Для подключения трехфазного приемника с номинальным напряжением

Обновлено: 19.05.2024

Соединение обмоток генератора и фаз приемника звездой

Каждая фаза трехфазного генератора может являться источником питания для однофазного приемника. В этом случае схема электрической цепи имеет вид, изображенный на рисунке, то есть каждая фаза работает отдельно от других, хотя в целом цепь является трехфазной. Это трехфазная независимая система.

ЭДС любой обмотки генератора представляет собой разность потенциалов начала и конца этой обмотки. При этом потенциал одной какой-либо точки (или начала, или конца обмотки) можно считать равным нулю. Тогда комплексный потенциал другой точки будет иметь точно определенное значение.

Принимая равными потенциалы точек, соответствующих концам X, Y и Z обмоток фаз генератора, можно объединить их в одну точку N. Концы фаз приемников (ZA, ZB и ZC) также соединяем в одну точку n. Такое соединение обмоток генератора называется соединением звездой (Y).

Звездой можно соединять также фазы приемника. Точки N и n называются нейтральными, а провод, соединяющий точку N генератора с точкой n приемника, - нейтральным. Провода A-A ’ , B-B ’ и C-C ’ , соединяющие начала фаз генератора и приемника, называются линейными.

Напряжение между началом и концом фазы называется фазным напряжением . Таким образом, имеется три фазных напряжения - , и . Обычно за условное положительное направление ЭДС генератора принимают направление от конца к началу фазы. Положительное направление тока в фазах совпадает с положительным направлением ЭДС, а положительное направление падения напряжения (напряжение) на фазе приемника совпадает с положительным направлением тока в фазе. Положительным направлением напряжения на фазе генератора, как и на фазе приемника, является направление от начала фазы к её концу, то есть противоположное положительному направлению ЭДС.

Напряжение между линейными проводами называется линейным напряжением . Таким образом, имеется три линейных напряжения - , и , условное положительное направление которых приняты от точек, соответствующих первому индексу, к точкам, соответствующих второму индексу. Линейные напряжения определяются через известные фазные напряжения. Это соотношение может быть получено из уравнения, написанного по второму закону Кирхгофа для контура ANBA, если принять направление обхода контура от точки А к точке N и т.д.: . Отсюда

Таким образом, действующее значение линейных напряжений равно векторной разности соответствующих фазных напряжений.

Для нахождения вектора линейного напряжения , как следует из уравнения , необходимо к вектору напряжения прибавить вектор напряжения с противоположным знаком. После переноса вектора параллельно самому себе он соединит точки А и В на векторной диаграмме фазных напряжений. Аналогично строят векторы линейных напряжений и .

На векторной диаграмме напряжений векторы фазных напряжений образуют звезду, а векторы линейных напряжений – замкнутый треугольник. Вследствие этого векторная сумма линейных напряжений всегда равна нулю, то есть

Так как при симметричной системе треугольник линейных напряжений равносторонний, то, чтобы найти соотношение между линейными и фазными напряжениями, надо опустить перпендикуляр из точки N на вектор напряжения . Тогда . Так как , а , то

Таким образом, если система напряжений симметрична, то при соединении звездой линейное напряжение в раза больше фазного напряжения. Предусмотренные ГОСТом и применяемые на практике напряжения переменного тока 127, 222, 380 и 660 В как раз и отличаются друг от друга в 1,73 раза. Если В, то В, что обозначают как 220/127 В. Кроме того, применяют системы 380/220 и 660/380 В.

В четырехпроводной трехфазной цепи имеется два уровня напряжения, различающихся в 1,73 раза, что позволяет использовать приемники с различным номинальным напряжением.




При подключении приемников к трехфазному генератору, обмотки которого соединены звездой, ток протекает по обмоткам генератора, линейным проводам и фазам приемника. Ток в фазах генератора или приемника называется фазным током . Ток в линейных проводах называется линейным током . Так как обмотка генератора, линейный провод и приемник, принадлежащий одной фазе, соединяются последовательно, то при соединении звездой линейный ток равен фазному:

Ток в нейтральном проводе может быть определен по первому закону Кирхгофа, на основании которого для точки n можно записать уравнение

Следовательно, ток в нейтральном проводе равен геометрической сумме фазных токов.

Ток в каждой фазе может быть определен по закону Ома для цепи синусоидального тока. Так для фазы А

Аналогично определяют фазные токи и .

При симметричной системе напряжений и симметричной нагрузке, когда , то есть когда и , фазные токи равны по значению и углы сдвига фаз одинаковы:

Итак, фазные токи при симметричной нагрузке образуют симметричную систему, вследствие чего ток в нейтральном проводе равен нулю:

Векторная диаграмма напряжений и токов для симметричной нагрузки показана на рисунке

При симметричной нагрузке создается такой режим трехфазной цепи, при котором в нейтральном проводе тока нет. Следовательно, можно отказаться от нейтрального провода и перейти к трехпроводной трехфазной цепи.

Изменение мгновенных значений симметричной системы токов аналогично изменению мгновенного значения ЭДС.

При t=0 ток iA=0, ток iС положителен, а ток iВ отрицателен, причем iС=- iВ Это значит, что действительное направление тока в фазе С совпадает с условным положительным направлением, указанным на рисунке, а в фазе В противоположен ему. Провод В в данный момент времени является обратным проводом для фазы С. При t=T/2 токи iA и iС положительны, причем iA= iС=0,5Im, а ток iВ отрицателен, причем iВ=-Im. Провод В является обратным проводом для фаз А и С. Преимущество трехфазной трехпроводной системы в том и состоит, что не требуется специальных обратных проводов, их функции поочередно выполняют прямые провода.

Обмотки современных трехфазных генераторов, которые устанавливают на электростанциях, соединяют всегда звездой, что позволяет выполнять изоляцию обмоток на фазное напряжение, которое меньше линейного в 1,73 раза. При соединении обмоток генератора звездой фазы приемника могут быть соединены как звездой, так и треугольником.

Подключение трехфазного двигателя к сети 220 или 380 В

При изготовлении или эксплуатации устройств с мощным электроприводом нередко приходится самостоятельно выбирать нужный электродвигатель и подключать его к сети – трехфазной или однофазной. Из этой статьи мы узнаем, как подключить трехфазный асинхронный двигатель к сетям напряжением 380 и 220 В.

Звезда и треугольник

Конструктивно мотор состоит из статора, на котором размещены три обмотки, и ротора. При подаче питающего напряжения, мы создаем вокруг этих обмоток вращающее поле, которое пытается «вытолкнуть» ротор из статора, представляющего собой набор короткозамкнутых витков, заставляя его вращаться.

Взглянем повнимательнее на статор. Он, как было сказано выше, состоит из трех обмоток, соединенных одним из двух способов:

  • «звездой»;
  • «треугольником».
Схема подключения обмоток трехфазного асинхронного двигателя «треугольником» (слева) и «звездой» Схема подключения обмоток трехфазного асинхронного двигателя «треугольником» (слева) и «звездой»

Какая из схем лучше? Соединение «треугольником» обеспечивает более мягкий пуск, и, соответственно, меньшие пусковые токи. Но при таком подключении электродвигатель не развиваем паспортной мощности на валу. При включении «звездой» паспортная мощность развивается полностью, но пусковые токи много больше, что может потребовать специальных мер.

Важно! Есть и еще один нюанс при выборе схемы включения – питающее напряжение. Один и тот же двигатель, включенный по разным схемам, требует разных напряжений питания.

Напряжения

Самыми распространенными на сегодняшний день являются трехфазные двигатели на 380/220, 660/380 и 220/127 В. Что это значит, почему напряжения разбиты по парам? Дело в том, что при включении обмоток «звездой» требуется большее напряжение питания. К примеру 380/220 означает, что «звездой» двигатель нужно подключить к сети 380 В (линейное), а треугольником – 220 В (линейное). Поэтому прежде, чем выбирать схему, необходимо определиться, какие электродвигатель и сеть есть в нашем распоряжении.

Ну какое напряжение у нас в доме, мы, конечно, знаем. Осталось разобраться с двигателем. Взглянем на шильдики, расположенные на корпусе моторов. Согласно им оба эти мотора можно включить «треугольником» в сеть 220 В или «звездой» 380 В.

Эти двигатели рассчитаны на подключение к сетям 220 и 380 В Эти двигатели рассчитаны на подключение к сетям 220 и 380 В

При этом в первом случае ток потребления будет несколько выше. Но, как было замечено выше, есть двигатели и на другое напряжение. Шильдики, фото которых представлены ниже, говорят о том, что их обладатели могут работать по схеме «звезда» в сети 380 и «треугольник» 660 В. Причем один из них (верхнее фото) способен использоваться в сетях 440/760 В, но частота этих сетей должна быть 60 Гц.

Двигатели с номинальным напряжением 660/380 В Двигатели с номинальным напряжением 660/380 В
Важно! Вполне очевидно, что моторы из обоих примеров можно включить в сеть 380 В, но только по разным схемам – «треугольником» и «звездой» соответственно.

Как переключить обмотки?

Большинство трехфазных электромоторов изготавливаются с открытой схемой – их можно подключить и звездой, и треугольником. Достаточно просто переставить перемычки на распредкоробке БРНА (Блок Распределения (расключения) Начал Обмоток).

Обычно БРНА имеет 6 клемм – по 2 на каждую обмотку Обычно БРНА имеет 6 клемм – по 2 на каждую обмотку

Стандартная схема установки перемычек для схем «звезда» и «треугольник» приведена на рисунке ниже.

На рисунке слева обмотки включены звездой, справа – треугольником На рисунке слева обмотки включены звездой, справа – треугольником

Но встречаются двигатели, у которых блок распределения имеет всего 3 клеммы. Это означает, что обмотки уже включены по той или иной схеме и их осталось только подключить к сети. К примеру, двигатель, шильдик которого изображен ниже, можно включить только «звездой».

Обмотки этого мотора уже на заводе соединили «звездой» и он рассчитан на 380 В Обмотки этого мотора уже на заводе соединили «звездой» и он рассчитан на 380 В
Полезно! При желании и некоторых умениях можно разобрать двигатель, разобраться в обмотках и соединить их по другой схеме. При этом мотор будет отлично работать.

Схема включения в сеть

С напряжениями и «звездами» разобрались, попробуем включить электродвигатель в сеть. Обычно это делают при помощи мощного реле – пускателя (контактора). Независимо от того, как соединены между собой обмотки, схема будет одна и та же.

Включение без возможности реверса

Начнем с обычного включения, когда нам не требуется реверс (обратное вращение). Взглянем на схему, она предельно проста:

Схема включения трехфазного двигателя в сеть с односторонним вращением Схема включения трехфазного двигателя в сеть с односторонним вращением

Как только мы включим автомат QF, напряжение с фазы «В» поступит на электромагнит пускателя КМ-1. Напряжение же с фазы «С» пройдет через нормально замкнутую кнопку «Стоп» и появится на одном из выводов нормально разомкнутой кнопки «Пуск». Электромагнит контактора обесточен, его силовые контакты разомкнуты, двигатель АД не работает.

Нажимаем на кнопку «Пуск». Контактор срабатывает, подключая двигатель к сети, и отдельным контактом управления КМ-1.1 шунтирует (закорачивает) эту кнопку, которую теперь можно отпустить. Если мы хотим остановить двигатель, то нажимаем на кнопку «Стоп». Она снимает питание с электромагнита пускателя, тот в свою очередь снимает напряжение с мотора и одновременно разблокирует кнопку «Пуск». Кнопку «Стоп» можно отпустить.

Включение с реверсом

Для решения некоторых задач, к примеру, конвейер, кран-балка и т.п., требуется, чтобы двигатель вращался в обе стороны. Чтобы обеспечить обратное вращение, достаточно поменять местами фазы «А» и «С». Сделать это несложно, но понадобится еще один пускатель и кнопка на замыкание. Взглянем на схему ниже.

Включение трехфазного электродвигателя с реверсом Включение трехфазного электродвигателя с реверсом

Чтобы избежать подобной неприятности, и введены эти 2 цепи. Первая (КМ-1.2) размыкает цепь питания контактора КМ-2, когда включен КМ-1 и наоборот. Таким образом, оба контактора не смогут работать одновременно, не выжгут нам линию и не сгорят сами.

Полезно! Практически все контакторы имеют как нормально замкнутые, так и нормально разомкнутые контакты управления, так что проблем со сборкой такой схемы не будет.

Включаемся в однофазную сеть

оказывается, трехфазный двигатель может работать и от одной фазы. Правда, развиваемая им мощность будет много меньше паспортной, но нередко и этого достаточно. В зависимости от рабочего напряжения самого мотора и напряжения питания обмотки в однофазную сеть можно подключить и «звездой», и треугольником. Для этого понадобится лишь дополнительный фазосдвигающий конденсатор, который будет питать третью обмотку.

Если в нашем распоряжении двигатель с рабочим напряжением 220/127 В, то включаем его по схеме «треугольника»

Схема подключения трёхфазного двигателя

Бывалому электрику ясна схема подключения магнитного пускателя. Понятно ему и как подключить асинхронный электродвигатель к трёхфазной сети. Но для домашнего мастера далёкого от электричества бывает сложным делом запустить дома станок, причем не имеет значения у него одна фаза или три… В этой статье мы разберем как подключить трёхфазный асинхронный электродвигатель к трёхфазной сети переменного тока.

Схема соединения обмоток: звезда и треугольник

Начнем с двигателя, в нём, как известно есть обмотки, но так как он трёхфазный, то и обмотки обычно три (если двигатель односкоростной). Как и любую трёхфазную нагрузку их можно соединить либо звездой, либо треугольником. При подключении звездой — концы всех обмоток соединяют в одной точке, а в треугольнике соединяют конец первой, с началом второй, конец второй с началом третьей, конец третьей с началом первой обмотки.

На рис. 1 изображены эти схемы. На чертежах встречаются в двух вариантах, либо обмотки располагают, повторяя анатомически фигуры звезды и треугольника, либо в более привычном для электрическом схем виде, поэтому на рисунке представлены оба варианта. Цветными линиями условно показаны провода для подключения.

Провода от обмоток электродвигателей выведены в клеммную коробку и закреплены на клеммниках. Эта клеммная коробка называется брно (или борно, а как её называете ВЫ?).

В зависимости от двигателя в брно может быть 3 или 6 проводов. Если там шесть проводов (начало и конец каждой обмотки) — вы можете выбрать схему подключения для вашего случая и на шильдике указываются 2 номинальных напряжения (об этом поговорим ниже), если провода 3 — то обмотки соединены с завода по звезде или треугольнику, тогда на шильдике указывается 1 номинальное напряжение. Чтобы изменить схему подключения — нужно разбирать двигатель, искать места соединения обмоток, разъединять их и делать отводы в брно (см. рис. 3).

№38 Способы соединения фаз трехфазных приемников.

Приемники трехфазного тока могут подключаться к генератору по двум схемам – звезды (y) и треугольника (Δ). Как известно, на выходе трехфазного генератора получаются два напряжение (линейное и фазное), отличающиеся в Uл/Uф = √3 раз. С другой стороны каждый приёмник энергии рассчитан на работу при определенном напряжении, которое называется номинальным. Схема соединения фаз приемника должна обеспечить подключение его фаз номинальное фазное напряжение. Таким образом, выбор схемы соединения фаз трехфазного приемника зависит от соотношения номинальных напряжений приемника и генератора (сети).

Схема звезды применяется в том случае, если номинальное напряжение приемника соответствует (равно) фазному напряжению генератора. При соединении в звезду концы фаз приемника объединяются в одну точку “n”, называемую нулевой или нейтральной, а начала фаз подключаются к линейным выводам трехфазного генератора А, В, С линейными проводами. Если нулевая точка приемника “n” соединена с нулевой точкой генератора “N” нулевым проводом, то схема получила название звезды с нулевым проводом (рис. 38.1а). При отсутствии нулевого провода схема носит название звезды без нулевого провода (рис. 38.1б).

Токи, протекающие в линейных проводах по направлению от генератора к приемнику, называются линейными.

Токи, протекающие в фазах приемника по направлению от начал к концам, называются фазными. В схеме звезды фазы приемника включены последовательно с линейными проводами и по ним протекают одни и те же токи (IA, IB, IC). Поэтому для схемы звезды понятия линейные и фазные токи тождественны: IЛ = IФ.

Ток, протекающий в нулевом проводе от приемника к генератору, называется нулевым или нейтральным (IN).

Напряжения между началами и концами фаз приемника называются фазными (UAn, UBn, UCn), а напряжения между началами фаз – линейными (UAB, UBC, UCA). Линейные напряжения приемника и генератора тождественно равны.

В схеме звезды с нулевым проводом (рис. 38.1а) к каждой фазе приемника подводится непосредственно фазное напряжение генератора (UAN = UAn = UA, UBN = UBn = UB, UCN = UCn = UC), каждая из фаз при этом работает независимо друг от друга, а линейные (фазные) токи определяются по закону Ома:

Ток в нулевом проводе в соответствии с первым законом Кирхгофа равен геометрической сумме линейных (фазных) токов:

При симметричной нагрузке ZA=ZB=ZC ток в нулевом проводе IN=0 и, следовательно, надобность в нeм отпадает. Симметричные трехфазные приемники (например, трехфазные электродвигатели) включаются по схеме звезды без нулевого провода.

При несимметричной нагрузке относительная величина тока в нулевом проводе зависит от характера и степени не симметрии фазных токов. Как правило, трехфазные приёмники стремятся спроектировать по возможности близкими к симметричным, поэтому ток в нулевом проводе в реальных условиях значительно меньше линейных (фазных) токов.

схеме звезды без нулевого провода (рис. 38.1б) при любой нагрузке фаз должно выполняться условие первого закона Кирхгофа:

Из уравнения следует вывод, что изменение одного из токов влечет изменение двух других токов, то есть отдельные фазы работают в зависимом друг от друга режиме. При несимметричной нагрузке потенциал нулевой точки приемника Un становится не равным нулю, он “смещается” на комплексной плоскости с нулевого положения, при этом фазные напряжения приемника (UAn, UBn, UCn) не равны соответствующим фазным напряжениям генератора (UA, UB, UC), происходит так называемый перекос фазных напряжений приемника (рис. 38.2).

Расчет токов и напряжений в схеме звезды без нулевого провода выполняется в следующей последовательности.

Определяется напряжение (потенциал) нейтральной точки приемника по методу двух узлов:

где ZN - комплексное сопротивление нулевого провода, при его отсутствии ZN=∞.

Фазные напряжения приемника определяются как разности потенциалов соответствующих точек:

UAn=UA-Un, UBn=UB-Un , UCn=UC-Un.

Фазные токи приемника определяются по закону Ома:

Комплексные мощности фаз приемника:

Режим работы приемника с перекосом фазных напряжений является ненормальным и может привести его к выходу из строя. По этой причине несимметричную трехфазную нагрузку запрещается включать по схеме звезды без нулевого провода (например, осветительную нагрузку).

Схема треугольника применяется в том случае, если номинальное фазное напряжение приемника соответствует (равно) линейному напряжению генератора. При соединении в треугольник конец каждой фазы соединяется с началом последующей, а точки соединения (вершины треугольника) подключаются к линейным выводам трехфазного генератора А, В, С линейными проводами (рис.38.3).

Токи, протекающие в фазах приемника по направлению от их начал к концам, называются фазными (IAB, IBC, ICA). Токи, протекающие в линейных проводах по направлению от генератора к приемнику, называются линейными (IA, IB, IC).

В схеме треугольника фазные и линейные напряжения приемника тождественно равны (UAB, UBC, UCA). В этой схеме к каждой фазе приемника подводится непосредственно линейное напряжение генератора, при этом отдельные фазы работают независимо друг от друга. Фазные токи определяются по закону Ома:

Линейные токи определяются из уравнений первого закона Кирхгофа для вершин треугольника, они равны геометрической разности фазных токов:

IA=IAB-ICA; IB=IBC-IAB; IC=ICA-IBC.

В симметричном режиме фазные и линейные токи симметричны, при этом отношение их модулей составляет IЛ/IФ = √3 .

При несимметричной нагрузке соотношение между линейными и фазными токами определяется уравнениями первого закона Кирхгофа. На рис. 38.4 показана векторная диаграмма токов и напряжений для произвольной трехфазной цепи при соединении фаз в треугольник.

Варианты подключения трехфазной нагрузки

3-х фазные трансформаторы, электродвигатели и другие электроприемники подключаются к выводам генераторов по схеме звезды (γ) либо треугольника (Δ). При этом учитываются следующие особенности:

- линейные и фазные величины напряжений генератора отличаются в 1,732 раза. Uл=√3Uф; - конструкция электроприемника выполнена для работы с определенным напряжением, называемым номинальным. Его требуется подключать к соответствующим выходным цепям генератора.

Именно поэтому, необходимо выбирать оптимальное соотношение между номинальными величинами напряжений генератора и нагрузки при выборе схемы соединения фаз.

При равенстве номинального напряжения нагрузки, фазным значениям генератора выбирается схема звезды. При этом способе выхода с обмоток приемника подключаются к общей точке "N", которую именуют нейтральной либо нулевой.

Варианты подключения по схеме звезда:

Варианты подключения по схеме звезды

В соединительных проводах между генератором и приемником протекают токи. Их называют линейными токами.

В обмотках приемников тоже протекают токи, которые получили название фазных. Их направление от начала (входа в обмотку) к концу (выходу) считается положительным (+).

При последовательном подключении фаз нагрузки к линейным проводам генератора в образовавшейся цепи циркулируют одни и те же электротоки IА, IВ и IС. Они в схеме звезды равны для линии и обмоток приемника, другими словами: Iл= Iф.

У схемы звезды с нулевым проводом в нейтрали протекает нулевой (не значит, что его значение равно нулю) или нейтральный ток, обозначаемый IN.

Возникающую при прохождении тока разность потенциалов между началом и окончанием каждой обмотки в приемнике называют фазным напряжением, обозначают UАN, UBN и UCN.

Разности потенциалов между точками подключения начала фаз называют линейными напряжениями, обозначают UАВ, U и U. Их значения одинаковы для генератора и нагрузки.

У электроприемников схемы звезды с нулевым проводником для любой обмотки подключается соответствующее фазное напряжение от генератора. Оно обозначается для фазы:

Любая фаза работает самостоятельно, не зависит от других. В ней токи (линейные или фазные) определяют формулой по закону Ома:

Первый закон Кирхгофа позволяет определить ток в нейтральном проводе как геометрическую сумму линейных либо фазных токов выражением: IN=IA+IB+IC.

При равных и симметричных нагрузках (ZA=ZB=ZC) величина тока в нейтральном проводе равна нулю. IN=0. Поэтому, симметричные 3-х фазные электроприемники (электродвигатели) подключают без нейтрального провода.

Для случая нарушения симметрии нагрузки характерно появление в нулевом проводнике тока, величина которого определяется отличиями от симметричных составляющих.

Такие отклонения снижают на стадии проекта и производства, чем и объясняются незначительные величины токов в нулевом проводе по сравнению с фазными/линейными значениями.

Описываемые 1-м законом Кирхгофа соотношения токов для любых нагрузок схем звезды без нулевого провода (IA+IB+IC=0) определяют взаимозависимость векторов.

Изменение одного любого вектора ведет к одновременному преобразованию остальных, чем проявляется зависимость режима. Ток нейтрали формирует разность потенциалов с величиной отличной от нуля.

На комплексной плоскости напряжение нулевой последовательности изображается вектором Un, смещающим центральную точку соединения векторов фазных напряжений для приемника (UАN, UВN, UСN), которые теряют равенство с фазными напряжениями генератора (UА, UВ, UС). Возникает перекос с фазными напряжениями у приемника.

Комплексная плоскости напряжения нулевой последовательности

Способ расчета векторов тока и напряжения для схемы звезды без нулевого провода. Методом 2-х узлов вычисляются параметры смещения нейтральной точки для вектора напряжения нейтрали (UN):

Расчеты фазных токов внутри приемника

Определение фазных напряжений основано на вычислении разности потенциалов между началами и окончаниями обмоток:

Расчеты фазных токов внутри приемника производятся на основе закона Ома:

Формулы для расчета полной мощности в фазах

Величина тока в нейтральном проводнике вычисляется геометрической суммой входных линейных/фазных токов на основе 1-го закона Кирхгофа:

Формулы для расчета полной мощности в фазах:

При разных нагрузках в фазах возникает перекос напряжений в схеме, который может привести к неисправностям. Поэтому, эксплуатировать такие нагрузки в схемах электроприемников без нулевого провода (часто это коммутируемые цепи освещения, обогрева и др.) запрещено.

Способ расчета векторов тока и напряжения для схемы треугольника. При равенстве значений номинальных напряжений электроприемника величинам линейных напряжений генератора используется схема треугольника.

Для ее создания в приемнике выход одной обмотки подключается ко входу другой с выводом точки коммутации (являющейся вершиной треугольника) на клемму для соединения проводами с линейным выводом 3-х фазного генератора. Так формируются подключения к фазам А, В, С.

Расчет векторов тока и напряжения для схемы треугольника

В обмотках такого приемника проходят фазные токи IАB, IBC, I. А токи, подводимые к приемнику от генератора по проводам, называют линейными. Их обозначают IА, IB, IC.

Для рассматриваемой цепи выполняется равенство подводимых напряжений с линии фазным напряжениям приемника UАB, UBC, U. Каждая отдельная фаза работает самостоятельно без зависимости от остальных.

Расчет фазных токов проводится по закону Ома:

Расчет фазных токов по закону Ома

Вектора линейных токов описываются 1-м законом Кирхгофа в точках вершин треугольника и вычисляются как геометрическая разность векторов в фазах:

Для симметричного режима нагрузок выполняется симметричность фазных и линейных токов, которые определяются соотношением Iл=√3Iф. При несимметричном режиме нагрузок соотношения векторов линейных и фазных описываются 1-м законом Кирхгофа.

Примерное соотношение векторов для произвольной 3-х фазной цепи, работающей по схеме треугольник на комплексной плоскости, представлено на векторной диаграмме.

Электротехника, электроника и схемотехника модуль 4 — ответы

Ответы на модуль 4 (ТРЕХФАЗНЫЕ ЦЕПИ. ТРЕХФАЗНЫЕ СИСТЕМЫ ЭДС.) по предмету электротехника, электроника и схемотехника.

1) Какое международное обозначение имеет каждая из фаз трехфазной цепи? А, В, С.

2) Линейным током в трехфазной сети называется ток, протекающий: в линейных проводах по направлению от генератора к приемнику.

3) Соединение в трехфазной сети по схеме «треугольник» образуется, когда: концы каждой из фазных обмоток соединяются с началом другой фазы, а точки соединения подключаются линейными проводами с трехфазным приемником.

4) В трехфазной системе мгновенные значения напряжения и тока каждой фазы сдвинуты друг относительно друга во времени на величину: ∆ω = 120º.

5) Величина реактивной мощности симметричной трехфазной цепи не связана прямо пропорциональной зависимостью: с синусом угла сдвига фаз между линейными напряжением и током.

6) Что не относится к достоинствам трехфазной симметричной системы? обеспечивает простоту в конструкции и надежность в работе элементов трехфазной системы.

7) Для оптимального измерения активной мощности симметричной трехфазной цепи с нулевым проводом используется: схема с одним ваттметром, который включается в одну из фаз и измеряет активную мощность только этой фазы.

8) В симметричной трехфазной сети по схеме «звезда» векторы линейного и двухфазных напряжений образуют: три равнобедренных треугольника, острые углы которых равны 30º.

9) Общий провод NN’ трехфазной симметричной системы обладает следующим свойством: мгновенное значение тока в данном проводе равно нулю в любой момент времени.

10) В трехфазной сети, соединенной по схеме «треугольник», коэффициент отношения линейного тока к фазному току, равен: √3.

11) Режим перекоса фазных напряжений в трехфазной системе приемника возникает при включении: несимметричной трехфазной нагрузки по схеме «звезда» без нулевого провода.

12) Величина активной мощности симметричной трехфазной цепи не связана прямо пропорциональной зависимостью: с синусом угла сдвига фаз между линейными напряжением и током.

13) Трехфазная система – это: совокупность трех независимых цепей переменного тока, каждая из которых называется фазой.

14) При соединении трехфазной сети по схеме «треугольник»: номинальное фазное напряжение приемника равно линейному напряжению генератора.

15) При соединении симметричной трехфазной сети по схеме «звезда» линейные токи: равны по значению и совпадают по направлению с фазными токами.

16) Трехфазное соединение по схеме «звезда» применяется в том случае, когда: номинальное напряжение приемника равно фазному напряжению генератора.

17) В соответствии с первым законом Кирхгофа ток в нулевом проводе в трехфазной сети по схеме «звезда» равен: геометрической сумме линейных (фазных) токов.

18) В каком из случаев трехфазное соединение по схеме «звезда» без нулевого провода не может применяться? при подключении к несимметричной трехфазной нагрузке.

19) В симметричной трехфазной сети, соединенной по схеме «звезда», коэффициент отношения линейного напряжения к фазному напряжению равен: √3.

20) Линейные напряжения в трехфазной схеме «звезда» определяются как: векторная сумма фазных напряжений.

21) В векторной диаграмме соединения трехфазной сети по схеме «треугольник» углы между векторами линейных напряжений составляют: 120º.

22) Линейные токи при симметричной нагрузке в трехфазной сети по схеме «треугольник» сдвинуты друг относительно друга на: 120º.

23) Трехфазное соединение по схеме «звезда» образуется, если: начала трехфазных обмоток генератора объединены в одну общую нейтральную точку.

24) Какое из условий не выполняется в трехфазной сети по схеме «треугольник»? линейные напряжения равны фазным напряжениям.

25) Нейтральным током в трехфазной сети называется ток, протекающий: в нулевом проводе по направлению от приемника к генератору.

СОЕДИНЕНИЕ ПРИЕМНИКОВ ЭНЕРГИИ ТРЕУГОЛЬНИКОМ

При соединении приемников энергии треугольником (рис. 6-11) каждая фаза приемника присоединяется к линейным проводам, т. е. включается на линейное напряжение, которое одновременно будет и фазным напряжением приемника:

Таким образом, изменение сопротивления фаз не влияет на фазные напряжения.

Рис. 6-11. Соединение приемников треугольником

Следовательно, мгновенное значение любого линейного тока равно алгебраической разности мгновенных значений токов тех фаз, которые соединены с данным проводом.

Рис. 6-12. Векторная диаграмма при соединении приемников треугольником.

Вектор любого линейного тока находится как разность векторов соответствующих фазных токов:

На рис. 6-12 дана векторная диаграмма для трехфазной цепи при соединении приемников энергии треугольником. На этой диаграмме все векторы проведены из одного начала. На рис. 6-13 дана вторая диаграмма для той же цепи, на которой векторы напряжений образуют треугольник, а вектор каждого фазного тока проведен из одного начала с вектором соответствующего фазного напряжения.

Рис. 6-13. Векторная диаграмма при соединении приемников треугольником.

Если при симметричной системе линейных напряжений нагрузка фаз равномерная, т. е.

то действующие значения фазных токов равны между собой и они сдвинуты по фазам на одинаковые углы от соответствующих напряжений (рис. 6-14) и, следовательно, на углы 120° один относительно другого. Следовательно, фазные токи представляют симметричную систему. Симметричную систему будут представлять и линейные токи (рис. 6-14).

Восстановив перпендикуляр из середины вектора линейного тока, например IА, получим прямоугольный треугольник OHM, из которого следует, что

Таким образом, при соединении приемников треугольником при равномерной нагрузке фаз линейные токи больше фазных в √3 раз.

Кроме того, из той же векторной диаграммы следует, что линейные токи отстают от соответствующих фазных токов на углы 30°.

Рис. 6-14. Векторная диаграмма для цепи, соединенной треугольником при равномерной нагрузке фаз.

При соединении приемников треугольником при равно мерной нагрузке фаз расчет трехфазной цепи сводится к расчету одной фазы.

В этом случае фазное напряжение UФ = UЛ Фазный ток IФ = UФ/zФ

во фазного напряжения определяются из выражений

Активная мощность одной фазы

P Ф = U Ф I Ф cosφ Ф Активная мощность трех фаз

P = 3P Ф = 3U Ф I Ф cos φФ = √3 UI cosφ

Реактивная мощность трех фаз

Q = 3U Ф I Ф sinφ Ф = √3 UI sinφ

Полная мощность трехфазной цепи

S = 3U Ф I Ф = √3UI

При неравномерной нагрузке фаз мощность трехфазной цепи о пределяется как сумма мощностей отдельных фаз.

Если приемники энергии соединены звездой и за положительное направление линейных токов вобрано направление от генератора к потребителю, то согласно первому правилу Кирхгофа для нейтральной точки можно написать:

Если приемники энергии соединены треугольником, то сумма линейных токов

iA + iB + iC = iAB iCA+ iBC iAB+ iCA iBC = 0

Следовательно, при любом способе соединения приемников алгебраическая сумма мгновенных значений линейных токов трехфазной трехпроводной цепи равна нулю.

Поэтому, например, намагничивающая сила трех жил трехфазного кабеля равна нулю и, следовательно, не происходит намагничивания стальной брони кабеля, применяемой для защиты от механических повреждений.

ВКЛЮЧЕНИЕ ПРИЕМНИКОВ ЭНЕРГИИ В СЕТЬ ТРЕХФАЗНОГО ТОКА

Электрические лампы изготовляются на номинальные напряжения 127 и 220 в, а трехфазные электродвигатели на номинальные фазные напряжения 127, 220 и 380 в и выше.

Способ включения приемника в сеть трехфазного тока зависит от линейного напряжения сети и от номинального напряжения приемника.

Лампы с номинальным напряжением 127 в включаются треугольником при линейном напряжении сети 127 в и звездой с нейтральным проводом при линейном напряжений сета 220 в. Лампы с номинальным напряжением 220 в включаются треугольником в сеть с линейным напряжением 220 в и звездой с нейтральным проводом в сеть с линейным напряжением 380 в.

Трехфазный электродвигатель включается треугольником в сеть, линейное напряжение которой равно номинальному фазному напряжению электродвигателя. Если линейное напряжение сети превышает в √3 раз номинальное фазное напряжение электродвигателя, то он включается звездой.

Статья на тему Соединение приемников энергии треугольником

СОЕДИНЕНИЕ ПРИЕМНИКОВ ЭНЕРГИИ ЗВЕЗДОЙ

При соединении приемников энергии звездой трехфазная система может быть четырехпроводной (осветительная нагрузка) или трехпроводной (силовая нагрузка).

В первом случае лампы включаются между каждым из линейных проводов и нейтральным проводом (рис. 6-8).

При этом нейтральный провод обеспечивает равенство напряжений на отдельных фазах приемников и на соответ ствующих фазах генератора. Таким образом, условия работы приемников энергии остаются теми же, что и в однофазной цепи.

Рис. 6-8. Схема соединения звездой с нейтральным проводом.

При этом соединении (рис. 6-8) токи в линейных проводах равны токам в соответствующих фазах приемника и генератора, т. е.

Токи в отдельных фазах приемников вычисляются по известным формулам:

Углы сдвигов фазных токов относительно фазных напряжений приемников определяются через их косинусы:

где rA, rB , rC , zA, zB , zC активные и полные сопротивления фаз приемников.

Мгновенное значение тока в нейтральном проводе, по первому правилу Кирхгофа, равно сумме мгновенных значений фазных токов:

Вектор тока в нейтральном проводе определяется как сумма векторов фазных токов:

Пример 6 -2. Фазное напряжение генератора 220 в, сопротивление

фаз приемника zA = zB = rA = rB = 22ом, zC = rC = 44 ом

Определить ток в нейтральном проводе. Фазные токи

IA = IB = Uф/zA = 220/22 = 10a; IC = Uф/zC = 220/44 = 5a

Рис. 6-9. Векторная диаграмма четырехпроводной трехфазной цепи при активной нагрузке.

На векторной диаграмме (рис. 6-9) построены векторы фазных на пряжений и токов. Сумма векторов фазных токов дает вектор тока в ней тральном проводе, откуда I0 = 5 а. Он отстает по фазе от напряжения UА на угол φ = 60°.

Сечение нейтрального провода берут равным (или несколько меньшим) сечению линейных проводов, так как ток в нейтральном проводе обычно меньше, чем токи в линейных проводах.

При неодинаковых сопротивлениях фаз приемников, при нейтральном проводе напряжение на каждой фазе приемника

равно Uл/ √3 = 0,58 Uл , кото рое и является номинальным для приемника. Обрыв нейтрального провода вызовет изменение напряжения на фазах приемников. В фазе приемника с меньшим сопротивлением напряжение уменьшится и может достигнуть нулевого значения при r ф = 0. В фазе с большим сопротивлением напряжение увеличится и может достигнуть значения Uл, что недопустимо, так как в √3 раз превышает номинальное напряжение приемника, и при осветительной нагрузке лампы, включенные в эту фазу, перегорят. Во избежание разрыва в нейтральном проводе не устанавливают предохранители и выключатели.

При одинаковых сопротивлениях фаз приемника (электродвигатель) и при симметричных фазных э. д. с. генератора фазные токи будут равны между собой и сдвинуты на одинаковые углы от соответствующих фазных напряжений, т. е. система токов также будет симметричной. В этом случае ток в нейтральном проводе, равный сумме фазных токов, равен нулю и, следовательно, необходимость в нем отпадает. Он может быть отсоединен и мы получим трехфазную трехпроводную систему.

Расчет трехфазной цепи при симметричной системе напряжений и одинаковой (равномерной) нагрузке фаз сводится к расчету одной фазы.

Рис. 6-10. Схема соединения трехфазного генератора и приемника звездой.

Допустим приемник энергии, соединенный звездой включен в сеть (рис. 6-10). Если сопротивление фаз прием ника zA = zb = zС = zф, то фазные напряжения приемника

Угол сдвига фазного тока от фазного напряжения можно определить через его

соs φ Ф = r Ф /z Ф

Активная мощность фазы

Р Ф = U Ф I Ф COS φ Ф .

Для симметричной системы при равномерной нагрузке активная мощность всех фаз

Р =Ф = 3 U Ф I Ф cos φ Ф .

Учитывая, что при соединении звездой Iф = Iл и Uф = UЛ/√3

Р = 3 U ФIФ cos φФ = 3( U ЛIЛ/√3)cos φФ = √3 UI cos φ.

В последней формуле U и I — линейные величины, а φ — угол сдвига фаз между фазным напряжением и фазным током.

Реактивная мощность трехфазной системы

Q = √3UIsin φ ,

а полная мощность

S = √3UI

При неравномерной нагрузке фаз или при несимметричной системе напряжений мощности трехфазной системы определяются как сумма мощностей трех фаз.

Пример 6-3. Электродвигатель трехфазного тока, соединенный звездой, включен в сеть с напряжением 380 е. Мощность двигателя 5 квт,

ток. двигателя 9 а. Определить коэффициент мощности. Мощность электродвигателя

Читайте также: