Условие перемещения флюида из пласта в ствол скважины под действием пластового давления

Обновлено: 07.07.2024

Вторичное вскрытие продуктивных пластов, вызов притока нефти (газа) и освоение скважин 13 глава

Вскрытие продуктивных пластов проводят дважды: первичное — в процессе бурения, вторичное — перфорацией после крепления скважины эксплуатационной колонной. Вскрытие пласта перфорацией в обсаженных скважинах — одна из наиболее важных операций при их строительстве, поскольку от нее зависит дальнейший успех испытания, получения притока пластового флюида и освоения скважины как объекта эксплуатации.

13.1. ПУЛЕВАЯ ПЕРФОРАЦИЯ

Пулевые перфораторы представляют собой короткоствольные пушечные системы, в которых пули разгоняются по стволу благодаря энергии расширения пороховых газов и, получив достаточную кинетическую энергию на выходе из нее, пробивают препятствие. В перфораторах типа АПХ, ПБ, ППМ длина ствола, в котором пули разгоняются под давлением пороховых газов, очень ограничена, поэтому кинетическая энергия пули на выходе из отверстия ствола недостаточна для получения в породе каналов большой длины. Новыми среди пулевых перфораторов являются перфораторы с вертикально-криволинейными стволами типа ПВН, в которых пули разгоняются по стволам значительной длины, размещенным вдоль оси корпуса. При такой конструкции длина ствола увеличивается до 400 — 500 мм против 60 — 70 мм в перфораторах с горизонтальным размещением стволов, а скорость пули на выходе из дула достигает 900—1000 м/с. Поскольку масса пули в пефораторах типа ПВН в 4 — 5 раз больше массы пуль, применяемых в перфораторах типа АПХ, ПБ, ППМ, то кинетическая энергия, которую получает поля на выходе из ствола, больше в 10 раз. Благодаря этому указанные перфораторы имеют пробивную способность, которую можно сравнить с пробивной способностью кумулятивных перфораторов такого же поперечного размера при отстрелах в породах средней прочности.

Для вторичного вскрытия применяют пулевые перфораторы залпового действия с вертикально-наклонными стволами ПВН90, ПВН90Т, ПВТ73, ПВК70 (диаметры 90, 73, 70 мм), которые могут спускаться в обсадную колонну с минимальным внутренним диаметром 117,5 и 98 мм. В перфораторах типа ПВН в двух взаимно перпендикулярных плоскостях попарно расположены четыре ствола. Для взаимного уравновешивания сил реакции парные стволы идут от общих пороховых камер навстречу друг другу.

Перфоратор ПВТ73 отличается двуствольной конструкцией, в которой пули разгоняются по противоположным направлениям. В одноканальном многосерийном перфораторе ПВК70 ствол проходит вдоль оси перфоратора, и в нем используются пули с увеличенными диаметром и массой.

Длина канала, пробиваемого пулей в породе средней прочности, составляет 140 мм для ПВН90 и ПВН90Т, 180 мм для ПВТ73 и 200 мм для ПВК70. Пробивная способность пуль в значительно большей степени зависит от прочности породы, чем у кумулятивных струй, длина каналов в породах низкой и средней прочности, создаваемых пулевыми перфораторами, больше длины каналов, создаваемых кумулятивными перфораторами, а в породах выше средней прочности (50 МПа) — наоборот, меньше. Поэтому целесообразнее применять пулевые перфораторы для вскрытия пластов, составленных слабосцементированными, непрочными породами. Кроме того, благодаря интенсивному трещинообразованию при вхождении в породу пули эффективность вскрытия во многом зависит от числа и длины трещин.

С этой точки зрения большее предпочтение пулевым перфораторам следует отдавать при вскрытии сыпучих пород. Поскольку воздействие пулевого перфоратора на обсадную колонну несколько больше кумулятивного корпусного, применение его нежелательно (при качественном цементировании обсадной колонны), при наличии близких водоносных горизонтов. Следует также учесть, что продуктивность работ с пулевыми перфораторами несколько ниже, чем с кумулятивными, так как за один спуск они могут вскрыть лишь до 2 — 3 м пласта с плотностью до пяти отверстий на 1 м.

13.2. КУМУЛЯТИВНАЯ ПЕРФОРАЦИЯ

Механизм образования кумулятивной струи следующий. При взрыве вещества в виде цилиндрического заряда происходит почти мгновенное превращение его в газоподобные продукты, которые разлетаются во все стороны в направлениях, перпендикулярных к поверхности заряда. Суть эффекта кумуляции в том, что газоподобные продукты детонации части заряда, называющиеся активной частью и движущиеся к оси заряда, концентрируются в мощный поток, который называется кумулятивной струей. Если углубление в заряде облицовано тонким слоем металла, то при детонации заряда вдоль ее оси образуется кумулятивная струя, состоящая не только из газоподобных продуктов, но и из размягченного металла, который выделяется из металлической облицовки.

Имея очень высокую скорость в главной части (6 — 8 км/с), при ударе о твердую перегородку струя развивает такое давление, под воздействием которого наиболее прочные материалы разрушаются. Для большинства зарядов давление кумулятивной струи на перегородку составляет 20 — 30 ГПа, в то время как граница прочности горных пород в 400 — 600 раз меньше.

По гидродинамической теории кумуляции (М.А. Лаврентьев и Г.И. Покровский), длина пробитого канала 1к в перегородке не зависит от механической прочности материала перегородки, а определяется только соотношением плотностей материалов струи рс и перегородки рп:

где 1с — длина кумулятивной струи, для большинства зарядов равная длине образовавшегося кумулятивного углубления.

Таким образом, длина канала в перегородке при проникновении в нее кумулятивной струи почти не зависит от прочности перегородки, благодаря чему кумулятивные перфораторы можно применять для вскрытия пластов с наиболее прочными породами.

Формирование перфорационных каналов в пласте носит следующий характер. При разрушении металлической облицовки от детонации заряда в кумулятивную струю переходит лишь 10 % ее массы. Остальная ее часть формируется в стержне сигароподобной формы — песте, который движется со скоростью около 1000 м/с. Обладая меньшей кинетической энергией и большим диаметром, чем главная часть струи, пест может застрять в уже образовавшемся канале и частично или даже полностью закупорить его. Около 15 % всех перфорационных каналов полностью закупорены застрявшим в обсадной колонне пестом.

Для образования кумулятивной струи при взрыве заряда необходимое условие — отсутствие в кумулятивной полости заряда любой жидкости, иначе от взрыва заряда вместо кумулятивного эффекта будет иметь место фугасное действие.

В связи с этим кумулятивные заряды перфораторов изолируют от скважинной жидкости путем размещения их в индивидуальные герметические оболочки (бескорпусные перфораторы) или в общие герметические корпуса (корпусные перфораторы).

Корпусные кумулятивные перфораторы обеспечивают наименьшее нежелательное воздействие на обсадную колонну и затрубное цементное кольцо, так как основную часть энергии взрыва заряда воспринимает корпус перфоратора. При этом в зависимости от особенностей корпуса перфораторы делят на корпусные многоразового (ПК) и корпусные одноразового (ПКО) использования.

В перфораторах типа ПК корпус воспринимает не только гидростатическое давление, но и многократные взрывные нагрузки, поэтому толщина

его должна быть больше, чем в перфораторах типа ПКО. Это приводит к тому, что при одних и тех же габаритах перфораторов в ПК масса заряда меньше, чем в ПКО. Из перфораторов типа ПК наиболее распространены перфораторы ПК105ДУ, ПК85ДУ, ПК95Н, а из перфораторов типа ПКО — перфораторы ПКО89, ПК073.

Бескорпусные кумулятивные перфораторы с зарядами в индивидуальных оболочках позволяют значительно ускорять проведение простре-лочно-взрывных работ, так как за один спуск перфоратора может быть вскрыто 30 м пласта. Малогабаритными бескорпусными перфораторами можно выполнять вторичное вскрытие пластов, спуская их внутрь насоснокомпрессорных труб. Однако степень воздействия этих перфораторов на обсадную колонну и цементное кольцо значительно больше, чем при использовании корпусных перфораторов. Кроме того, после взрыва зарядов на забое остаются обломки от корпусов заряда и соединяющих деталей, наличие которых позже может привести к осложнениям при эксплуатации скважины.

Из корпусных полуразрушающихся перфораторов на промыслах наиболее распространены перфораторы в стеклянных оболочках ПКС80,

Поступление флюида в ствол скважины

И снова здравствуйте. Сегодня мы затронем тему “поступление флюида в ствол скважины”. Как известно, газ может проникать в ствол не только при депрессии на пласт (забойное давление ниже пластового), но и при ряде других причин. Часть из них мы сегодня опишем.

Поступление флюида в ствол скважины с выбуренной породой

Во время бурения достигается продуктивный горизонт. Свойства пород в этом участке позволяют содержать в себе флюид. Во время разбуривания части данного пласта вместе с выбуренной породой начинает поступать флюид.

При условии, что буровой раствор не успевает вовремя дегазироваться, нам достаточно уменьшить механическую скорость бурения.

Гравитационные силы

Не все пласты расположены ровно, слой за слоем, как на тортике. Многие из них, так или иначе, подверглись тектоническим нарушениям. При разбуривании оных, находящихся под углом более 10-15 градусов, с трещиноватой структурой, мы можем получить некоторое проявление.

При сильном проявлении действия такие же. как и в первом методе – уменьшаем механическую скорость. Также здесь нам поможет улучшение структурных свойств бурового раствора.

Диффузия

Диффузия – это молекулярное проникновение одного вещества в другое при их непосредственном контакте. В нашем случае во время простоя при разности концентраций газа в пласте и в буровом растворе начинается постепенный обмен веществ в обе стороны. Но со временем в пласте скапливается буровой раствор, который препятствует дальнейшему движению газа в скважину.

Бороться с этим не сложно. Достаточно просто избегать длительных простоев во время бурения газоносных горизонтов.

Осмос

Осмос – это та же диффузия, но в одну сторону через полу-проницаемую мембрану, разделяющую два раствора разных концентраций и пропускающая только растворитель. Для простого понимания: при вскрытии пласта на стенках скважины образуется глинистая корка (полу-проницаемая мембрана). Основа бурового раствора – вода (в нашем случае) – стремится в пласт (растворить соль), что вызывает дальнейшие негативные последствия. Ими могут являться осыпи, обвалы, увеличение плотности бурового раствора, которые могут перерасти в ГНВП.

Для предотвращения необходимо правильно регулировать содержание солей в буровом растворе.

Капиллярные силы

При прохождении продуктивных горизонтов между пластовым флюидом и буровым раствором происходит контакт. Вода из бурового раствора имеет большую смачивающую способность для пород, чем флюид. Причем в узких каналах капиллярные силы сильнее. В коллекторах каналы связаны между собой. Постепенно вода начинает вытеснять флюид из узких каналов в широкие, откуда флюид выходит в скважину. Получается циркуляция до тех пор, пока вода не заблокирует дальнейшее перемещение.

Решением проблемы является понижение водоотдачи бурового раствора.

Контракция

Контракция – это процесс уменьшения объема (усадка) при смешивании воды с цементами/глинами и т.п. по сравнению с исходным. Сам эффект не представляет угрозы. Однако в сочетании с высокими структурными свойствами бурового раствора может доставить хлопот. При остановке циркуляции происходит контракция со шламом. А раствор сверху не опустится из-за сил сцепления. В связи с этим могут возникнуть локальные уменьшения плотности раствора.

Седиментация

Седиментация – это процесс осаждения твердых частиц из системы (бурового раствора). Очевидно, при остановке циркуляции осаждение на места сужения будет вызывать локальные уменьшения плотности бурового раствора.

ФРЕКИНГ ИЛИ ГИДРОРАЗРЫВ ПЛАСТА: ТЕХНОЛОГИЯ, ИСТОРИЯ, ОБОРУДОВАНИЕ

Эта технология, применяемая для интенсификации работы и повышения отдачи нефтедобывающих скважин уже более полувека, вызывает, пожалуй, наиболее жаркие споры среди экологов, ученых, простых граждан, а нередко даже и самих работников добывающей отрасли. Между тем смесь, которая закачивается в скважину во время гидроразрыва, на 99% состоит из воды и песка, и лишь на 1% – из химических реагентов.

Что мешает нефтеотдаче

Основная причина низкой продуктивности скважин наряду с плохой естественной проницаемостью пласта и некачественной перфорацией — снижение проницаемости призабойной зоны пласта. Так называется область пласта вокруг ствола скважины, подверженная наиболее интенсивному воздействию различных процессов, сопровождающих строительство скважины и ее последующую эксплуатацию и нарушающих первоначальное равновесное механическое и физико-химическое состояние пласта. Само бурение вносит изменения в распределение внутренних напряжений в окружающей забой породе. Снижение продуктивности скважин при бурении происходит также в результате проникновения бурового раствора или его фильтрата в призабойную зону пласта

Причиной низкой продуктивности скважин может быть и некачественная перфорация вследствие применения маломощных перфораторов, особенно в глубоких скважинах, где энергия взрыва зарядов поглощается энергией больших гидростатических давлений.

Снижение проницаемости призабойной зоны пласта происходит и при эксплуатации скважин, сопровождающейся нарушением термобарического равновесия в пластовой системе и выделением из нефти свободного газа, парафина и асфальтосмолистых веществ, закупоривающих поровое пространство коллектора. Интенсивное загрязнение призабойной зоны пласта отмечается и в результате проникновения в нее рабочих жидкостей при проведении в скважинах различных ремонтных работ. Приемистость нагнетательных скважин ухудшается вследствие закупорки порового пространства пласта продуктами коррозии, илом, нефтепродуктами, содержащимися в закачиваемой воде. В результате протекания подобных процессов возрастают сопротивления фильтрации жидкости и газа, снижаются дебиты скважин и возникает необходимость в искусственном воздействии на призабойную зону пласта с целью повышения продуктивности скважин и улучшения их гидродинамической связи с пластом.

ФРЕКИНГ ИЛИ ГИДРОРАЗРЫВ ПЛАСТА: ТЕХНОЛОГИЯ, ИСТОРИЯ, ОБОРУДОВАНИЕ

Технология фрекинга

Для повышения нефтеотдачи пласта, интенсификации работы нефтяных и газовых скважин и увеличения приёмистости нагнетательных скважин используется метод гидровлического разрыва пласта или фрекинга. Технология заключается в создании высокопроводимой трещины в целевом пласте под действием подаваемой в него под давлением жидкости для обеспечения притока добываемого флюида к забою скважины. После проведения ГРП дебит скважины, как правило, резко возрастает – либо же существенно снижается депрессия. Технология ГРП позволяет «оживить» простаивающие скважины, на которых добыча нефти или газа традиционными способами уже невозможна или малорентабельна.

Гидравлический разрыв пласта (ГРП) является одним из наиболее эффективных средств повышения производительности скважин, поскольку приводит не только к интенсификации выработки запасов, находящихся в зоне дренирования скважины, но и, при определенных условиях, позволяет существенно расширить эту зону, приобщив к выработке слабо дренируемые зоны и пропластки – и, следовательно, достичь более высокой конечной нефтеотдачи.

ФРЕКИНГ ИЛИ ГИДРОРАЗРЫВ ПЛАСТА: ТЕХНОЛОГИЯ, ИСТОРИЯ, ОБОРУДОВАНИЕ

История метода ГРП

Первые попытки интенсификации добычи нефти из нефтяных скважин были предприняты еще в 1890-х годах. В США, где добыча нефти в это время развивалась стремительными темпами, был успешно испытан метод стимулирования добычи из плотных пород с помощью нитроглицерина. Идея заключалась в том, чтобы взрывом нитроглицерина раздробить плотные породы в призабойной зоне скважины и обеспечить увеличение притока нефти к забою. Метод успешно применялся некоторое время, несмотря на свою очевидную опасность.

Первый коммерчески успешный гидроразрыв пласта был осуществлен в 1949 году в США, после чего их количество стало резко возрастать. К середине 50-х годов количество проводимых ГРП достигло 3000 в год. В 1988 году общее количество проведенных ГРП перевалило за 1 миллион операций, и это только в США.

В отечественной практике метод ГРП начали применять с 1952 года. Пик применения метода был достигнут в 1959 году, после чего количество операций снизилось, а затем эта практика и вовсе прекратилась. С начала 1970-х и до конца 1980-х ГРП в отечественной нефтедобыче в промышленных масштабах не проводились. В связи с вводом в разработку крупных нефтяных месторождений Западной Сибири потребность в интенсификации добычи попросту отпала.

…И день сегодняшний

Возрождение практики применения ГРП в России началось только в конце 1980-х. В настоящее время лидирующие позиции по количеству проводимых ГРП занимают США и Канада. За ними следует Россия, в которой применение технологии ГРП производят в основном на нефтяных месторождениях Западной Сибири. Россия – практически единственная страна (не считая Аргентины) за пределами США и Канады, где ГРП является привычной практикой и воспринимается вполне адекватно. В других странах применение технологии гидроразрыва затруднено из-за местных предубеждений и недопонимания технологии. В некоторых из них действуют существенные ограничения по использованию технологии ГРП вплоть до прямого запрета на ее применение.

ФРЕКИНГ ИЛИ ГИДРОРАЗРЫВ ПЛАСТА: ТЕХНОЛОГИЯ, ИСТОРИЯ, ОБОРУДОВАНИЕ

Ряд экспертов утверждают, что использование технологии гидроразрыва при добыче нефти – это нерациональный, варварский подход к экосистеме. В то же время, метод широко применяется практически всеми крупными нефтяными компаниями.

Применение технологии ГРП достаточно обширно – от низко- до высоко проницаемых коллекторов в газовых, газоконденсатных и нефтяных скважинах. Кроме того, с использованием ГРП можно решать специфические задачи, например, ликвидировать пескопроявления в скважинах, получать информацию о ФЕС объектов испытания в поисково-разведочных скважинах и т.д..

В последние годы развитие технологий ГРП в России направлено на увеличение объемов закачки проппанта, производство азотных ГРП, а также многостадийных ГРП в пласте.

Разумеется, метод ГРП, как и любая другая технология, применяемая в добывающей отрасли, не лишен определенных недостатков. Один из минусов фрекинга – в том, что положительный эффект операции может быть сведён на нет непредвиденными ситуациями, риск возникновения которых при столь обширном вмешательстве довольно велик (например, возможно непредвиденное нарушение герметичности близлежащего водного резервуара). Вместе с тем. гидравлический разрыв пласта является сегодня одним из наиболее эффективных методов интенсификации скважин, вскрывающих не только низкопроницаемые пласты, но и коллекторы средней и высокой проницаемости. Наибольший эффект от проведения ГРП может быть достигнут при внедрении комплексного подхода к проектированию гидроразрыва как элемента системы разработки с учетом разнообразных факторов, таких как проводимость пласта, система расстановки скважин, энергетический потенциал пласта, механика трещины, характеристики жидкости разрыва и проппанта, технологические и экономические ограничения.

Условие перемещения флюида из пласта в ствол скважины под действием пластового давления

Массы Рас

перейти к странице

Массы Рас

.
Массы Рас запись закреплена

Ответы на билеты по ГНВП

Билет № 1
1. Причины поступления пластового флюида в ствол скважины.
Поступление пластового флюида в ствол скважины обуславливается перепадом давления в пластовых коллекторах и скважине, т.е. снижение давления в стволе скважины. Это может происходить вследствие следующих причин:
- снижение давления столба промывочной жидкости ниже величины пластового давления вскрытого продуктивного пласта;
- ведение подъема НКТ без долива скважины или при недостаточном его объеме;
- нарушение технологии глушения скважины;
- уменьшение удельного веса жидкости в скважине при длительных перерывах и остановках в работе за счет поступления газа или нефти из пласта в жидкость глушения;
- заполнение скважины перед прострелочными или геофизическими работами промывочной жидкостью, параметры которой не соответствуют геолого-техническому наряду или плану работ;
- не проведение периодических операций по циркуляции раствора при спущенных НКТ во время длительных простоев и перерывов в работе;
- недостаточная плотность раствора вследствие ошибки при составлении плана работ, недостоверные данные пластового давления, указанные в план заказе или несоблюдение параметров раствора бригадой ПРС (подготовки);
- поглощение жидкости находящейся в скважине.

2. Правила ликвидации проявлений.
При первых признаках проявления следует:
- отключить электроэнергию;
- загерметизировать устье скважины противовыбросовым оборудованием;
- сообщить диспетчеру ПРС;
1. Своевременно обнаружить ГНВП, определить вид его флюида.
2. Загерметизировать устье скважины.
3. Зарегистрировать Ризб в НКТ и Ризб в затрубном пространстве.
4. Определить Vо.
5. В минимально короткий срок приступить к глушению скважины.
6. Правильно выбрать способ глушения скважины.
7. В процессе глушения поддерживать условие, чтобы Рзаб было больше Рпл.
8. В процессе подготовительных работ проводить промывку с целью снижения Ризб за счет вымывания флюида и особенно газа.

3.Что относится к устьевому оборудованию?
К устьевому оборудованию относится фонтанная арматура для фонтанирующих или нефтяных скважин с целью их герметизации, контроля и режима эксплуатации. ФА представляет собой соединение различных крестовиков, тройников, задвижек, кранов. Между фланцами- кольца из специальной малоуглеродистой стали.
ФА состоит из трубной головки и елки:
- трубная головка монтируется на колонной головке и предназначена для подвески подъемных труб и герметизации затрубья;
- елка предназначена для направления жидкости на выкидные линии, для регулирования и контроля скважины, а также для ее закрытия.

4. Действия вахты по сигналу «Выброс» при бурении или промывке с установленным на устье плашечным превентором.
По сигналу «Выброс» все работы на скважине немедленно прекращаются. Вахта начинает действовать согласно ПЛА. Открываются задвижки. Трубы подвешиваются так, чтобы гладкое тело трубы было напротив плашек, голова трубы должна находиться на таком уровне, чтобы было удобно навернуть дополнительный инструмент, приспособление. Плашки на теле трубы закрываются вручную, наворачивается обратный клапан или шаровый кран (в открытом положении). Закрывается задвижка на центральном патрубке. После закрывается затрубная задвижка. Сообщается диспетчеру и ведется наблюдение за ростом давления. Дальнейшие работы вести по особому плану.

5. Контроль воздушной среды при ведении работ на скважине.
Контроль воздушной среды проводится газоанализатором «Анкат» или «УГ-2» в начале рабочей смены.
При ГНВП анализ проводится каждый час.
1-ая точка отбора проб - у культ будки.
2-ая точка отбора проб – инструментальная будка.
3-я точка отбора проб – емкость долива.
4-ая точка отбора проб – устье скважины.

1. Газопроявление. Понятие, особенности возникновения, осложнения при ликвидации.
1. Подъем газа в закрытой скважине при невозможности его вымыва.
При этом пачка газа всплывает к устью из-за разности плотности раствора и газа, давление в ней сохраняется близкое к пластовому. На забое давление растет за счет увеличения столба жидкости, остающегося под пачкой. При подходе к устью Рзаб=2Рпл за счет фильтрации раствора в газовый пласт.
Опасность- высокое давление, возможность гидроразрыва водоносного и нефтяных пластов. Скорость пачки- 150-200 м/час, а максимальная при расчетах 300 м/час.
х Р=5атм хРу=140атм х Ру=280атм

Рпл=330 атм Рзаб=465атм Рзаб=605атм
2. Подъем газа в открытой скважине.
Объем газа в открытой скважине подчиняется закону Бойля-Мариотта, т.е. произведение давления на объем- постоянно. При подъеме пачки газа в открытой скважине верхняя граница пачки движется с постоянным ускорением, при этом забойное давление падает сначала незначительно, но при подходе пачки к устью скважины возникает дисперсия пласта и в скважину поступает новая пачка газа.

Глубина 3000 м.
После выброса пачки, пришедшей на устье, и жидкой перемычки происходит открытое фонтанирование чистым газом. При открытом устье объем газа увеличивается в десятки раз. Из-за малой вязкости газ проникает в любые негерметичные соединения устьевого оборудования.
Опасность- отравление персонала, угроза взрыва и пожара. При наличии газовых пластов ПВО опрессовывается воздухом или инертным газом.

2. Признаки раннего обнаружения ГНВП.
- увеличение объема промывочной жидкости в емкости долива;
- уменьшение против расчетного объема доливаемой жидкости при подъеме НКТ;
- повышение расхода (скорости) выходящего потока промывочной жидкости из скважины при неизменной подаче насоса;
- движение жидкости при остановке в работе.

3. Назначение и типы колонных головок.
Колонные головки предназначены для обвязки верхних концов сменных обсадных колонн, выступающих над устьем, с целью герметизации кольцевого пространства между ними.
ГКК- головка колонная клиновая.
ОКК- оборудование колонн клиновое.
ОКК состоит из корпуса, в корпус заворачивается патрубок с фланцем, на котором установлен задвижка с глухим фланцем и манометром. Подвеска эксплуатационной колонны выполняется на 2-х и 3-х клиньях, связанных между собой шарнирно, и имеющих синхронное перемещение.
Герметизация межтрубного пространства выполнена двухярусными самоуплотняющими пакерами. Промежуточные колонны уходят в потай корпуса.
ГКК эксплуатационная колонна подвешивается на 4-х клиньях, не связанных с собой. Герметизация межтрубного пространства достигается узлом уплотнения, состоящим из обоймы, 2-х резиновых уплотнительных колец, массивного резинового уплотнителя, металлического кольца и нажимной гайки, через которую болтами прижимают резиновый элемент и обойму. ЭК обрезается и приваривается к катушке. Опрессовывается на давление Рпроб=Рраб.

4. Действия вахты по сигналу «Выброс» при спуске инструмента, с установленным на устье скважины плашечным превентором.

По сигналу «Выброс» спуск инструмента немедленно прекращается. Вахта начинает действовать согласно ПЛА. Открываются задвижки. Демонтировать мех. ключ, снять клиновой захват, опустить вставку в конусное отверстие основания КГОМ-2 до полной разгрузки элеватора и фиксируют вставку выдвижными ползунами, вращая боковые винты. Закрыть плашки превентора и затрубные задвижки, шаровой кран вставки. Сообщить диспетчеру. Дальнейшие работы вести по особому плану.
5. Где и как часто проводят контроль воздушной среды?

Контроль воздушной среды проводится газоанализатором «Анкат» или «УГ-2» в начале рабочей смены.
При ГНВП анализ проводится каждый час.
1-ая точка отбора проб – у культ будки.
2-ая точка отбора проб – инструментальная будка.
3-я точка отбора проб – емкость долива.
4-ая точка отбора проб – устье скважины.

Билет №3
1. Жидкостное проявление. Понятие, особенности возникновения.
При жидкостном проявлении устьевое давление будет меньше пластового на величину противодавления флюида в скважине. Протекает гораздо медленнее, чем газовое.

2. Признаки позднего обнаружения ГНВП.

К поздним признакам ГНВП относятся:
- запах газа;
- кипение промывочной жидкости;
- падение плотности;
- увеличение содержания газа.

3. Назначение и типы плашечных превенторов.
Плашечные превентора и предназначены для герметизации скважины с целью предупреждения выброса, отрытого фонтанирования, как при наличии колонны труб, так и без нее. Позволяет загерметизировать устье скважины с помощью плашек. В каждом конкретном случае устанавливается необходимый размер плашек под конкретный диаметр труб, либо глухие. По способу управления делятся на механические и гидравлические.
По проходному отверстию стандарт предусматривает диаметры: 180, 230, 280, 350, 425, 510мм. По рабочему давлению: 140, 210, 350, 700 атм.

4. Действия вахты по сигналу «Выброс» при подъеме инструмента, с установленным на устье скважины плашечным превентором.

По сигналу «Выброс» спуск инструмента немедленно прекращается. Вахта начинает действовать согласно ПЛА. Открываются задвижки. Демонтировать мех. ключ, снять клиновой захват, опустить вставку в конусное отверстие основания КГОМ-2 до полной разгрузки элеватора и фиксируют вставку выдвижными ползунами, вращая боковые винты. Закрыть плашки превентора и затрубные задвижки, шаровой кран вставки. Сообщить диспетчеру. Дальнейшие работы вести по особому плану.

5. Газоанализатор « Анкат 7631». Назначение, устройство.
Газоанализатор (ГА) предназначен для определения в воздухе концентрации сероводорода и выдачи аварийной сигнализации при превышении ПДК.
ГА является одноканальным,носимым прбором непрерывного действия с диффузионным способом отбора пробы.
Конструктивно ГА состоит из: блока аккумуляторов, расположенного под крышкой;
платы измерительной; электрохимической ячейки: платы индикации. На передней панели ГА расположен индикатор(светодиод) красного цвета. В верхней части передней панели расположен цифровой жидкокристаллический индикатор. На боковой панели ГА расположены – кнопка включения(красная), кнопки управления(белые) в т. ч. для выключения; кнопка сервисного режима(синяя).

1. Причины снижения противодавления на пласт.
- использование бурового раствора или жидкости глушения с заниженной плотностью, чем предусмотрено в проекте;
- снижение гидростатического давления столба раствора из-за падения уровня в скважине в результате поглощения;
- снижение гидростатического давления столба раствора из-за недолива скважины при подъеме колонны труб;
- снижение плотности бурового раствора при его химической обработке;
- снижение гидростатического давления столба раствора из-за перетоков, обусловленных разностью плотностей раствора в трубном и затрубном пространствах;
- уменьшение забойного давления при установке жидкостных ванн с низкой плотностью раствора при ликвидации прихватов;
- снижение забойного давления в результате эффектов поршневания при подъеме колонны труб с сальником, завышенных скоростях подъема труб, росте структурно-механических и геологических параметров бурового раствора;
- разгазирование раствора в призабойной части вследствие длительных простоев скважины без промывок;
- разрушение обратных клапанов бурильных и обсадных колонн в процессе их спуска;
- нарушение целостности обсадных или бурильных колонн при их спуске в скважину без заполнения их промывочной жидкостью;
- некачественное крепление технических колонн, перекрывающих нефтегазоводонасыщенные напорные горизонты.
2. Жидкости, применяемые для глушения скважин.
Жидкости, применяемые при ремонтных работах для промывки и глушения скважин, должны обеспечивать:
- минимальное проникновение фильтрата и самой жидкости в призабойную зону пласта;
- предотвращение образования стойко водонефтяной эмульсии и набухания глин;
- легкость извлечения из призабойной зоны фильтрата твердой фазы промывочной жидкости;
- предотвращение образования осадков, снижающих проницаемость пористой фазы.
Указанным требованиям частично или полностью отвечают специально обработанные глинистые растворы, растворы на углеводородной основе, водные растворы хлористого кальция, натрия, пены, газообразные агенты.
Глинистые растворы при КПРС применяются редко, т.к. для их применения и поддержания стабильности необходимо иметь специальное оборудование, специальные хим. реагенты.
Растворы на нефтяной основе наиболее приемлемы при КПРС, но имеют ряд существенных недостатков:

Условие перемещения флюида из пласта в ствол скважины под действием пластового давления

1.Давление циркуляции при подаче насоса 50 ход./мин и плотности бурового раствора 1300 кг/м3 равно 4,50 МПа. Давление циркуляции бурового раствора той же плотности при подаче насоса 60 ход./мин будет равно
Выберите один ответ.

+4,16 МПа
Неверно
Баллов за ответ: 0/2.

2 Природный газ в основном состоит из :
Выберите один ответ.

+метана и небольшого количества тяжелых углеводородов.

азота и кислорода

углекислого газа и небольшого количества легких углеводородов
Верно
Баллов за ответ: 2/2.

3.Фонтан – это:
Выберите один ответ.

истечение жидкости через бурильные трубы при отсутствии циркуляции в скважине.

проявление пластового флюида вне устья скважины

поступление пластового флюида в скважину, непредусмотренное проектом.

+постоянное, неуправляемое извержение пластового флюида через устье скважины на значительную высоту.

апериодичное извержение флюида из скважины на значительную высоту.
Верно
Баллов за ответ: 2/2.

4 Наименьшие давления, возникающие в скважине наблюдаются при глушении способом
Выберите один ответ.

непрерывного глушения
+ожидания и утяжеления

бурильщика
Верно
Баллов за ответ: 2/2.

5 При … режиме всплытия газа его скорость наибольшая
Выберите один ответ.

+снарядном
кольцевом
пузырьковом
Неверно
Баллов за ответ: 0/2.

6 В отечественной практике бурения при ГНВП обычно применяется
Выберите один ответ.

«жесткое закрытие» скважины

+«мягкое закрытие» скважины
Верно
Баллов за ответ: 2/2.

всего вышеперечисленного
начального давления циркуляции
градиента притока
+увеличения плотности бурового раствора с целью уравновешивания пластового давления
Неверно
Баллов за ответ: 0/2.

8 Об успешном глушении скважины свидетельствует
Выберите один ответ.

+Рбт = Ркп = 0
Верно
Баллов за ответ: 2/2.

9 Глушение проводится в две стадии способом
Выберите один ответ.

ожидания и утяжеления

10
Баллов: 2
При вымыве газовой пачки вверх по стволу скважины объем бурового раствора в наземном резервуаре:
Выберите один ответ.

останется неизменным
Верно
Баллов за ответ: 2/2.

11
Баллов: 2
Постоянное давление в период вымыва пластового флюида способом бурильщика поддерживается в
Выберите один ответ.

+бурильных трубах и кольцевом пространстве

кольцевом пространстве
Неверно
Баллов за ответ: 0/2.

12
Баллов: 2
В зарубежной практике бурения при ГНВП обычно применяется способ глушения скважин
Выберите один ответ.

двухстадийный растянутый во времени

+ожидания и утяжеления
Неверно
Баллов за ответ: 0/2.

13
Баллов: 2
Поглощение бурового раствора при глушении скважины можно обнаружить, наблюдая за
Выберите один ответ.

нагрузкой на крюке.

+уровнем бурового раствора в приемной емкости

потоком бурового раствора.
Верно
Баллов за ответ: 2/2.

14
Баллов: 2
Давление циркуляции при подаче насоса 50 ход./мин и плотности бурового раствора 1300 кг/м3 равно 4,50 МПа. Если плотность бурового раствора увеличится до 1370 кг/м3, то давление циркуляции при той же производительности насо-са, будет равно
Выберите один ответ.

5,26 МПа
Верно
Баллов за ответ: 2/2.

15
Баллов: 2
В скважине производится вымывание пачки газа. Давление в кольцевом пространстве начнет снижаться при
Выберите один ответ.

полном заполнении бурильной колонны жидкостью г

Нравится Показать список оценивших

21 Во время подъема бурового инструмента оказалось, что долили бурового раствора в скважину меньше чем следовало. Тогда нужно
Выберите один ответ.

Осуществить подъем оставшихся в скважине бурильных труб.

+Проверить на излив, если его нет, то продолжить подъем.

Загерметизировать скважину и произвести промывку

Проверить скважину на излив, если его нет постараться спустить бурильную колонну до забоя и вымыть поступившую пачку газа.
Неверно
Баллов за ответ: 0/2.

22 В зарубежной практике бурения при ГНВП обычно применяется
Выберите один ответ.
+«мягкое закрытие» скважины
«жесткое закрытие» скважины
Неверно
Баллов за ответ: 0/2.

+изначально при бурении управляе-мый дроссель и главная боковая за-движка (на крестовине ПВО) закры-ты. Задвижки линии дросселирова-ния открыты. Обратный клапан ус-тановлен в БК.

Верно
Баллов за ответ: 2/2.

24 При вымыве газовой пачки через дроссельную линию объем бурового раствора в наземном резервуаре:
Выберите один ответ.
+останется неизменным
увеличится
уменьшится
Неверно
Баллов за ответ: 0/2.

25 В отечественной практике бурения при ГНВП обычно применяется способ глушения скважин
Выберите один ответ.
+двухстадийный
ожидания и утяжеления
непрерывного глушения
двухстадийный растянутый во времени
Верно
Баллов за ответ: 2/2.

26 Для перекрытия внутреннего пространства бурильных труб при ГНВП применяется следующее оборудование:
Выберите один ответ.
дроссель
+шаровой кран
универсальный превентор
Верно
Баллов за ответ: 2/2.

27
Баллов: 2
Наиболее высокие давления в скважине наблюдаются при глушении способом
Выберите один ответ.
непрерывного глушения
ожидания и утяжеления
+бурильщика
Верно
Баллов за ответ: 2/2.

28
Баллов: 2
Пластовым давлением называется
Выберите один ответ.
проявление пластового флюида вне устья скважины.
давление, при котором происходит разрыв горных пород.
+давление, оказываемое флюидами, содержащимися в горной породе.
давление, оказываемое горными породами.
Верно
Баллов за ответ: 2/2.

29
Баллов: 2
Манометр на стояке через 15 мин после закрытия скважины при ГНВП показывает
Выберите один ответ.
пластовое давление
гидростатическое давление
гидродинамическое давление в бурильных трубах
+избыточное давление в бурильных трубах
Верно
Баллов за ответ: 2/2.

30
Баллов: 2
Подача насоса при глушении скважины должна
Выберите один ответ.
+составлять 0,4 – 0,5 от подачи насоса при бурении
быть равна подаче насоса при бурении
составлять 1,4 – 1,5 от подачи насоса при бурении
Верно
Бал

Нравится Показать список оценивших

16 Выброс пластового флюида – это:
Выберите один ответ.
+апериодичное извержение флюида из скважины на значительную высоту.
поступление пластового флюида в скважину, непредусмотренное проектом.
истечение жидкости через бурильные трубы при отсутствии циркуляции в скважине.
проявление пластового флюида вне устья скважины.
постоянное, неуправляемое извержение пластового флюида через устье скважины на значительную высоту.
Верно
Баллов за ответ: 2/2.

17 Конечное давление циркуляции определяется по формуле
Выберите один ответ.
+Pкон. = Рнач.• ( pгл/рнач) + S
Pкон. = Рпрок. • ( pгл/рнач) + S
Pкон. =Ризб. труб • ( pгл/рнач) + S
Неверно
Баллов за ответ: 0/2.

18 Противовыбросовая программа – это
Выберите один ответ.
документ, разрешающий выполнять ликвидацию фонтана в скважине.
+комплекс специальных мероприятий, выполнение которых позволяет избежать возникновения фонтанов в скважине.
инструктаж по технике безопасности персонала, работающего на буровой.
Верно
Баллов за ответ: 2/2.

19 К возникновению ГНВП не может привести:
Выберите один ответ.
отрицательное влияние гидродинамического эффекта
+постоянное поддержание заданного уровня жидкости в скважине
бурение скважин при удельном весе БПЖ ниже проектного
Верно
Баллов за ответ: 2/2.

Нравится Показать список оценивших

30 Подача насоса при глушении скважины должна
Выберите один ответ.
+составлять 0,4 – 0,5 от подачи насоса при бурении
быть равна подаче насоса при бурении
составлять 1,4 – 1,5 от подачи насоса при бурении
Верно
Баллов за ответ: 2/2.

31 Явными (прямыми) признаками ГНВП при бурении являются:
Выберите один ответ.
уменьшение плотности глинистого шлама;
снижение давления на выкиде буровых насосов;
увеличение веса на крюке.
резкое кратное увеличение механической скорости бурения;
игольчатая форма шлама;
увеличение температуры выходящего из скважины бурового раствора.
наличие признаков пластового флюида в выходящем из скважины буровом растворе;
повышение расхода (скорости) выходящего потока БПЖ из скважины при не-изменной подаче буровых насосов;
+увеличение объема (уровня) БПЖ в приемной емкости

Верно
Баллов за ответ: 2/2.

32 Назначение противовыбросового оборудования устья скважины:
Выберите один ответ.
+герметизация устья скважины, для управления притоком пластового флюида в скважину путем создания дополнительного противодавления на устье.
обвязка обсадных колонн, герметизация межколонных пространств и контроль давления в них.
для оборудования устья фонтанирующих нефтяных и газовых скважин с целью контроля и регулирования режима эксплуатации.
Верно
Баллов за ответ: 2/2.

33 Проектные решения для контроля и управления давлением в скважине - это
Выберите один ответ.
установка манометров на манифольде, уровнемеров в емкостях, расходомеров в циркуляционной системе.
+ проектирование надежной конструкции скважин. Определение ожидаемых максимальных давлений для скважины при ГНВП.
Выбор схемы противовыбросового оборудования.
обучение персонала буровой первоочередным действиям при возникновении ГНВП.
Верно
Баллов за ответ: 2/2.

34 Падение давления в системе циркуляции оказывает воздействие на пласт:
Выберите один ответ.
в бурильной колонне
+ в затрубном пространстве
в промывочных насадках долота
в наземном оборудовании
Верно
Баллов за ответ: 2/2.

35 Грифон – это:
Выберите один ответ.
поступление пластового флюида в скважину, непредусмотренное проектом.
апериодичное извержение флюида из скважины на значительную высоту.
постоянное, неуправляемое извержение пластового флюида через устье скважины на значительную высоту.
истечение жидкости через бурильные трубы при отсутствии циркуляции в скважине.
+ проявление пластового флюида вне устья скважины
Верно
Баллов за ответ: 2/2.

36 Газо,-нефте,-водопроявление – это:
Выберите один ответ.
проявление пластового флюида вне устья скважины.
постоянное, неуправляемое извержение пластового флюида через устье скважины на значительную высоту.
истечение жидкости через бурильные трубы при отсутствии циркуляции в скважине.
апериодичное извержение флюида из скважины на значительную высоту.
+поступление пластового флюида в скважину, непредусмотренное проектом.
Верно
Баллов за ответ: 2/2.

38 Если при вымыве выброса циркуляцией подача насоса увеличивается, а давление в бурильной колонне поддерживается постоянным путем регулирования штуцера, то забойное давление:
Выберите один ответ.
+ уменьшится
увеличится
останется неизменным
Неверно
Баллов за ответ: 0/2.

39 Причина возникновения ГНВП:
Выберите один ответ.
+превышение пластового давления над забойным давлением.
превышение забойного давления гидростатического давления.
превышение гидростатического давления над пластовым давлением.
Верно
Баллов за ответ: 2/2.

Читайте также: