, после чего во вторичной и первичной обмотке возникает ЭДС индукции, если подключить нагрузку ко вторичной обмотке то потечёт ток. Частота напряжения на выходе остаётся неизменной, а его величина зависит от соотношения витков катушек.

Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).

Также читайте: Однофазный литой трансформатор тока - ТЛК

Формула по вычислению коэффициента трансформации

Формула по вычислению коэффициента трансформации

Конструкция силового трансформатора:

Конструкция трансформатора

Режимы работы

Характеристики трансформаторов определяются условиями работы, где ключевая роль отводится сопротивлению нагрузки. За основу берутся следующие режимы:

режимы работы

  1. Холостого хода. Выводы вторичной цепи находятся в разомкнутом состоянии, сопротивление нагрузки приравнивается бесконечности. Измерения тока намагничивания, протекающего в первичной обмотке, даёт возможность подсчитать КПД трансформатора. При помощи этого режима вычисляется коэффициент трансформации, а также потери в сердечнике;
  2. Под нагрузкой (рабочий). Вторичная цепь нагружается определённым сопротивлением. Параметры протекающего по ней тока напрямую связаны с соотношением витков катушек.
  3. Короткого замыкания. Концы вторичной обмотки закорочены, сопротивление нагрузки равно нулю. Режим информирует о потерях, которые вызываются нагревом обмоток, что на профессиональном языке значится «потерями в меди».

Информация о поведении трансформатора в различных режимах получаются опытным путём с использованием схем замещения.

Классификации

Трансформаторы классифицируются по ряду параметров, таким как:

  • Назначение. Применяются: для изменения напряжения, измерения тока, защиты электрических цепей, как лабораторные и промежуточные устройства.
  • Способ установки. В зависимости от размещения и мобильности трансформатор может быть: стационарным, переносным, внутренним, внешним, опорным, шинным.
  • Число ступеней. Устройства подразделяются на одноступенчатые и каскадные.
  • Номинальное напряжение. Бывают низко- и высоковольтными.
  • Изоляция обмоток. Наиболее часто используется бумажно-масляная, сухая, компаундная.

Помимо этого, преобразовательные устройства разнятся типами, каждому из которых присуща своя система классификации.

Силовой

Наибольшее распространение получил силовой трансформатор. Приборы с непосредственным преобразованием переменного напряжения, рассчитанные на большую мощность, востребованы различными областями электроэнергетики. Они применяются на линиях электропередач с напряжениями 35–1150 кВ, в городских электросетях, работающих с напряжением 6 и 10 кВ, в обеспечении конечных потребителей напряжением 220/380В. С помощью устройств осуществляется питание всевозможных электроустановок и приборов в диапазоне от долей до сотен тысяч вольт.

силовой

Силовой трансформатор

Измерительные

Трансформаторы тока (ТА) понижают ток до необходимых показателей. Схема их работы отличается последовательным включением первичной обмотки и нагрузки. В то же время вторичная обмотка, находящаяся в состоянии, близком к короткому замыканию, используется для подключения измерительных приборов, исполнительных и индикаторных устройств. С помощью ТА осуществляется гальваническая развязка, что позволяет при измерениях отказаться от шунтов.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

С помощью трансформаторов напряжения (ТН), тоже самое что и ТА только по напряжению. Помимо преобразования входных параметров, электроаппаратура и её отдельные элементы получают защиту от высокого вольтажа.

трансформатор напряжения

Высоковольтный ТН(слева) и низковольтный ТН(справа)

Импульсный

При необходимости преобразования сигналов импульсного характера применяются импульсные трансформаторы (ИТ). Изменяя амплитуду и полярность импульсов, устройства сохраняют их длительность и практически не затрагивают форму.

Автотрансформатор

В автотрансформаторах обмотки составляют одну цепь и взаимодействуют посредством электромагнитной и электрической связи. В отличие от других типов преобразователей, устройства могут содержать всего 3 вывода, позволяющих оперировать с различными напряжениями. Приборы выделяются высоким коэффициентом полезного действия, что особо сказывается при незначительном перепаде входного и выходного напряжения.

Однофазный(слева) и трёхфазный(справа)

Однофазный(слева) и трёхфазный(справа)

Не имея гальванической развязки, представители данного типа повышают риск высоковольтного удара по нагрузке. Обязательным условием работы устройств являются надёжное заземление и низкий коэффициент трансформации. Недостаток компенсируется меньшим расходом материалов при изготовлении, компактностью и весом, стоимостью.

Разделительный

Для разделительных трансформаторов взаимодействие между обмотками исключено. Устройства повышают безопасность электрооборудования при повреждённой изоляции.

Разделительный

Разделительный трансформатор

Согласующий

Согласующие трансформаторы применяются для выравнивания сопротивлений между каскадами схем электроники. Сохраняя форму сигнала, они играют роль гальванической развязки.

Пик-трансформатор

С помощью пик-трансформатора синусоидальное напряжение преобразуется в импульсное. При этом импульсы меняют полярность с каждым полупериодом.

Сдвоенный дроссель

Особенностью сдвоенного дросселя является идентичность обмоток. Взаимная индукция катушек делает его более эффективным, по отношению стандартным дросселям. Устройства используются как входные фильтры в блоках питания, в звуко- и цифровой технике.

Сдвоенный дроссель

Сдвоенный дроссель

Сварочный

Помимо вышеперечисленных, существует понятие сварочные трансформаторы. Специализированные приборы для сварочных работ понижают напряжение бытовой сети при одновременном повышении тока, измеряемого тысячами ампер. Регулировка последнего осуществляется разделением обмоток на сектора, что отражается на индуктивном сопротивлении.

Сварочный

Сварочный трансформатор

Расшифровка основных параметров

Разнообразие в конструкции и широкий диапазон параметров трансформаторов привели к необходимости их маркировки по специальному стандарту. Не имея под рукой технического описания, характеристики устройства можно выяснить по нанесённой на его поверхности информации, выраженной буквенно-цифровым кодом.

Маркировка силовых трансформаторов содержит 4 блока.

блоки расшифровка

Расшифруем первые три блока:

Цена трансформаторов

Цена трансформатора варьируется в широких пределах и зависит от множества факторов. Здесь учитывается тип и назначение, мощность и другие электрические параметры. На стоимости устройств отражается сложность производства и используемые материалы. Немаловажное значение играет защита и другие особенности.

Трансформатор известного производителя не может быть дешёвым. Однако покупатель может быть уверен, что приобретённое им устройство полностью соответствует указанным характеристикам, не выйдет из строя при первом включении и гарантированно отработает заложенный ресурс.

Высоковольтные трансформаторы можно оценивать по их мощности, то есть если мощность трансформатора 63 МВт(63000 кВА), то он стоит около 63 млн рублей, но это примерна оценка.

Видео: Как проверить исправность трансформатора

Измерительный трансформатор тока

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

Содержание

Особенности конструкции и принцип работы

Принцип работы трансформаторов тока основан на использовании закона электромагнитной индукции.

Прибор состоит из следующих элементов:

Обмотки накручены вокруг сердечника, изолированно от него и друг от друга. Иногда первичная обмотка может заменяться медной или алюминиевой шиной. Трансформация величины электрического тока происходит за счёт разницы количества витков первичной и вторичной обмоток. В большинстве случаев устройство предназначено для снижения показателя тока, поэтому вторичная обмотка выполняется с меньшим количеством витков, нежели первичная.

Электроток подаётся на первичную обмотку при последовательном подключении. В результате на катушке формируется магнитный поток и наводится электродвижущая сила, вызывающая возникновение тока на выходной катушке.

К выходной обмотке подключают потребляющий прибор, в зависимости от целей, для которых используется устройство.

Некоторые устройства выполняются с несколькими выходными катушками, что позволяет путём переключения изменять величину трансформации электрического тока. В целях безопасности, для обеспечения защиты при пробое изоляции, выходной контур заземляется.

Виды трансформаторов тока

Данные электротехнические устройства классифицируются по нескольким характеристикам. В зависимости от назначения токовые трансформаторы могут быть:

  • защитными – снижающими параметры тока для предотвращения выхода из строя потребляющих устройств;
  • измерительными – через которые подключаются средства измерения, в том числе электросчётчики;
  • промежуточными – устанавливаемыми в системы релейной защиты;
  • лабораторными – используемыми для исследовательских целей, обладающими низкой погрешностью измерения, нередко – с несколькими коэффициентами трансформации.
Также читайте: Импульсный трансформатор

Учитывая характер условий эксплуатации, различают трансформаторы:

    для наружной установки – защищённые от воздействия атмосферных факторов, которые можно использовать на открытом воздухе;

В зависимости от исполнения первичных обмоток различают устройства:

  • одновиткового исполнения;
  • многовитковые;
  • шинные.

исполнение первичных обмоток

С учётом способа установки их подразделяют на следующие типы:

опорный и проходной та

По числу ступеней изменения тока выделяют трансформаторы:

  • одноступенчатого,
  • двухступенчатого (каскадного) типа.

Устройства, в зависимости от величины напряжения, на которое они рассчитаны делят на предназначенные для работы в условиях более и менее 1000 В.

Для изготовления сердечника применяется специальная трансформаторная сталь. Изоляция выполняется сухой (бакелитовой, фарфоровой), обычной или бумажно-масляной.

Расшифровка маркировки

Расшифровка маркировки трансформаторов тока

Расшифровка маркировки трансформаторов тока

Технические параметры

Трансформаторы тока характеризуются следующими индивидуальными параметрами:

При выборе устройства необходимо учитывать значение указанных и других характеристик.

Схемы подключения трансформаторов тока

Силового оборудования

Схема подключения для 110 кВ и выше:

подключение тт на 110 кВ

Схема подключения для 6-10 кВ в ячейках КРУ:

подключение тт на 10 кв

Вторичные цепи

Схема включение трансформатора тока в полную звезду:

1

Схема включение трансформатора тока в неполную звезду(З а счет распределения токов на дополнительном приборе получается отобразить векторную сумму фаз А и С, которая противоположно направлена вектору фазы В при симметричном режиме нагрузки сети):

4

Схема включение трансформатора тока в неполную звезду(для контроля линейного тока с помощью реле):

3

Схема включение трансформатора тока в полную звезду с подключением обмотки реле к фильтру нулевой последовательности(ФТНП):

2

Популярные виды и стоимость трансформаторов

Бытового потребителя больше интересуют токовые трансформаторы, используемые для подключения электросчётчиков. В продаже предлагаются приборы типов:

Цена зависит от разновидности, конструкции, характеристик и напряжений на котором будет использоваться ТН:

Возможные неисправности

Указанные устройства чаще всего выходят из строя в результате повреждения изоляции, вызванного перегревом, непредусмотренным механическим воздействием или ошибкой при сборке.

Чтобы проверить состояние прибора, измеряют сопротивление межвитковой изоляции. Если она меньше установленного значения, оборудование нуждается в замене или ремонте.

Также для диагностики используются специальные приборы – тепловизоры, позволяющие проверить состояние всей действующей схемы. Наиболее сложные диагностические процедуры производятся в лабораторных условиях. Своевременная диагностика позволяет исключить аварийные ситуации и обеспечить нормальную работу устройств.

Измерительные трансформаторы напряжения


GeekBrains

Измерительный трансформатор напряжения служит для понижения высокого напряжения, подаваемого в установках переменного тока на измерительные приборы и реле защиты и автоматики.

Для непосредственного включения на высокое напряжение потребовались бы очень громоздкие приборы и реле вследствие необходимости их выполнения с высоковольтной изоляцией. Изготовление и применение такой аппаратуры практически неосуществимо, особенно при напряжении 35 кВ и выше.

Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя их пределы измерения; обмотки реле, включаемых через трансформаторы напряжения, также могут иметь стандартные исполнения.

Кроме того, трансформатор напряжения изолирует (отделяет) измерительные приборы и реле от высокого напряжения, благодаря чему обеспечивается безопасность их обслуживания.

Трансформаторы напряжения широко применяются в электроустановках высокого напряжения, от их работы зависит точность электрических измерений и учета электроэнергии, а также надежность действия релейной защиты и противоаварийной автоматики.

Измерительный трансформатор напряжения по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток.

На рис. 1,а показана схема трансформатора напряжения с одной вторичной обмоткой. На первичную обмотку подается высокое напряжение U1, а на напряжение вторичной обмотки U2 включен измерительный прибор. Начала первичной и вторичной обмоток обозначены буквами А и а, концы — X и х. Такие обозначения обычно наносятся на корпусе трансформатора напряжения рядом с зажимами его обмоток.

Отношение первичного номинального напряжения к вторичному номинальному напряжению называется номинальным коэффициентом трансформации трансформатора напряжения Кн = U1 ном / U2 ном

Схема и векторная диаграмма трансформатора напряжения

Рис. 1. Схема и векторная диаграмма трансформатора напряжения: а - схема, б — векторная диаграмма напряжений, в — векторная диаграмма напряжений

При работе трансформатора напряжения без погрешностей его первичное и вторичное напряжение совпадают по фазе и отношение их величин равно K н. При коэффициенте трансформации K н=1 напряжение U 2 =U 1 (рис. 1,в).

Условные обозначения: З — один вывод заземляется; О — однофазный; Т — трехфазный; К — каскадный или с компенсационной обмоткой; Ф — с фарфоровой наружной изоляцией; М — масляный; С — сухой (с воздушной изоляцией); Е — емкостный; Д — делитель.

Выводы первичной обмотки (ВН) имеют обозначения А, Х для однофазных и A, B, С, N для трехфазных трансформаторов. Выводы основной вторичной обмотки (НН) имеют соответственно обозначения a, x и a, b, c, N, выводы вторичной дополнительной обмотки — ад и хд.

Начала первичных и вторичных обмоток присоединяются соответственно к выводам А, В, С и а, b, с. Основные вторичные обмотки соединяются обычно в звезду (группа соединения 0), дополнительные — по схеме разомкнутого треугольника. Как известно, в нормальном режиме работы сети напряжение на зажимах дополнительной обмотки близко к нулю (напряжение небаланса Uнб = 1 — 3 В), а при замыканиях на землю равно утроенному значению 3UО напряжения нулевой последовательности UО фазы.

В сети с заземленной нейтралью максимальное значение 3U0 равно фазному напряжению, с изолированной — утроенному фазному напряжению. Соответственно дополнительные обмотки выполняются на номинальное напряжение Uном = 100 В и 100/3 В.

Номинальным напряжением ТV называется номинальное напряжение его первичной обмотки; это значение может отличаться от класса изоляции. Номинальное напряжение вторичной обмотки принимается равным 100, 100/3 и 100/3 В. Как правило, трансформаторы напряжения работают в режиме холостого хода.

Измерительные трансформаторы напряжения с двумя вторичными обмотками

Измерительные трансформаторы напряжения

Трансформаторы напряжения с двумя вторичными обмотками, кроме питания измерительных приборов и реле, предназначаются для работы на устройствах сигнализации замыканий на землю в сети с изолированной нейтралью или на защиту от замыканий на землю в сети с заземленной нейтралью.

Схема трансформатора напряжения с двумя вторичными обмотками показана на рис. 2,а. Выводы второй (дополнительной) обмотки, используемой для сигнализации или защиты при замыканиях на землю, обозначены ад и хд.

На рис. 2,6 приведена схема включения трех таких трансформаторов напряжения в трехфазной сети. Первичные и основные вторичные обмотки соединены в звезду. Нейтраль первичной обмотки заземлена. На измерительные приборы и реле от основных вторичных обмоток могут быть поданы три фазы и нуль. Дополнительные вторичные обмотки соединены по схеме разомкнутого треугольника. От них на устройства сигнализации или защиты подается сумма фазных напряжений всех трех фаз.

При нормальной работе сети, в которой включен трансформатор напряжения, эта векторная сумма равна нулю. Это видно из векторных диаграмм рис. 2,в, где Uа, Vв и Uc — векторы фазных напряжений, приложенных к первичным обмоткам, a Uaд, У b д и Ucд - векторы напряжений первичной н вторичной дополнительной обмотки. напряжений на вторичных дополнительных обмотках, совпадающие по направлению с векторами на соответствующих первичных обмотках (так же, как на рис. 1,в).

Трансформатор напряжения с двумя вторичными обмотками

Рис. 2. Трансформатор напряжения с двумя вторичными обмотками. а — схема; б — включение в трехфазную цепь; в — векторная диаграмма

Сумма векторов Uaд, U b д и Ucд получена путем их совмещения соответственно схеме соединения дополнительных обмоток, при этом принималось, что стрелки векторов как первичных, так и вторичных напряжений соответствуют началам обмоток трансформатора.

Результирующее напряжение 3U0 между концом обмотки фазы С и началом обмотки фазы А па диаграмме равно нулю.

В действительных условиях обычно на выходе разомкнутого треугольника имеется ничтожно малое напряжение небаланса, не превышающее 2 - 3% номинального напряжения. Этот небаланс создается всегда имеющимися незначительной несимметрией вторичных фазных напряжений и небольшим отклонением формы их кривой от синусоиды.

Напряжение, обеспечивающее надежную работу реле, приключаемых к цепи разомкнутого треугольника, возникает только при замыканиях на землю со стороны первичной обмотки трансформатора напряжения. Так как замыкания на землю связаны с прохождением тока через нейтраль, появляющееся при этом напряжение на выходе разомкнутого треугольника согласно методу симметричных составляющих называют напряжением нулевой последовательности и обозначают 3U0. В этом обозначении цифра 3 указывает, что напряжение в данной цепи является суммарным для трех фаз. Обозначение 3U0 применяется также и для выходной цепи разомкнутого треугольника, подаваемой на реле сигнализации или защиты (рис. 2,6).

Векторные диаграммы напряжений первичной и вторичной дополнительной обмоток при однофазном замыкании на землю

Рис. 3. Векторные диаграммы напряжений первичной и вторичной дополнительной обмоток при однофазном замыкании на землю: а - в сети с заземленной нейтралью, б - в сети с изолированной нейтралью.

Наибольшее значение напряжение 3U0 имеет при однофазном замыкании на землю. При этом следует иметь в виду, что максимальная величина напряжения 3U0 в сети с изолированной нейтралью значительно, больше, чем в сети с заземленной нейтралью.

Распространенные схемы включения измерительных трансформаторов напряжения

Простейшая схема с использованием одного однофазного трансформатора напряжения, показанная на рис. 1,а, применяется в пусковых шкафах двигателей и на переключательных пунктах 6 - 10 кВ для включения вольтметра и реле напряжения устройства АВР.

На рис.4 приведены схемы включения однофазных трансформаторов напряжения с одной обмоткой для питания трехфазных вторичных цепей. Группа из трех соединенных по схеме звезда - звезда однофазных трансформаторов, показанная на рис. 4,а, применяется для питания измерительных приборов, счетчиков и вольтметров контроля изоляции в электроустановках 0,5 - 10 кВ с изолированной нейтралью и неразветвленной сетью, где не требуется сигнализация возникновения однофазных замыканий на землю.

Для обнаружения "земли" по этим вольтметрам они должны показывать величины первичных напряжений между фазами и землей (см. векторную диаграмму на рис. 3,6). Для этого нуль обмоток ВН заземляется и вольтметры включаются на вторичные фазные напряжения.

Схемы включения однофазных измерительных трансформаторов напряжения с одной вторичной обмоткой

Рис. 4. Схемы включения однофазных измерительных трансформаторов напряжения с одной вторичной обмоткой: а - схема звезда - звезда для электроустановок 0,5 - 10 кВ с изолированной нейтралью, б — схема открытого треугольника для электроустановок 0,38 - 10 кВ, в - то же для электроустановок 6 - 35 кВ, г - включение трансформаторов напряжения 6 -18 кВ по схеме треугольник - звезда для питания устройств АРВ синхронных машин.

На рис. 4, 6 и в трансформаторы напряжения, предназначенные для питания измерительных приборов, счетчиков и реле, включаемых на междуфазные напряжения, включены по схеме открытого треугольника. Эта схема обеспечивает симметричные междуфазные напряжения Uab , Ubc, U c a при работе трансформаторов напряжения в любом классе точности.

Схема рис.4,б применяется для питания неразветвленных цепей напряжения электроустановок 0,38 -10 к В , что позволяет устанавливать заземление вторичных цепей непосредственно у трансформатора напряжения.

Во вторичных цепях схемы, показанной на рис. 4,в, вместо предохранителей установлен двухполюсный автомат, при срабатывании которого блок-контакт замыкает цепь сигнала " обрыв напряжения " . Заземление вторичных обмоток выполнено на щите в фазе B, которая дополнительно заземлена непосредственно у трансформатора напряжения через пробивной предохранитель. Рубильник обеспечивает отключение вторичных цепей от трансформатора напряжения с видимым разрывом. Эта схема применяется в электроустановках 6 - 35 кв при питании разветвленных вторичных цепей от двух и более трансформаторов напряжения.

На рис. 4 ,г трансформаторы напряжения включены по схеме треугольник - звезда, обеспечивающей вторичное линейное напряжение U = 173 В , что необходимо для питания устройств автоматического регулирования возбуждения (АРВ) синхронных генераторов и компенсаторов. С целью повышения надежности работы АРВ предохранители во вторичных цепях не устанавливаются, что допускается ПУЭ для неразветвленных цепей напряжения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Как работает трансформатор напряжения


GeekBrains

Для преобразования переменного напряжения одной величины в переменное напряжения другой величины, используют трансформатор напряжения. Трансформатор напряжения работает благодаря явлению электромагнитной индукции: изменяющийся во времени магнитный поток порождает ЭДС в пронизываемой им обмотке (или обмотках).

Первичная обмотка трансформатора соединяется своими выводами с источником переменного напряжения, а к выводам вторичной обмотки присоединяется нагрузка, которую необходимо питать напряжением более низким или более высоким, чем напряжение источника, от которого питается данный трансформатор.

Благодаря наличию сердечника (магнитопровода), магнитный поток, создаваемый первичной обмоткой трансформатора, не рассеивается где попало, а сосредоточен главным образом в ограниченном сердечником объеме. Переменный ток, действующий в первичной обмотке, намагничивает сердечник то в одном, то — в противоположном направлении, при этом изменение магнитного потока происходит не рывками, а гармонически, синусоидально (если речь идет о сетевом трансформаторе).

Можно сказать, что железо сердечника увеличивает индуктивность первичной обмотки, то есть повышает ее способность создавать магнитный поток при прохождении тока, и улучшает свойство препятствовать нарастанию тока при приложении к выводам обмотки напряжения. Поэтому на холостом ходу (в не нагруженном режиме) трансформатор потребляет сущие миллиамперы, хотя изменяющееся напряжение на обмотку действует.

Вторичная обмотка является у трансформатора принимающей. Она принимает изменяющийся магнитный поток, порождаемый током первичной обмотки, и посылаемый благодаря магнитопроводу сквозь свои витки. Изменяющийся с определенной скоростью магнитный поток, пронизывающий витки вторичной обмотки, по закону электромагнитной индукции наводит в каждом ее витке определенную ЭДС. Эти индуцированные ЭДС складываются в каждый момент времени от витка к витку, формируя напряжение вторичной обмотки (напряжение холостого хода трансформатора).

Здесь своевременным будет отметить, что чем быстрее изменяется магнитный поток в сердечнике, тем большее напряжение наводится на каждом витке вторичной обмотки трансформатора. А поскольку и первичная и вторичная обмотки пронизываются одним и тем же магнитным потоком (создаваемым переменным током первичной обмотки), то и напряжение на каждом витке как первичной, так и вторичной обмотки, получается одинаковым, исходя из величины магнитного потока и скорости его изменения.

Если копнуть глубже, то изменяющийся магнитный поток в сердечнике создает в пространстве вокруг себя электрическое поле, напряженность которого тем больше, чем выше скорость изменения магнитного потока, и чем больше величина этого изменяющегося магнитного потока. Данное вихревое электрическое поле действует на электроны, расположенные в проводе вторичной обмотке, толкает их в определенную сторону, поэтому на концах вторичной обмотки можно измерить электрическое напряжение.

Если ко вторичной обмотке трансформатора подключить нагрузку, то по ней потечет ток, а значит в сердечнике возникнет магнитный поток, создаваемый этим током вторичной обмотки.

Магнитный поток, порождаемый током вторичной обмотки, то есть током нагрузки, окажется направлен (см. правило Ленца) против магнитного потока первичной обмотки, и значит наведет в первичной обмотке противо-ЭДС, которая приведет к росту тока в первичной обмотке, и соответственно - к увеличению потребляемой трансформатором от сети мощности.

Возникновение противоположного первичному, вторичного магнитного потока внутри сердечника, в качестве эффекта от подключенной нагрузки, эквивалентно уменьшению индуктивности первичной обмотки. Вот почему трансформатор под нагрузкой потребляет значительно больше электрической энергии, чем на холостом ходу.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Читайте также: