Горизонтальные несущие элементы перекрытия прямоугольного или таврового сечения называются

Обновлено: 07.07.2024

Гражданские здания и их конструкции. Отдельные опоры и прогоны

Отдельные опоры и прогоны относятся к основным конструктивным элементам здания.

Отдельными опорами называют столбы, или колонны, которые поддерживают перекрытия, крышу, а в некоторых случаях и стены и передают нагрузки от них на фундамент.

В качестве опор для конструкций перекрытий или покрытий зданий со стенами из мелкоразмерных элементов могут служить отдельные столбы из кирпича или камня, железобетонные, металлические и асбестоцементные стойки.

Сечение вертикальных опор из кирпича принимается в зависимости от величины передаваемой нагрузки, расстояний между опорами, этажности здания, его назначения и общего конструктивного решения. Минимальное сечение несущего кирпичного столба принимают 510 х 380 мм. Кладка столбов ведется из кирпича марки не ниже 100, на растворе марки более 50, с обязательной перевязкой швов в каждом ряду (рис. 1). Для увеличения несущей способности столбов кладку армируют сеткой диаметром 5—6 мм, с размерами ячеек 100—150 мм, через 2—4 ряда кладки.

Опоры и прогоны

Нередко для повышения несущей способности таких опор их заключают в сварной каркас из уголков и полос стали с последующим оштукатуриванием по металлической сетке. На каждом этаже, на уровне конструкций перекрытий и прогонов на кладку столба укладывают железобетонные плиты.

При значительных нагрузках вместо каменных столбов применяют железобетонные колонны, которые вместе с прогонами образуют каркас здания. Колонны могут быть прямоугольного и круглого сечения.

Значительные нагрузки, при небольших размерах поперечного сечения, способны воспринимать стойки из асбестоцементных труб с внутренней полостью, заполненной бетоном и арматурой.

Прогоны — это горизонтальные несущие элементы прямоугольного или таврового сечения. Опирают прогоны на колонны, либо на железобетонные подушки в кирпичных стенах или столбах, путем приваривания стальных деталей заведенных в тело колонны и ригеля. Концы прогонов на столбах соединяют стальными накладками. В наружных стенах имеются Г-образные анкеры, которые заделывают в кладку.

Прогоны могут быть железобетонные, металлические и деревянные. В зданиях каркасного типа железобетонные элементы унифицированы.

Каркасно-панельное домостроение. Элементы несущего остова крупнопанельльных зданий

Каркасно-панельное домостроение, как и крупнопанельное, является полносборным, т.е. все конструктивные элементы таких зданий изготавливаются в заводских условиях и из этих элементов на строительных площадках собирают дома.В каркасно-панельном домостроении могут применяться следующие конструктивные схемы: с полным поперечным каркасом; с полным продольным каркасом; с полным пространственным каркасом; с неполным поперечным каркасом и несущими наружными продольными стенами; с полным безбалочным каркасом и с неполным безбалочным каркасом. Пространственная жёсткость зданий обеспечивается колоннами и опирающимися на них ригелями, а также диафрагмами жёсткости, объединёнными горизонтальными жёсткими дисками перекрытия.

Элементы:

а) Колонны. Колонны в полносборном железобетонном каркасе могут иметь длину (высоту) от одного до пяти этажей, что позволяет в каркасах зданий определенной этажности и высоты применять бесстыковые колонны . Такие колонны имеют поперечное сечение 300х300 мм и их устанавливают в зданиях высотой до пяти этажей и при сравнительно невысокой полезной нагрузке на перекрытия (до 280 МПа). Кроме бесстыковых колонн в каркасах могут применяться и стыкуемые элементы колонн высотой от одного до четырех этажей с поперечным сечением 400х400 мм и их используют в более высоких зданиях и под более высокие нагрузки.


В зависимости от вида каркаса (поперечный, продольный, пространственный), местоположения колонн в каркасе (средние и крайние ряды) и вида стеновых панелей (самонесущие и ненесущие) колонны на уровне каждого этажа могут быть одно-, двух-, трех- и четырехконсольными. Одноконсольные колонны устанавливают в крайних рядах поперечных каркасов с самонесущими стенами, двухконсольные – в крайних рядах продольных каркасов с самонесущими стенами и поперечных каркасов с ненесущими стенами, а также в средних рядах поперечных и продольных каркасов. Трех- и четырехконсольные колонны могут применяться в пространственных каркасах, при этом трехконсольные – в крайних рядах с самонесущими стенами, а четырехконсольные – в крайних рядах с ненесущими стенами и в средних рядах.

Рис. 4.2.Б. Вариант конструкции узла опирания балки на колонну каркаса:

а – общий вид узла; б – конструкция узла; 1 – колонна; 2 – балка; 3 – плита-настил (распорка) перекрытия; 4 – закладные детали; 5 – верхняя накладка; 6 - сварные швы

Кроме элементов колонн с консолями в каркасах с поэтажными платформенными стыками между элементами колонн могут также применяться бесконсольные элементы колонн высотой на этаж.

Торцы колонн или их элементов выполняют усиленными поперечным армированием и снабжают выпусками продольной арматуры, стальными оголовниками или закладными деталями для соединения этих колонн или их элементов между собой и с другими конструкциями. После сварки соединяемых элементов стыки омоноличиваются.

Б)Ригели

Горизонтальными несущими элементами в каркасах каркасно-панельных зданий, на которые укладывают несущие элементы перекрытий, являются опирающиеся на торцы или на обычные или скрытые консоли колонн железобетонные ригели прямоугольного сечения (одиночные или парные) или таврового сечения с одной или двумя полками в нижней части. При этом одиночные балки прямоугольного сечения опирают на торцы (платформенный стык) или консоли колонн, парные – на консоли колонн, а балки таврового сечения опирают на консоли (вариант скрытого стыка). Элементы перекрытий – плиты-настилы или плиты-панели - опирают по верху прямоугольных балок, а при тавровых или Z-образных балках их опирают на нижние полки балок, что позволяет уменьшить высоту этажа.

Размеры поперечных сечений балок зависят от величины перекрываемого пролета и величины воспринимаемых нагрузок. Применяют ригели высотой 450мм для зданий с пролётами 6 и 3 м с колоннами 300х300, 400х400мм. Ригели высотой 600 мм в зданиях с пролётами 9 м и колоннами 400х400мм. Ригели могут иметь как продольное, так и поперечное расположение.

На ригели опирают как многопустотные, так и рёбристые плиты.

в) Перекрытия

Перекрытия в каркасно-панельных зданиях с балочными каркасами выполняют из многопустотных или ребристых плит, при этом плитами перекрывают пролеты до 9 м. Номинальная ширина многопустотных плит-настилов или 1200, или 1500 или 1800 мм, а высота 220 или 300 мм. Ребристые плиты имеют номинальную ширину 1500 мм и высоту – 220 или 300 мм и их применяют или совместно с многопустотными настилами . Кроме многопустотных и ребристых плит-настилов для устройства перекрытий могут применяться плиты типа 2Т шириной 3000 мм и высотой 600 мм. Плиты-настилы и плиты типа 2Т в перекрытиях опирают на балки каркасов, при этом на прямоугольные балки их укладывают по верху, а на балки таврового сечения – на нижние полки.

Кроме плит-настилов в качестве несущих элементов перекрытий в зданиях с балочными каркасами могут применяться плиты-панели размером на перекрываемую ячейку (рис. 3.22.) и опирающиеся на балки каркаса, а в безбалочных каркасах - только плиты-панели размером на перекрываемую ячейку и опирающиеся своими усиленными углами непосредственно на торцы колонн каркаса (платформенный стык).

г) Стены-диафрагмы жесткости

Диафрагмы жёсткости представляют собой вертикально расположенные между колоннами на всю высоту здания внутренние стеновые панели, которые имеют полки для опирания плит перекрытия.

Поскольку в каркасно-панельных зданиях отсутствуют совместно работающие несущие продольные и поперечные стены, обеспечивающие пространственную жесткость и устойчивость несущего остова зданий, то каркасы этих зданий снабжают на всю высоту здания вертикальными стенами-диафрагмами, располагаемыми вплотную к колоннам вдоль и поперек здания. В плане здания стены-диафрагмы образуют ядра жесткости, имеющие крестообразную форму, форму прямоугольника или двутавра, или другую соответствующую форму. Стены-диафрагмы устраивают из железобетонных панелей толщиной не менее 140 мм и высотой на этаж и они имеют вверху двух- или односторонние полки-консоли для опирания несущих элементов перекрытий .



Рис. 4.7.А. Вариант поперечных сечений двух- и одно консольных железобетонных панелей стен-диафрагм жесткости

Панели стен-диафрагм могут быть глухими, с проемами, с вент.каналами, составными и др. Элементы составных стен-диафрагм между собой и стены-диафрагмы с колоннами и между собой соединяют сваркой закладных деталей, а швы между соединяемыми элементами заполняют раствором.

Компоновка ДЖтв плане может быть: П-образной, Н-образной, г-образной, т-образной и др.

ДЖ имеют свой монолитный фундамент шириной 400(500)мм.

д) Фундаменты

Конструктивные решения применяемых в каркасно-панельных зданиях фундаментов зависят от физико-механических характеристик грунтов основания площадки строительства и величины передаваемых на основание нагрузок. Фундаменты под колонны могут быть сборными железобетонными стаканного типа, свайными в виде куста свай под колонну с монолитными ростверками или сплошными в виде монолитной плиты. Под наружные самонесущие стены устраивают ленточные сборные или свайные ростверковые фундаменты.

Е) Балки и цокольные панели

Цокольная балка(панель) служит для опирания наруж.стен здания. Устанавливают по слою ц-п раствора(20мм) на обрезы фундаментов. Применяют цокольные балки высотой 460мм, толщина 250мм.

В зданиях с подвалами применяют цокольные панели , образующие стены подземных помещений. По верху балок и панелей устраивают гидроизоляцию толщиной 20 мм.

Ж)Стены

Панели несущих наружных стен изготовляют сплошными из бетонов на легких заполнителях, а при самонесущих стенах — также из двух- и трехслойных железобетонных панелей с утеплителем из минераловатных плит.

Длина панелей наружных стен равна шагу поперечных панельных стен-перегородок и для различных зданий в зависимости от их типа бывает 2,5; 2,8; 3,2; 3,6 и 6 м. Длина панелей поперечных стен для разных типов зданий бывает 5,2; 5,6 и 6 м.

Панели поперечных и продольных стен соединяют между собой сваркой закладных деталей и выпусков арматуры с последующим замоноличиванием стыков.

Проектирование плит перекрытий

Плиты перекрытий для уменьшения расхода ма­териалов проектируют облегченными - пустотными или ребристыми (рис. 7.2,а). При удалении бетона из рас­тянутой зоны сохраняют лишь ребра шириной, необходимой для размещения сварных каркасов и обеспечения прочности панелей по наклонному сечению. При этом плита в пролете между ригелями работает на изгиб как балка таврового сечения. Верхняя полка плиты также работает на местный изгиб между ребрами. Нижняя полка, образующая замкнутую пустоту, создает­ся при необходимости устройства гладкого потолка.

Рис. 7.2. Формы поперечного сечения плит перекрытий

Плиты изготовляют с пустотами различной формы: овальной, круглой и т. п. В панелях значительной шири­ны устраивают несколько рядом расположенных пустот (рис. 7.2.а).

Общий принцип проектирования плит перекрытий любой формы поперечного сечения состоит в удалении возможно большего объема бетона из растянутой зоны с сохранением вертикальных ребер, обеспечивающих прочность элемента по наклонному сечению, в увязке с технологическими возможностями завода - изготовителя.

По форме поперечного сечения плиты бывают с овальными, круглыми и вертикальными пустотами, ребристые с ребрами вверх (с устройством чистого пола по ребрам), ребристые с ребрами вниз, сплошные (рис. 7.2а - е).

В плитах с пустотами минимальная толщина полок 25—30 мм, ребер 30—35 мм; в ребристых плитах с ребра­ми вниз толщина полки (плиты) 50—60 мм.

При заданной длине плит разных типов ширину их принимают такой, чтобы получить градации массы, не превышающие грузоподъемность монтажных кранов 3…5 т, а иногда и больше. Плиты шириной 3,2 м при проле­те 6 м перекрывают целиком жилую комнату; масса та­ких плит с пустотами 5…6 т. Пустотные и сплошные пли­ты, позволяющие создать гладкий потолок, применяют для жилых и гражданских зданий, ребристые панели реб­рами вниз - для промышленных зданий с нормативны­ми нагрузками свыше 5 кН/м 2 .

Экономичность плиты оценивают по приведенной тол­щине бетона, которая получается делением объема бето­на панели на ее площадь и по расходу стальной армату­ры (табл. 7.1).

Технико-экономические показатели плит перекрытий при номинальном пролете 6 м и нормативной нагрузке 6-7 кН/м 2

Тип плиты Приведенная толщина бетона, см Расход стали на 1 м 2 площади в зависимости от вида арма­туры. кг
без пред­варитель­ного на­пряжения напрягаемая
стержне- вая прово­лочная
С овальными пустотами С вертикальными пустотами С круглыми пустотами Ребристые, ребрами вверх Сплошные 9.2 10.2 12—16 8.5 8,5 9.1 14-16 4,3 4,7 4,7 12—14 3,4 3,7 3,7 10—11

Наиболее экономичны по расходу бетона плиты с овальными пустотами; приведенная толщина бетона в них 9,2 см, в то время как в плитах с круглыми пустота­ми приведенная толщина бетона достигает 12 см. Однако при изготовлении панелей с овальными пустотами на заводах возникают технологические трудности, вызван­ные тем, что после извлечения пустотообразователей (пуансонов) стенки каналов свежеотформованного изде­лия иногда обваливаются.

Расчет панелей.

Расчетный пролет плит l0 принимают равным расстоянию между осями ее опор (рис. 7.3. а — в); при опирании по верху ригелей l0 = l - b/2 (где b — ширина ригеля); при опирании на полки ригелей l0 = la - b (а — размер полки). При опирании одним кон­цом на ригель, другим на стенку расчетный пролет равен расстоянию от оси опоры на стене до оси опоры на ригеле.

Рис. 7.3. Расчетные пролеты и сечения плит

Высота сечения плиты h должна быть подобрана так, чтобы наряду с условиями прочности были удовлетворе­ны требования жесткости (предельных прогибов). При пролетах 5—7 м высота сечения плиты определяется главным образом требованиями жесткости. Предварительно высоту сечения панели, удовлетворяющую одно­временно условиям прочности и требованиям жесткости, можно определить по приближенной формуле

где с — коэффициент, для пустотных панелей он равен 18 - 20, для ребристых панелей с полкой в сжатой зоне – 30 - 34;

— дли­тельно действующая нормативная нагрузка на 1 м 2 перекрытия;

— кратковременно действующая нормативная нагрузка на 1 м 2 пере­крытия;

— коэффициент увеличения прогибов при длительном действии нагрузки: для пустотелых панелей = 2, для ребристых па­нелей с полкой в сжатой зоне = 1,5.

Высоту сечения предварительно напряженных плит можно предварительно назначать равной:

h= l0 /20 - для ребристых; h= l0 /30 - для пустотных.

При расчете прочности по изгибающему моменту ши­рина ребра равна суммарной ширине всех ребер плиты, а расчетная ширина сжатой полки принимается равной полной ширине панели. При малой толщине сжатой пол­ки, когда , ширина полки, вводимая в расчет, не должна превышать

где n — число ребер в поперечном сечении панели.

В ребристой панели ребрами вниз при толщине полки но при наличии поперечных ребер, вводимая в расчет ширина полки принимается равной полной шири­не панели.

Таким образом, расчет прочности плит сводится к рас­чету таврового сечения с полкой в сжатой зоне.

При расчете прогибов сечения панелей с пустотами приводят к эквивалентным двутавровым сечениям. Для панелей с круглыми пустотами эквивалентное двутавро­вое сечение находят из условия, что площадь круглого отверстия диаметром d равна площади квадратного от­верстия со стороной (рис. 7.4):


Рис. 7.4. Эквивалентные сечения плит для расчета прогибов

Сечение панелей с овальными пустотами (см. рис. 7.4) приводят к эквивалентному двутавровому сечению, заме­няя овальное сечение пустоты прямоугольным с той же площадью и тем же моментом инерции и соблюдая усло­вие совпадения центра тяжести овала и заменяющего прямоугольника. Обозначив b1 и h1 — ширину и высоту эквивалентного прямоугольника; F и I — площадь и мо­мент инерции овала:

Полка панели работает на местный изгиб как частич­но защемленная на опорах плита пролетом l0, равным расстоянию в свету между ребрами. В ребристых пане­лях с ребрами вниз защемление полки создается залив­кой бетоном швов, препятствующей повороту ребра (рис. 7.5, а). Изгибающий момент

В ребристой панели с поперечными промежуточными реб­рами изгибающие моменты полки могут определяться как в плите, опертой по контуру и работающей в двух направлениях (рис. 7.5,б).

Рис. 7.5. Расчетные схемы полок плит

Конструирование плит

Применяют сварные сетки и каркасы из обыкновенной арматурной проволоки и горя­чекатаной арматуры периодического профиля (рис. 7.6). В качестве напрягаемой продольной арматуры применяют стержни классов S800, S1200, высокопрочную проволоку и канаты. Армировать можно без предварительного напряжения, если пролет панели меньше 6 м.

Продольную рабочую арматуру располагают по всей ширине нижней полки сечения пустотных панелей и в ребрах ребристых панелей.


1 – продольная напрягаемая арматура; 2 – нижняя сварная сетка; 3 – то же, верхняя; 4 – вертикальный сварной каркас; 5 – то же, сетка Рис. 7.6. Многопустотные панели с круглыми (а) и овальными (б) пустотами, а также коробчатый настил (д)

Поперечные стержни объединяют с продольной мон­тажной или рабочей ненапрягаемой арматурой в плоские сварные каркасы, которые размещают в ребрах плит. Плоские сварные каркасы в круглопустотных плитах мо­гут размещаться только на приопорных участках, через одно-два ребра. К концам продольной ненапрягаемой арматуры реб­ристых плит приваривают анкеры из уголков или пла­стин для закрепления стержней на опоре.

Сплошные плиты из тяжелого и легкого бетонов ар­мируют продольной напрягаемой арматурой и сварными сетками. Монтажные петли закладывают по четырем углам плит. В местах установки петель сплошные панели ар­мируют дополнительными верхними сетками.

Пример армирования ребристой панели перекрытия промышлен­ного здания приведен на рис. 7.7. Номинальная шири­на этой панели считается равной 1,5 м. Применяют та­кие плиты также шириной 3 м.

Рис. 7.7. Армирование ребристой плиты перекрытия

Монтажные соединения панелей всех типов выполня­ют сваркой стальных закладных деталей и заполнением бетоном швов между плитами. В продоль­ных боковых гранях плит предусматривают впадины, предназначенные для образования прерывистых шпонок, обеспечивающих сов­местную работу плит на сдвиг в вертикальном и горизон­тальном направлениях (рис. 7.8а). При таком соединений сборных элементов перекрытия представляют собой жесткие го­ризонтальные диафрагмы.

Если временные нагрузки на перекрытиях больше 10 Н/м 2 , то ребристые плиты при замоноличивании швов целесообразно превращать в неразрезные. С этой целью швы между ребристыми плитами на опорах арми­руют сварными седловидными каркасами, пересекающи­ми ригель (рис. 7.8б). На нагрузки, действующие после замоноличнвания, такие плиты рассчитывают как неразрезные.

Рис. 7.8. Монтажные соединения плит

Проектирование ригеля

Ригель многопролетного перекрытия представляет собой элемент рамной конст­рукции. Типы опирания перекрытий на ригели представлены на рис. 7.9. При свободном опирании концов ригеля на на­ружные стены и равных пролетах ригель можно рассчи­тывать как неразрезную балку. При этом возможен учет образования пластических шарниров, приводящих к пе­рераспределению и выравниванию изгибающих момен­тов между отдельными сечениями.


Рис. 7.8. Типы ригелей перекрытий промышленного (а) и гражданского (б) зданий

Сущность расчета статически неопределимых желе­зобетонных конструкций с учетом перераспределения усилий. При некотором значении нагрузки напряжения в растянутой арматуре из мягкой стали достигают преде­ла текучести. С развитием в арматуре пластических де­формаций (текучести) в железобетонной конструкции возникает участок больших местных деформаций, назы­ваемый пластическим шарниром (рис. 7.9).




Рис. 7.9. Схема образования пластического шарнира в железобетонных конструкциях Рис.7.10. Эпюры перераспределения изгибающих моментов в статически неопределимой балке

В статически неопределимой конструкции после по­явления пластического шарнира при дальнейшем увели­чении нагрузки происходит перераспределение изгибаю­щих моментов между отдельными сечениями. При этом деформации в пластическом шарнире нарастают, но зна­чение изгибающего момента остается прежним:

В предельном равновесии — непосредственно перед раз­рушением— изгибающие моменты балки можно найти статическим или кинетическим способом.

Статический способ. Запишем значение пролетного момента:

Отсюда уравнение равновесия

где момент статически определимой свободно лежащей балки.

Из этого уравнения следует, что сумма пролетного момента в сечении и долей опорных моментов, соответствующих этому сечению, равна моменту простой балки М0, Кроме того, из уравнениявытекает, что несущая способность статически неопределимой конструкции не зависит от соотношения значений опорных и пролетного моментов и не зависит от последовательности образования пластических шарниров.

Последовательность эта может быть назначена произвольно, необходимо лишь соблюдать уравнение равновесия. Однако изменение соотношения моментов в сечениях меняет значение нагрузки, вызывающей образование первого и последнего пластических шарниров, а также меняет ширину раскрытия трещин в первом пластическом шарнире.

Кинематический способ. Балка в предельном равновесии рассматривается как система жестких звеньев, сое­диненных друг с другом в местах излома пластическими шарнирами (рис. 7.10). Если прогиб балки под си­лой F равен f, то углы поворота звеньев

Виртуальная работа внутренних усилий —изгибающих моментов в пластических шарнирах

а с учетом полученных выше значений

Уравнение виртуальных работ:

Откуда расчетная предельная сила:

Расчет и конструирование статически неопределимых железобетонных конструкций по выравненным моментам позволяет облегчить армирование сечений» что особенно важно для монтажных стыков на опорах сборных кон­струкций; позволяет стандартизировать и осуществить в необходимых случаях одинаковое армирование сварными сетками и каркасами там, где при расчете по упругой схеме возникают различные по значению изгибающие мо­менты. При временных нагрузках расчет по выравнен­ным моментам по сравнению с расчетом по упругой схе­ме может давать 20—30% экономии стали в арматуре.

Величина перераспределенного момента не оговари­вается, но должен производится расчет по предельным состояниям второй группы. Практически ограничение раскрытия трещин в первых пластических шарнирах до­стигается ограничением выравненного момента с тем, чтобы он не слишком резко отличался от момента в уп­ругой схеме и приблизительно составлял не менее 70 %.

Чтобы обеспечить условия, отвечающие предпосылке метода предельного равновесия, следует соблюдать конструктивные требования:

1) конструкция должна быть запроектирована так чтобы причиной ее разрушения не могли быть срез сжа­той зоны или раздавливания бетона от главных сжимающих напряжений;

2) армирование сечений, в которых намечено образование пластических шарниров, следует ограничивать так чтобы относительная высота сжатой зоны x£0,35;

3) следует применять арматурные стали с площадкой текучести или сварные сетки из обыкновенной арматур­ной проволоки.

Расчетный пролет ригеля принимают равным расстоянию между осями колонн; в первом про­лете при опирании на стену расчетный пролет считается от оси опоры на стене до оси колонны. Нагрузка на ри­гель от панелей может быть равномерно распределенной (при пустотных или сплошных панелях) или сосредото­ченной (при ребристых панелях). Если число сосредото­ченных сил, действующих в пролете ригеля, более четы­рех, то их приводят к эквивалентной равномерно распре­деленной нагрузке. Для предварительного определения собственного веса ригеля размеры его сечения прини­мают:

При расположении временной нагрузки через один пролет получают максимальные моменты в загружаемых пролетах; при расположении временной нагрузки в двух смежных пролетах и далее через один пролет получают максимальные по абсолютному значению моменты на опоре (рис. 7.11).

Рис.7.11. Схемы загружения неразрезной балки

В неразрезном ригеле целесообразно ослабить армирование опорных сечений и упростить мон­тажные стыки. Поэтому с целью перераспределения мо­ментов в ригеле к эпюре моментов от постоянных нагрузок и отдельных схем невыгодно расположенных временных нагрузок прибавляют добавочные треугольные эпю­ры с произвольными по знаку и значению над опорными ординатами (рис. 7.12). При этом ординаты выровненной эпюры моментов в расчетных сечениях должны сос­тавлять не менее 70 %, вычисленных по упругой схеме. На основе отдельных загружений строят огибающие эпюры М и Q. Возможен также упрощенный способ рас­чета неразрезного ригеля но выровненным моментам, состоящий в том, что в качестве расчетной выровненной эпюры моментов принимают эпюру моментов упругой неразрезной балки, полученную для максимальных про­летных моментов (при расположении временной нагруз­ки через один пролет).

а – добавочные эпюры моментов; б – к определению эпюры М от равномерно распределенной нагрузки; в – то же, от сосредоточенной нагрузки; г – к построению эпюры моментов от равномерно распределенной нагрузки; д – к определению расчетного момента ригеля по грани колонны

Рис.7.12. К расчету неразрезного ригеля

Расчетным па опоре будет сечение ригеля по грани колонны. В этом сечении изгибающий момент:

Момент имеет большее (по абсолютной величине) значение со стороны пролета, загруженного только посто­янной нагрузкой; поэтому в формулу следует подставлять значение поперечной силы Q, соответствую­щее загружению этого пролета. По моменту уточня­ют размер поперечного сечения ригели и по значению x»0,35 принимают:

Сечение продольной арматуры ригеля подбирают по М в четырех нормальных сечениях: в первом и среднем пролетах, на первой промежуточной опоре и па средней опоре. Расчет поперечной арматуры по Q ведут для трех наклонных сечений: у первой промежуточной опоры сле­ва и справа и у крайней опоры.

Конструирование неразрезного ригеля.

Поперечное сечение ригеля может быть прямоугольным, тавровым с полками вверху, тавровым с полками внизу (рис. 7.13). При опиранин панелей перекрытия па нижние полки ригеля таврового сечения строительная высота перекрытия уменьшается.


Рис.7.13. Схемы поперечного сечения сборного ригеля

Стыки ригелей размещают обычно непосредственно у боковой грани колонны. Действующий в стыках ригелей опорный момент вызывает растяжение верхней части и сжатие нижней (рис. 7.14а). В стыковых соединениях ригель может опираться на железобетонную консоль колонны или же на опорный столик из уголков, выпущенных из колонны (рис. 7.14б). В верхней части стыка выпуски арматуры из колонны и ригеля соединяются вставкой арматуры на ванной сварке. Вставка арматуры повышает точность монтажного соединения в случае нарушения соосности выпусков арматуры. В нижней части стыка монтажными швами соединяются закладные детали колонны и ригеля. После приварки монтажных хомутов полость стыка бетонируется.

Скрытые стыки на консолях (с подрезкой торца ригеля) усложняют конструирование, так как требуют усиления арматуры входящего угла дополнительными каркасами и закладными деталями, повышающими расход стали и трудоемкость изготовления; кроме того, при таком стыке снижается несущая способность и жесткость ригеля на опоре. Эти стыки считаются шарнирными, фигурная же стальная накладка, привариваемая на монтаже, обеспечивает восприятие не­большого изгибающего момента (

а – усилия, действующие в стыке; б – жесткий стык на консолях; в – жесткий стык бесконсольный; г – скрытый стык на консолях; 1 – арматурные выпуски из ригеля и колонны; 2 – ванная сварка; 3 – вставка арматуры; 4 – поперечные стержни, привариваемые на монтаже; 5 – бетон замоноличивания; 6 – усиленный арматурный выпуск из ригеля; 7 – опорный столик из уголков с отверстием для удобства бетонирования; 8 – стальные закладные детали; 9 – призматические углубления для образования бетонных шпонок; 10 – фигурная деталь «рыбка», привариваемая на монтаже

Рис.7.14. Конструкции стыков сборного ригеля с колонной

В бесконсольных стыках (см. рис. 7.14,е), как по­казали исследования, попе­речная сила воспринимается бетоном замоноличивания полости и бетонными шпон­ками, образующимися в при­зматических углублениях на боковой поверхности колон­ны и в торце сборного ригеля. Специальными исследованиями установлено, что этот стык равнопрочен с консольным стыком, но в то же время по расходу материалов и трудоемкости он экономичнее.

Размеры опорной консоли (рис. 7.15) определяют в зависимости от опорного давления ригеля Q; при этом считается, что ригель оперт на расположенную у свободного края консоли площадку длиной

где ширина ригеля.

Рис.7.15. Армирование консоли колонны

Наименьший вылет консоли с учетом зазора с между торцом ригеля и гранью колонны . Обычно принимают l1=200. 300 мм. При этом расстояние от грани колонны до силы Q

У коротких консолей ( ) угол сжатой грани с горизонталью не должен превышать 45°. Высота консоли в сечении у грани колонны , у свобод­ного края .

Площадь сечения продольной арматуры консоли под­бирают по изгибающему моменту у грани колонны, уве­личенному на 25 %:

Короткие консоли высотой сечения армиру­ют горизонтальными хомутами и отогнутыми стержня­ми. Шаг хомутов должен быть не более 150 мм и не бо­лее h/4, диаметр отогнутых стержней - не более 25 мм и не более 1/15 длины отгиба.

Ригель армируют обычно двумя плоскими сварными каркасами (рис. 7.16). При значительных нагрузках возможен третий каркас в средней части пролета. Площадь растянутых стержней каркасов и их число устанав­ливают при подборе сечений по изгибающим моментам в расчетных сечениях на опоре и в пролете. По мере уда­ления от этих сечений ординаты огибающей эпюры М уменьшаются, следовательно, может быть уменьшена и площадь сечения арматуры.

Рис. 7.16. Армирование ригеля и эпюра арматуры

В целях экономии арматурной стали часть продольных стержней обрывают в соответствии с изменением огибающей эпюры моментов. Сечение ригеля, в котором отдельный растянутый стержень по расчету уже не ну­жен, называют местом его теоретического обрыва. Об­рываемые стержни заводят за место теоретического об­рыва на длину заделки 1ап.

Для проверки экономичности армирования ригеля и прочности всех его сечений строят эпюру арматуры (эпю­ру материалов). Ординаты эпюры вычисляют как мо­мент внутренних сил в рассматриваемом сечении ри­геля.

Эпюра арматуры против мест теоретического обрыва стержней имеет ступенчатое очертание с вертикальными уступами. Там, где эпюра арматуры значительно отхо­дит от эпюры М, избыточный запас прочности (избыток растянутой арматуры); в местах, где ступенчатая линия эпюры арматуры пересекает эпюру М, прочность сечения недостаточна.

Моделирование балок монолитного железобетонного перекрытия стержнем таврового сечения

При расчете монолитных плит перекрытий подкрепленными ребрами необходимо учитывать вовлекаемость части монолитной плиты перекрытия как сжатой полки монолитного ребра (балки).

Один из вариантов моделирования монолитных ребер плит перекрытий – учет совместной работы плиты перекрытия заданной оболочками и балки перекрытия заданной стержнем таврового сечения в пролете и прямоугольного сечения на опоре.

«В изгибаемых, внецентренно сжатых и внецентренно растянутых элементах с полкой в сжатой зоне вводимая в расчет ширина свеса полки в каждую сторону от ребра не должна превышать половины расстояния в свету между соседними ребрами и 1/6, пролета рассчитываемого элемента. Кроме того, для элементов, не имеющих на длине пролета поперечных ребер или имеющих поперечные ребра на расстояниях более расстояния между продольными ребрами, при hп < 0.1h вводимая в расчет ширина свеса полки в каждую сторону от ребра не должна превышать величина 6hп, где hп – высота сжатой полки; h – высота ребра.
Для отдельных балок таврового сечения (при консольных свесах полки) вводимая в расчет ширина свесов полки в каждую сторону от ребра должна составлять: при hп > 0.1h – не более 6hп; при 0.05h < hп < 0.1h – не более 3hп; при hп < 0.05h консольные свесы полки в расчет не вводятся и сечение элемента рассчитывается как прямоугольное шириной b.»

«3.23(3.16). Вводимое в расчет значение bf принимается из условия, что ширина свеса в каждую сторону от ребра должна быть не более 1/6 пролета элемента и не более:
а) при наличии поперечных ребер или при hf > 0.1h – 1/2 расстояния в свету между продольными ребрами;
б) при отсутствии поперечных ребер (или при расстояниях между ними больших, чем расстояния между продольными ребрами) и hf < 0.1h – 6hf;
в) при консольных свесах полки:
при hf > 0.1h — 6hf;
при 0.05h < hf < 0.1h — 3hf;
при hf < 0.05h — свесы не учитываются.»

Для всех предельных состояний в балках таврового сечения со свесами, в которых напряжения могут рассматриваться как постоянные, ширина свесов зависит от размеров свесов, вида нагрузки, пролета, условий опирания и поперечного армирования.
Расчетная ширина свеса должна определяться по расстоянию l0 между точками нулевых моментов, которые могут быть приняты по рис. 5.2

БАЛОЧНЫЕ СБОРНЫЕ ПАНЕЛЬНЫЕ ПЕРЕКРЫТИЯ

Под компоновкой конструктивной схемы перекрытия понимают:

1. разделение плана перекрытия температурно-усадочными и осадочными швами на деформационные блоки;

2. определение направления ригелей: вдоль продольной или вдоль поперечной осей здания. Продольное направление ригелей назначают преимущественно в жилых зданиях (по планировочным соображениям). При поперечном направлении ригелей здание получает наибольшую поперечную жесткость здания, но худшую освещеность.

3. выбор размеров пролета и шага ригелей, способа опирания панелей на ригель, типа и размеров панелей перекрытия.

Компоновку конструктивной схемы перекрытия производят в зависимости от внешних нагрузок, назначения здания и общих архитектурно-планировочных решений.


Рис. 15.7. Многоэтажное каркасное здание с балочными перекрытиями

1 – фундаменты; 2 – колонны; 3 – ригели; 4 – плиты перекрытия; 5 – несущие конструкции покрытия; 6 – плиты покрытия; 7 – несущая стена из крупных блоков

На здания действуют вертикальные и горизонтальные нагрузки, совместное действие которых может привести к общей потери устойчивости здания, если не обеспечить пространственной жесткости (жесткости в трех плоскостях: 2 вертикальных и 1 горизонтальной).

Это можно сделать созданием жестких узлов сопряжения ригелей с колоннами, которые воспринимают помимо поперечных и продольных сил изгибающие моменты. Такие каркасы называют рамными.


Рис. 15.8. Схема рамного каркаса

Либо это можно сделать, соединив части колонн специальными связями жесткости, с сохранением шарнирного опирания ригелей на консоли колонн. Такие связи называют диафрагмами, а каркас – связевым.


Рис. 15.9. Схема связевого каркаса

В обоих случаях горизонтальные связи – панели перекрытия, которые образуют жесткие диски за счет приваривания их к ригелям, либо за счет плотного замоноличивания продольных и поперечных швов между конструкциями.

Проектирование плит перекрытий

Панели перекрытий с целью уменьшения их веса проектируют облегченные конструкции с пустотами или выступающими ребрами в поперечном сечении. При удалении бетона из растянутой зоны сохраняют лишь ребра шириной, необходимой для размещения сварных каркасов и обеспечения прочности панели по наклонному сечению. При этом панели вдоль своего пролета работают на изгиб как балки таврового сечения.


Рис. 15.10. Сечение пустотной плиты


Рис. 15.11. Сечение ребристой плиты

Номинальная ширина ребристых плит принимается от 750 до 3000 мм; многопустотных – от 600 до 2000 мм. Конструктивная ширина меньше на 200 мм.

Плиты перекрытия опираются на ригели прямоугольной формы или на полки ригеля тавровой формы. Плиты соединятся сваркой закладных деталей с ригелями на монтаже.


Рис. 15.12. Опирание пустотных (а) и ребристых (б) панелей на полки ригелей

Расчетный пролет плит при их опирании на ригель равен ; при опирании на полки ригеля . При опирании одним концом на ригель, а другим на кирпичную стену, расчетный пролет равен расстоянию от оси опоры на стене до оси опоры на ригели , где b – ширина ригеля; a – ширина полки; с – привязка оси; d – величина опирания плиты на стену, принимаемая не менее 120 мм.

Расчет прочности панелей сводится к расчету таврового сечения с полкой в сжатой зоне.

Проектирование ригеля

Ригели многопролетного балочного перекрытия представляют собой элементы рамной конструкции. При свободном опирании концов ригеля на стены и пролетах, отличающихся друг от друга не более чем на 20% ригель можно рассчитывать как неразрезную балку. При этом возможен учет пластических деформаций, приводящих к перераспределению и выравниванию изгибающих моментов между отдельными сечениями.

За расчетный пролет принимают расстояние между осями колонн. При опирании крайнего конца ригеля на стену расчетный пролет принимают равным расстоянию от оси опоры до оси колонны. За расчетную схему ригеля принимают пятипролетную балку. В целом расчет аналогичен расчету главной балки монолитных конструкций.


Рис. 15.13. Виды сечений ригеля

Ригель может иметь различную форму сечения – прямоугольную, тавровую с полками вверху, тавровую с полками внизу. При ригеле таврового сечения с полками внизу и опирании панелей перекрытия на эти полки строительная высота перекрытия уменьшается.

Сечение продольной рабочей арматуры, укладываемой в нижней зоне ригеля, определяют по максимальным положительным моментам, а сечение продольной рабочей арматуры, укладываемой в верхней зоне ригеля (над опорами), – по максимальным отрицательным (опорным) моментам у граней опор.

Ригели армируют одним сварным каркасом посередине при ширине ригеля , двумя каркасами – при . При значительных нагрузках возможен и третий каркас в средней части пролета. В опорных сечениях наличие третьего каркаса усложняет прикрепление закладной детали. В ригелях высотой h > 300 мм хомуты устанавливают по всей длине независимо от расчета; при высоте h = 150 … 300 мм хомуты, если они не требуются по расчету, ставят у концов элемента на длине не менее 1/4 его пролета; при высоте h <150 мм хомуты не ставят, если они не требуются по расчету.


Рис. 15.14. Армирование ригеля

1 – точки теоретического обрыва рабочих стержней 7 в пролете; 2 – то же рабочих стержней 3 на опоре; 3 – рабочие стержни на опоре; 4 – хомуты; 5 – стыковые закладные детали на опоре; 6 – арматура подрезки; 7 – рабочие стержни в пролете

По мере удаления от расчетных сечений ординаты огибающей эпюры М уменьшаются, поэтому в целях экономии арматуры целесообразно часть рабочей арматуры оборвать в соответствии с изменением ординат огибающей эпюры моментов.

Для рабочей продольной арматуры применяют стержни диаметром 12…30 мм, потому что стержни большого диаметра имеют большую зону анкеровки в бетоне и вызывают трудности при производстве работ. Для технологического удобства применяют не более двух разных диаметров рабочей арматуры.

Минимальный диаметр поперечной арматуры из условия свариваемости с продольной арматурой принимают равным 6…10 мм; в вязаных каркасах при диаметр поперечной арматуры принимают d = 6 мм, при – d 6 мм.

Стык ригеля с колонной проектируется с учетом характера и величины усилий, действующих в узле, и назначению здания.


Рис. 17.15. Схемы усилий в стыке ригелей

а – условная; б – расчетная; 1 – колонны; 2 – ригели

Различают 2 типа стыков: шарнирный и жесткий.

В практике широко распространен шарнирный стык благодаря простоте при изготовлении и монтаже по сравнению с жестким.


Рис. 15.16. Шарнирный стык ригелей

1 – стыковая полоска; 2 – закладные пластины поверху ригеля; 3 – закладные пластинки колонны; 4 – инвентарные монтажные уголки; 5 – шов замоноличивания; 6 – анкерные болты

Однако при шарнирном стыковании ригелей вследствие нерационального распределения изгибающих моментов по их длине расход бетона и арматуры в целом на здании получается максимальным.

В жилищном строительстве применяют бесконсольный жесткий стык ригелей (с использованием монтажного столика из швеллеров). Такой стык полностью воспринимает поперечные силы бетонными шпонками, образующимися при замоноличивании стыка. Основной недостаток таких стыков – тщательное замоноличивание. Монтажный столик из швеллеров снимают сразу после замоноличивания.


Рис. 17.17. Жесткий бесконсольный стык ригелей

а – общий вид; б – вид сбоку; 1 – выпуски нижней арматуры; 2 – бетон замоноличивания; 3 – выпуски верхней арматуры; 4 – выпуски из колонны стыковых стержней; 5 – нижняя закладная деталь колонны; 6 – сонтажный столик из швеллеров; 7 – шпоночные пазы

Жесткий стык ригелей, совмещенный со стыком колонны, упрощает и удешевляет монтаж, т.к. снижает количество монтажных узлов. Основной недостаток – высокая металлоемкость.


Рис. 15.18. Совмещенный стык ригелей и колонн

1 – стальная накладка; 2 – сварка; 3 – шов замоноличивания; 4 – монтажные уголки;

Читайте также: