Уравнение баланса давления в бурящейся скважине имеет вид

Обновлено: 16.07.2024

2.2 Методика расчета забойного давления в условиях поступления газа в циркулирующий буровой раствор.

Газожидкостная смесь восходящего потока рассматривается как однородный флюид, у которого объемное содержание газа, плотность, вязкость и другие пара- метры являются переменными величинами, зависящими от давления, температуры вдоль протяженности кольцевого канала по глубине скважины.

Изменение давления по глубине скважины определяется из уравнения баланса механической энергии, в котором потери давления на преодоление гидравлических сопротивлений по длине рассчитываются исходя из выбранной модели реологии. В гидравлических расчетах промывочных жидкостей при бурении и капитальном ремонте скважин используют- ся различные модели неньютоновских жидкостей.

Изучение реологических свойств потоков газожидкостных смесей в кольцевом канале с использованием вискозиметра с коаксиальными цилиндрами (хорошее приближение к условиям течения в скважине) показало, что наиболее приближен степенной закон для псевдопластических жидкостей [46,48,52]:

где г - касательное напряжение, Па; у - скорость сдвига, с"1/п; /7 - коэффициент консистенции, Па-с;

п - показатель неньютоновского поведения (безразмерная величина).

Оба коэффициента 7] и «степенного закона являются функциям объемного содержания газа в газожидкостной смеси. Эмпирические зависимости для их опре- деления получены зарубежными специалистами и опубликованы в открытой печати

Определим уравнение, связывающее плотность газожидкостной смеси, содер- жащей примесь шлама, давление, температуру и объем в рабочих условиях, т.е. в произвольном сечении кольцевого канала. Объемную концентрацию шлама (5) из

практики можно допустить 0,04+0,05 от расхода жидкости.

Учитывая растворимость газа по закону Генри, объемный расход растворен- ного газа, приведенный к н.у., составляет:

где г(Т) - коэффициент растворимости;

" расход объема растворенного газа ( при нормальных условиях), м3/с;

Р - относительное рабочее давление (Р = —);

Р - рабочее давление, МПа;

Р0 - атмосферное давление, МПа;

Т - температура в рабочих условиях, К;

Движение газожидкостной смеси в восходящем потоке кольцевого канала описывается дифференциальным уравнением баланса механической энергии, кото- рое следует из баланса полной энергии и записывается относительно направления

оси, противоположной направлению восходящего потока. То есть, начало координат помещается в устье скважины, а ось направлена вниз вдоль оси вертикальной сква- жины:

где Р - давление на глубине координат «h», Па; - скорость движения смеси, м/с;

d3 - гидравлический диаметр кольцевого канала, м;

h - текущая координата по глубине скважины (м) 0 )^0,5, (49)

rj = ехр(16,33 • ДА, Р) -\4,04),npuj3(h, Р) > 0,5, (50)

Здесь г)ж - пластическая вязкость бурового раствора (негазированного).

8. Определяется эффективная вязкость 77^ (Пах):

9. Определяется число Рейнольдса:

10. В зависимости от режима течения рассчитывается искомое напряжение трения r(h,P) (Па) для подстановки в уравнение (42).

Если Re(h,P) 2000, то вычисляется коэффициент трения:

где кш - коэффициент шероховатости.

Далее рассчитывается искомое напряжение трения:

Последовательно выполняя вычисления от п.

1 до п. 10, определяют напряже- ние т в уравнении баланса механической энергии, как функции от глубины (И) и давления на текущей глубине (Р).

Представленный алгоритм расчета динамических потерь давления и, в частно- сти, величины касательного напряжения трения т, реализует степенную реологиче- скую модель течения. Как видно из приведенных в п. 7 формул, реологические па- раметры здесь существенно зависят от величины газосодержания р. Однако, в про- цессе течения газожидкостношламовой смеси в кольцевом канале скважины, газ на больших глубинах частично находится в значительно сжатом состоянии и частично, а возможно и полностью, растворен в жидкости. Малое содержание или возможное отсутствие свободного газа является условием, исключающим применение степен- ной реологической модели, соответствующей движению газожидкостной смеси. В таких условиях применяется традиционная реологическая модель Шведова-Бингама [19]. Граница раздела областей течения с различной реологической моделью опре- деляется численно по условию непрерывности величины т. С этой целью при чис- ленном интегрировании уравнения (42) от устья скважины к забою, после перехода границы (3

Баланс энергии в скважине

Основным процессом в добыче нефти является процесс подъема на поверхность газожидкостной смеси от забоя скважины. Исходя из этого, можно сформулировать основ­ную задачу эксплуатации скважин - осуществление процесса подъема продукции скважин с наибольшей эффективностью и бесперебойно.

Подъем нефти в стволе скважины может происходить либо за счет природной энергии нефтяной залежи Wn, либо за счет энергии искусственно вводимой в скважину с поверхности Wu, либо за счет пластовой и искусственно вводимой в скважину с поверхности энергий Wn + Wu.

Так как процесс движения продукции скважин от забоя до поверхности связан с определенными потерями, то сам процесс подъема возможен лишь при определенном соотношении энер­гии, которой обладает продукция скважины, и потерь энергии при ее движении. Основными видами потерь при движении газожидкостной смеси в скважине являются:

1. Потери энергии на преодоление веса гидростатического столба жидкости или смеси, W (без учета скольжения газа).

2. Потери энергии, связанные с движением ее по подъемным трубам и через устьевое оборудование, W .

3. Потери энергии за счет поддержания противодавления на устье скважины, необходимого для продвижения продукции скважины по наземным трубопроводам, W. Эта составляющая энергетического баланса не принимает никакого участия в процессе подъема, а представляет энергию, уносимую потоком жидкости за пределы устья скважины.

Отсюда баланс энергии в работающей скважине можно записать в виде:


Потери энергии, связанные с движением смеси по подъемным трубам и через устьевое оборудование Wлс,

- потери на трение, связанные с движением смеси по трубе Wmр , и потери на трение, связанные с относительным скольже­нием газа в жидкости Wck;

- потери на местные сопротивления (движение смеси через муфтовые соединения труб и через устьевую арматуру) Wmc

- инерционные потери, связанные с ускоренным движением смеси Wин.

С учетом этого выражение (3.6) может быть переписано следующим образом:


Анализ исследований, проведенных в нефтяных скважинах, показывает, что составляющие WMc и Wuh настолько малы в общем балансе энергии, что ими можно без большой погрешно­сти пренебречь. Тогда окончательно баланс энергии в скважине можно записать:

Балансы энергии и давления в добывающей скважине. Факторы, определяющие выбор способа эксплуатации нефтяной скважины

Артезианские скважины. Такие скважины фонтанируют, когда пластовое давление больше гидростатического давления столба жидкости в скважине, т. Е.

Определяют его по уравнению притока в зависимости от де­бита скважины Q. При линейной фильтрации рз = Рпл(QIK), где К — коэффициент продуктивности скважины. Забойное дав­ление компенсирует гидростатическое давление столба жидко­сти, потери на трение при ее движении и давление на устье, необходимое для транспорта продукции, т. Е.

Потери давления на трение при движении жидкости по трубам рассчитывают по уравнению Дарси— Вейсбаха

Условие фонтанирования нефтяной скважины:

Уравнение баланса давления имеет вид

На рис. VII.2 показаны кривые изменения давления с глу­биной в фонтанных скважинах. На участке от забоя до точки, где давление равно давлению насыщения рн, движется одно­родная жидкость, поэтому давление изменяется по линейному закону. При снижении_давления ниже рн из раствора начинает выделяться газ и образуется газожидкостная смесь. Чем меньше давление (при приближении к устью скважины), тем больше выделится газа, а уже ранее выделившийся — расширится, т. Е. меньше будут плотность смеси и градиент давления. В этом случае давление вдоль лифта при движении газожидкостной смеси изменяется по нелинейному закону. Если забойное давле­ние меньше давления насыщения, то нелинейность указанной зависимости p = f(H) будет наблюдаться по всей глубине сква­жины. За счет изменения потерь на трение закономерность из­менения давления будет более сложной, чем на рис. VII.2.

Итак, количество свободного газа в смеси вдоль ствола скважины увеличивается по мере приближения к устью, соот­ветственно меняется и плотность смеси. Поэтому в формулах (VII.2) и (VII.3) принята средняя плотность смеси рем, соот­ветствующая среднему объему выделившегося газа, приходя­щегося на единицу массы или объема жидкости.

Механизированные скважины. При разработке ме­сторождения энергия на забое уменьшается вследствие паде­ния пластового давления или обводнения скважины. Тогда для поддержания дебита скважины постоянным необходимо сни­жать забойное давление. Рассмотрим кривые p = f(H) на рис. VII.2 (они смещаются влево). Давление на устье надает, что может стать недостаточным для транспорта продукции сква­жины к сборному пункту.

В процессе обводнения скважины увеличивается плотность жидкости и, что более существенно, уменьшается количество поступающего в скважину газа. Если р3н, практически весь газ выделяется из нефти, в воде же его содержание пренебре­жимо мало. В результате с ростом обводненности уменьшается количество газа в смеси и увеличивается ее плотность. Градиент давления возрастает, и при одном и том же забойном давлении это приводит к необходимости уменьшения устьевого давления.

Наступает момент, когда равенство (VII.3) не может быть выполнено и тогда необходим подвод дополнительной энергии (энергии сжатого газа или механической энергии насоса).

На рис. VII.3 и VII.4 показаны кривые изменения давления в газлифтной и насосной скважинах. При газлифтном способе эксплуатации для уменьшения плотности газожидкостной смеси на глубине L в продукцию нагнетают дополнительное количе­ство свободного газа. В результате под воздействием забойного р3 давления обеспечивается подъем более легкой смеси и созда­ются условия, необходимые для транспорта продукции.

При насосном способе эксплуатации на глубину L спускают насос, давление на выкиде которого рв достаточно для подъема продукции скважины.

Учебное пособие в нефтяной промышленности. Учебное пособие " скважинная добыча нефти и газа"

Нефть и газ являются одними из основных видов топлива, потребляемого человечеством. Нефть добывают и используют сравнительно давно, однако начало интенсивной промышленной разработки нефтяных месторождений приходится на конец XIX - начало XX веков.

За годы Советской власти страна вышла на первое место в мире как по объемам добычи нефти, так и по темпам их прироста. По сравнению с 1940 г. к середине 80-х годов 20 века добыча нефти с конденсатом в стране выросла более чем в 20 раз.

Отечественные ученые внесли значительный вклад в создание современной техники и технологии добычи нефти. Они являются пионерами в таких вопросах, как создание методов добычи нефти штанговыми скважинными установками, погружными центробежными электронасосами, газлифтным способом, одно время забытыми и вновь возрожденными в 70-е годы шахтным и термошахтным способами, эксплуатация морских месторождений, эксплуатация месторождений скважинами малого диаметра и кустовое расположение скважин.

Конец XX столетия характеризовался резким увеличением спроса на нефть и газ и их потребления. В настоящее время около 70% энергетической потребности в мире покрывается за счет нефти и газа. Однако, учитывая ограниченность мировых запасов нефти и газа, решение проблемы энергетики связывают с ее переводом на атомную и термоядерную основы.

В то же время нефть и газ все шире начинают использовать как сырье для нефтехимической промышленности, получения искусственных белков, фармацевтических препаратов, пластмасс и др.

Увеличение объемов добычи нефти все в большей степени обеспечивается за счет ввода в разработку месторождений, расположенных в отдаленных малозаселенных районах Севера, в зонах залегания многолетнемерзлых пород, в континентальных шельфах океанов и морей. При этом возрастает удельный вес добычи тяжелых высоковязких нефтей в общем объеме добычи нефти. Увеличивается ввод в разработку малопродуктивных месторождений. В последнее время возрос интерес к добыче битумов (по-латински «битум» - горная смола). Если вязкость обычных нефтей не превышает 5 - 10 мПа·с, тяжелые нефти имеют вязкость 0,05 - 1 Па·с, то вязкость битумов составляет от 10° до 10 3 Па·с. С другой стороны, существует тенденция снижения начальных дебитов пробуренных скважин, что меняет отношение к эксплуатации старых месторождений, поскольку общий объем добычи на старых месторождениях возрастает по отношению к добыче на новых. Поэтому усиливается значение механизированных способов добычи нефти, которые являются основными на старых месторождениях. В связи с этим существенное влияние на процесс добычи оказывает обводнение належи и продукции скважин. Это связано с тем, что для поддержания заданных дебитов нефти необходимо откачивать большие объемы жидкости из скважин (нефти и воды), которые могут быть выше, чем дебиты скважин на новых месторождениях.

Перечисленные особенности определяют трудности освоения новых месторождений, повышение эффективности эксплуатации уже разрабатываемых, оценки целесообразности и эффективности новых технологических мероприятий и процессов.

Основное затруднение заключается в ограниченности исходной и получаемой информации как в качественном, так и количественном отношениях.

Это объясняется малым числом экспериментов, проводящихся на промыслах, сложностью проведения исследовательских работ, необходимостью при этом принимать оперативные решения в различных ситуациях и т. д.

Рост объемов добычи нефти сопровождается (и обеспечивается) значительным увеличением фонда скважин, которые бурятся в отдаленных районах со сложными климатическими условиями. Это делает невозможным систематическое обслуживание и исследование всех скважин бригадным способом.

С другой стороны, принятие любого решения инженером-нефтяником, касается ли оно изменения режима работы скиажины, необходимости обработки призабойной зоны, оценки эффективности технологического мероприятия и т. п., основывается на имеющейся в его распоряжении информации. Очевидно, что при отсутствии или небольшом ее количестве надежность принимаемых решений и выводов будет неудовлетворительна. Поэтому возникает необходимость определения достаточного объема информации, на основании которого можно оперативно принимать соответствующие технологические решения, эффективно обеспечивая заданный уровень добычи нефти.

Очевидно, что адекватность используемых математических моделей процессам, происходящим в моделируемых нефтепромысловых системах, определяет как правильность принимаемого управленческого решения, так и его эффективность. Под нефтепромысловой системой подразумевают такие взаимодействующие объекты, как скважина - пласт - скважина; скважина - призабойная зона; призабойная зона - удаленная часть пласта и т.д. От того, насколько точно определяют состояние интересующей нас системы (например, каков тин коллектора, ухудшена ли проницаемость призабойной зоны п окрестности скважины, каковы ее размеры и фильтрационные характеристики и существует ли гидродинамическая связь между двумя скважинами, каково это взаимодействие и т. д.), зависит эффективность принимаемого решения, будь то выбор скважины, на которой будут проводиться геолого-технические мероприятия, вид ГТМ, технологические характеристики воздействия, направленного на интенсификацию притока жидкости в скважине, изоляцию вод, увеличение коэффициента охвата заводнением и т. п.

Если же интерпретация данных, получаемых при соответствующих исследованиях объектов, приводит нас к ошибочным выводам и рекомендациям, то это в конечном итоге может существенно снизить эффективность процесса добычи нефти.

Традиционно использование детерминированных методов расчета различных технологических процессов. Например, расчет движения жидкости в стволе скважин, формула Дюпюи, определение подачи насосной установки и т. п. Детерминированные модели позволяют выработать определенную идеологию, оценить ту или иную ситуацию или схему, произвести оценочный расчет, сделать качественные выводы. В то же время их применение ограничено невысокой точностью результатов, которые могут многократно отличаться от реальных значений. Связано это с невозможностью учета большого количества влияющих факторов (собственно говоря, назначение детерминированных моделей как раз и состоит в учете основных определяющпд. факторов и получении на основе анализа их взаимосвязей качественной картины процесса). Поэтому для получения необходимой точности расчета инженеру требуется, с одной стороны, располагать достаточной информацией, с другой - использовать соответствующие методы ее обработки.

Что понимается под достаточной информацией? Это тот необходимый минимум сведений, данных, результатов исследований на основании которого можно сделать определенное заключение об эффективности проведенного мероприятия, целесообразности использования новой техники и технологии и т. п. Конечно, увеличение объема получаемой информации повышает надежность принимаемых решений, однако, как уже отмечалось, в настоящих условиях это вряд ли возможно.

Следует также иметь в виду, что наивный принцип - чем больше информации, тем больше пользы - почти всегда оказывается неверным. Большие объемы информации трудно осмыслить и получить полезный вывод - от обилия чисел не спасет даже ЭВМ. Более того, получение такого вывода может в ряде случаев явиться более сложной задачей, чем исходная. Обеспечить необходимый минимум информации можно различными способами. Один из путей заключается в определении требуемой периодичности обследования скважин, т. е. максимально допустимого периода между двумя исследованиями, на основании результатов которых можно обеспечить работу скважины в заданном режиме. Такие исследования могут включать определение дебита или продуктивности скважин, характеристики насоса и т.п.

Часто по данным замеров на отдельных скважинах требуется сделать выводы о залежи в целом. Например, по данным замеров статического давления в скважинах определить текущее пластовое давление в залежи. В этом случае возникает задача определения минимального числа скважин, в которых надо измерить давление с тем, чтобы получить оценку текущего пластового давления с необходимой точностью.

В качестве следующего примера рассмотрим задачу группирования скважин. Вообще говоря, скважина характеризуется набором основных параметров, значения которых для каждой скважины различны. К ним, например, для газлифтной скважины можно отнести ее дебит, расход рабочего агента, рабочее давление. Таким образом, каждую газлифтную скважину можно характеризовать тройкой чисел (координат). Однако в силу объективно действующих помех, неточности измерительной аппаратуры и т. п. эти значения определяются с некоторой погрешностью. Поэтому если дебит скважины замерили с погрешностью 10%, то две скважины с дебитами 100 и 110 м 3 /сут по этому параметру неразличимы. Таким образом, можно выделить группу скважин, одинаковых с этой точки зрения по всем параметрам, рассматривая ее как некоторую усредненную скважину.

Еще один пример связан с прогнозированием показателей. Так, зная дебиты некоторых скважин на одном из участков, можно оценить дебит в соседней скважине, что избавляет от необходимости замеров во всех скважинах.

Проведение ремонтных работ на месторождении зачастую имеет массовый характер. В этом случае необходимо определить целесообразность намеченного мероприятия. Естественно, производить такую оценку, например, при смене насоса после проведения работ во всех скважинах невыгодно, поскольку может оказаться, что проделана бессмысленная работа. Поэтому требуется оценить эффективность мероприятия по минимальному числу первых экспериментов с тем, чтобы оделить вывод о продолжении работ или об их нецелесообразности. С этим связана еще одна трудность. Предположим, что на конкретной скважине проведена некая операция, например, смена технологического режима или обработка призабойной зоны, в результате чего увеличился дебит. В силу интерференции это вызовет снижение (возможно, незначительное) дебитов соседних скпажин, в результате чего общий прирост дебита, как показывает опыт, составит небольшую, порядка нескольких процентов, величину. Таким образом, возникает необходимость определения малой по величине эффективности проведения технологических мероприятий на взаимосвязанных объектах. При этом, однако, малый эффект, отнесенный к большому количеству скважин, может дать ощутимый прирост добычи.

Основная традиционно определяемая информация получается при измерении дебита и давления. Причем используемые в настоящее время системы обеспечивают получение интегральных характеристик, например, дебита группы скважин, подключенных к одной замерной установке. Такой показатель хорош для общего контроля, однако не пригоден для детального анализа процесса разработки и эксплуатации месторождения. При этом существенное значение имеют не только количественные, но и качественные характеристики. Раньше подход, на котором основывалось создание и использование новой техники, например, разработка или совершенствование конструкций насосов, выбор методов воздействия на призабойную зону скважин, определение параметров воздействия на пласт, основывался на представлении о нефти, как вязкой жидкости. При этом основное различие при таком подходе заключалось в альтернативе - нефть «маловязкая» или «высоковязкая». В частности, применение тепловых методов воздействия ориентировалось преимущественно на второй тип нефтей, исходя из предпосылки, что с увеличением количества вводимого в пласт тепла снижается вязкость нефти, что приводит к улучшению показателей. В последнее время выяснилось, что необходим учет реофизических свойств нефтей. Так, нефти с большим удельным весом обычно обладают релаксационными свойствами. Это приводит к ряду особенностей, например профиль притока в этом случае при прочих равных условиях более равномерен, чем у вязкой нефти. С ростом температуры дебит возрастает, но профиль притока становится менее равномерным. Отсюда следует, что при обработке призабойной зоны скважин выгодно использовать аналогичные системы, позволяющие получить лучший охват по толщине. Реологические свойства определяют гидравлические характеристики потока нефти, поэтому, в частности, и выбор схем насосных устройств и определение режимов эксплуатации скважин, добывающих подобные нефти, необходимо производить с учетом реофизических свойств.

Однако необходимо отметить, что в силу ряда объективных причин (организационные трудности, сложные природно-климатические условия, нехватка обслуживающего персонала и т. п.) существующая система метрологического контроля за разработкой месторождений нефти и газа должна быть дополнена диагностическими методами и методами, основанными на ретроспективном анализе промысловой информации, которые в последние годы получают широкое развитие и применение.

В то же время было ошибочно противопоставлять указанные подходы обработки промысловой информации. Интенсивное развитие второй группы методов в настоящее время основано на использовании при обработке исходной информации как детерминированных, так и вероятностно-статистических методов, и на расширении сети ЭВМ на нефтяных промыслах. Естественно, что в существующих условиях неполной информации о функционировании такой сложной системы, какой является любой нефтепромысловый объект - от скважины и до месторождения углеводородного сырья в целом, указанные выше подходы к получению необходимых сведений о характеристиках системы и происходящих в ней физико-химических и других процессах ни и коси мере не должны противопоставляться друг другу. Причем методы, относящиеся ко второй группе, не только не заменяют, а дополняют результаты использования методов обработки результатов прямых гидродинамических исследовании нефтепромысловых объектов.

Наиболее ответственный и трудный момент в деятельности инженера-нефтяника - это принятие конкретного решения. Поясним, что понимается под «решением». Пусть намечается какое-то мероприятие, направленное к достижению определенной цели. У инженера, организующего мероприятие, всегда имеется какая-то свобода выбора - можно, например, использовать различные скважинные насосы или различные методы обработки призабойной зоны или определить условия обработки. «Решение» это и есть какой-то выбор из ряда возможностей, имеющихся у инженера. Принципиальная особенность ситуации, в которой находится инженер, заключается в недостатке информации для принятия уверенного и обоснованного решения. Это определяется многими факторами, такими, как невозможность проведения полного обследования всего фонда скважин, необходимость сделать оперативный вывод по малому числу наблюдений, ограниченность знаний о пласте и свойствах нефти и т.д. В таких условиях, очевидно, нереально рассчитывать на получение наилучшего решения. В разделе науки, который называется «исследование операций» и изучает применение математических, количественных методов для обоснования решений во всех областях целенаправленной человеческой деятельности, так формируется основная особенность принятого решения в условиях недостаточной информации - это лучшее из худших решений (Саати).

В такой ситуации необходимо использование специальных методов, алгоритмов для обработки имеющейся информации. Например, в задаче о выходе из лабиринта, если в действительности выход существует, то, не зная устройства лабиринта, из него тем не менее можно выйти, следуя правилу держаться все время одной стороны. В настоящее время имеется достаточно широкий арсенал таких методов и алгоритмов. Обычно инженер вынужден принимать технологические решения в конфликтной ситуации. Под этим понимается, что, принимая решение, необходимо удовлетворить одновременно нескольким критериям (многокритериальная задача), зачастую противоречащим друг другу. Например, при увеличении депрессии на пласт возрастает дебит скважины. Однако при этом увеличивается возможность обводнения скважины или разрушения скелета породы Поэтому выбираемое решение должно в определенной степени удовлетворять всем критериям.

Проводимые на промысле мероприятия обычно имеют массовый характер. Пусть, например, организуется мероприятие, направленное на повышение эффективности откачки нефти штанговыми скважинными установками путем подлива специальной жидкости. Из-за большого фонда скважин назначать индивидуальный «рецепт» жидкости для каждой скважины физически невозможно. Поэтому мероприятия проводятся более или менее унифицированно - одинаково во всех скважинах. Поскольку все скважины различны, то ожидать одинакового эффекта не приходится, более того, где-то может быть получен и отрицательный эффект. При планировании таких мероприятий возможной идеологией может явиться ориентация на выигрыш «в среднем», а не по каждой скважине.

Сложность технологических объектов нефтедобычи, обусловленная большим количеством определяющих взаимосвязанных факторов, делает необходимым рассмотрение техники и технологии добычи нефти с позиций теории больших систем, что позволяет методологически правильно определять подходы к решению конкретных проблем. Здесь в первую очередь надо отметить наличие иерархической структуры в сложных системах. Это определяет необходимость в наличии иерархии принятия решений при управлении; в этих условиях, несмотря на наличие ошибок в локальных пунктах принятия решений, иерархическая система в целом может функционировать нормально. В то же время управление сложной системой на основе формализованных моделей не может быть полным. При попытке формализации системы всегда остается «неформализуемый» остаток, вследствие чего формализованное описание системы не может быть исчерпывающим.

Принципиальной особенностью управления сложной системой является так называемый «принцип необходимого многообразия» - многообразие может быть разрушено только многообразием. Смысл этого утверждения таков: если необходимо, чтобы система перешла в заданное состояние (вид поведения) вне зависимости от внешних помех, то подавить многообразие в ее поведении, т. е. из многообразия ее возможных состояний реализовать заданное, можно только увеличив множество управлений. В качестве простейшего примера можно привести компрессорную скважину - для реализации заданного состояния (дебита) необходимо изменять два параметра - расход рабочего агента и рабочее давление.

Таким образом, ситуация и задачи, с которыми сталкивается инженер-нефтяник, весьма разнообразны, а имеющаяся в его распоряжении информация, как правило, недостаточна для детерминированного решения. Поэтому при принятии решения ему приходится использовать как опыт, интуицию, помня совет - руководствоваться интуицией, но не доверять ей (А. Б. Мигдал), эвристические приемы, так и детерминированные методы расчетов и математические методы обоснования решения на основе обработки имеющейся информации.

В этой связи уместно напомнить английское определение, согласно которому инженер должен уметь в 70-ти случаях из 100 принимать правильные решения при недостаточной информации.

Исходя из этого, изложение материала в лекциях построено таким образом, чтобы наряду с получением сведений о технике и технологических процессах добычи нефти (в существующих учебниках больший акцент делается на технику), читатель одновременно учился планировать проведение технологических мероприятий, оценивать их предполагаемую эффективность, а также реализованный эффект, анализировать получаемые результаты на основе применения соответствующих методов обработки промысловой информации.

Ежегодная добыча нефти и газа со временем, естественно, будет уменьшаться, а требования, предъявляемые к уровню как фундаментальных, так и специальных знаний инженеров, повышаться. Это, в частности, определяется тем, что остаточные запасы надо будет извлекать более совершенными способами, например, физическими, химическими и т. д.

Кроме того, значительно повысятся требования к точности измерений в нефтегазопромысловой науке и практике. Проблемы возникнут и в связи с добычей морской нефти и газа, в особенности в ледовых условиях.

Таким образом, со временем требования к инженерам-нефтяникам и газовикам, как с научной точки зрения, так и с точки зрения социальной, будут неуклонно повышаться в соответствии с повышением значимости нефти и газа не только как топлива, но и как ценного химического сырья и уже меньше, по образному выражению Д. И. Менделеева, «будет сжигаться ценных ассигнаций».

В заключение уместно вспомнить слова Д. И. Писарева: «Облагораживают не знания, а любовь и стремление к истине, пробуждающиеся в человеке тогда, когда он начинает приобретать знания. В ком не пробудились эти чувства, того не облагородят ни университет, ни обширные сведения, ни дипломы».

Основные понятия о давлениях в скважине

Основные понятия о давлениях в скважине

Основным условием начала ГНВП является превышение пластового давления вскрытого горизонта над забойным давлением.

Забойное давление в скважине во всех случаях зависит от величины гидростатического давления бурового раствора заполняющего скважину и дополнительных репрессий вызванных проводимыми на скважине работами ( или простоями ).

ЕТПБ требуют, чтобы гидростатическое давление ( Р г ) превышало пластовое ( Р пл ) в следующих размерах:
для скважин с глубиной до 1200м Р=10-15% Р пл, но не более 1,5 МПа
для скважин с глубиной до 2500м Р=5-10% Р пл, но не более 2,5 Мпа
для скважин с глубиной свыше 2500м Р=4-7% Рпл, но не более 3,5 Мпа

При известном пластовом давлении горизонта необходимая плотность промывочной жидкости, на которой должен вскрываться этот горизонт определяют:

Определение забойных давлений ( Р заб )

Забойное давление при механическом бурении и промывке

Ориентировочно, для неглубоких скважин оно составляет :

При промывке скважины после спуска труб или длительных простоях без промывки забойное давление может снижаться за счет подъема по стволу газированных пачек бурового раствора и резкого увеличения их объема к устью.

Забойное давление после остановки циркуляции первое время равняется гидростатическому

Забойное давление при отсутствии циркуляции длительное время снижается за счет явлений седиментации, фильтрации, контракции, а так же температурных изменений бурового раствора на величину D Рст

Для того, чтобы не возникало ГНВП при наличии вскрытого продуктивного горизонта необходимо, чтобы во всех случаях забойное давление превышало пластовое Рзаб > Рпл.

Основные принципы анализа давлений

Общее давление в любой точке скважины будет складываться из этих трех давлений Pобщ=Рr+Рr. c+Pиз, поэтому представляет интерес рассмотреть вопрос, как рассчитать каждое из этих давлений, а также четко уяснить, как и где эти давления будут способствовать или отрицательно влиять на процесс ликвидации проявлений.

Уравнение баланса давлений

При проектировании или анализе работы установок для подъема жидкости из скважин, когда по НКТ движется ГЖС, основным вопросом является определение потерь давления, связанных с этим движением. Рассматривая некоторый участок вертикальной трубы, в которой движется ГЖС, можно записать

где Р1 - давление в нижней части трубы, Рс - давление, уравновешивающее гидростатическое давление столба ГЖС, Ртр - потери давления на преодоление сил трения при движении ГЖС, Рус - потери давления на создание ускорения потока ГЖС, так как его скорость при движении в сторону меньших давлений увеличивается из-за расширения газа; Р2 - противодавление на верхнем конце трубы.

Уравнение справедливо для всех случаев: короткой и длинной трубы, вертикальной и наклонной и является основным при расчете потерь давления и их составляющих.

5.Виды фонтанирования

Общим обязательным условием для работы любой фонтанирующей скважины будет следующее основное равенство:

урав­нение баланса давлений в фонтанной скважине рз – р2 = рст ф + ртр + рин

где р3 —забойное давление (принимается обычно на уровне середины интервала продуктивного пласта); р2— давление на устье скважины; рст ф — гидро­статическое давление флюидов в скважине; ртр—потери давления на гидравлическое сопротивление (трение); рин - потери давления на инерционное сопротивление (пренебрегают вследствие малости).

В зависимости от соотношения рз и р2 с давлением насыще­ния нефти газом рн (от место положения начала выделения газа из нефти) можно выделить три вида фонтанирования и соот­ветствующие им три типа фонтанных скважин:

Артезианское фонтанирование: р3н, р2≥рн, т. е. фонтанирование происходит за счет гидростатического на­пора. В скважине наблюдается обычный перелив жидкости, движется негазированная жидкость. В затрубном пространстве между насосно-компрессорным и тру­бами и обсадной эксплуатационной колонной находится жидкость, в чем можно убедиться, открыв, например, трехходо­вый кран под манометром, показывающим затрубное давление Рзатр. Газ выделяется из нефти за пределами скважины в вы­кидной трубе.

Газлифтное фонтанирование с началом выде­ления газа в стволе скважины: рз≥рн, р2н. В пласте движется негазированная жидкость, а в скважине - газожидкостная. При давлении у башмака НКТ p1≥pн, в затрубном пространстве на устье находится газ и рзатр обычно небольшое (0,1-0,5 МПа). Так как p1≥pн2, то по мере подъема нефти давление снижается, увеличивается количество свободного газа, происходит расширение : газа, растет газосодержание потока, т. е. фонтанирование осуществляется по принципу работы газо­жидкостного подъема.

Газлифтное фонтанирование с началом выде­ления газа в пласте: р3н, р2н. В пласте дви­жется газированная жидкость, на забой и к башмаку НКТ по­ступает газожидкостная смесь. После начала притока основ­ная масса газа увлекается потоком жидкости и поступает в НКТ. Часть газа отделяется и поступает в затрубное пространство, где газ барботирует в относительно неподвижной жидкости. В затрубном пространстве, накаплива­ется газ, уровень жидкости снижается и достигает башмака НКТ. Со временем наступает стабилизация и при рзн уро­вень всегда устанавливается у башмака НКТ. Затрубное дав­ление газа, как правило, высокое, почти достигает значений p1 и pз. При утечках газа из затрубного пространства (через негерметичности в резьбовых соединениях НКТ, обсадной ко­лонне, устьевом оборудовании) уровень будет находиться выше башмака НКТ. Чем меньше расход и вязкость жидкости, больше расход газа у башмака, зазор между НКТ и эксплуата­ционной колонной, тем больше газа сепарируется в затрубное пространство

§ 2. Уравнение баланса давлений

При проектировании или анализе работы установок для подъема жидкости из скважин, когда по НКТ движется ГЖС, основным вопросом является определение потерь давления, свя­занных с этим движением. Рассматривая некоторый участок вертикальной трубы, в которой движется ГЖС, можно записать

Р1 = Рс + Ртр + Рус + Р2, (VII.8)

где p1—давление в нижней части трубы, рс — давление, урав­новешивающее гидростатическое давление столба ГЖС, ртр — потери давления на преодоление сил трения при движении ГЖС, руС — потери давления на создание ускорения потока ГЖС, так как его скорость при движении в сторону меньших давлений увеличивается из-за расширения газа; р% — противо­давление на верхнем конце трубы.

Уравнение (VII.8) справедливо для всех случаев: короткой и длинной трубы, вертикальней и наклонной и является основ­ным при расчете потерь дарения и их составляющих.

При практических расчетах могут возникнуть две основные задачи, когда известно давление вверху р2 и требуется опреде­лить давление внизу р1 или наоборот. При этом все другие условия, такие как длина трубы, ее диаметр, расход поднимае­мой жидкости, свойства жидкости и газа и другие, должны быть известны. Это так называемые прямые задачи. Но могут возникать и другие задачи, которые можно назвать обратными, когда, например, требуется определить расход поднимаемой жидкости[/q при заданном перепаде давления p1р2. Или опре­делить необходимое количество газа Г0 для подъема задан­ного количества жидкости q при заданном перепаде давления р1р2 и ряд других задач. Во всех случаях необходимо знать слагаемые, входящие в уравнение баланса давления (VII.8).

Обозначим р — плотность жидкости, L — длина трубы по вертикали, рс — плотность ГЖС, h — потеря напора на трение на участке трубы длиной в 1 м столба ГЖС, hус —потеря на­пора на ускорение на участке трубы длиной в 1 м столба ГЖС.

Деля все слагаемые на pgL, найдем

Слева от знака равенства написана величина, которая яв­ляется действующим перепадом (р1р2), выраженным в мет­рах столба поднимаемой жидкости, отнесенным к 1 м длины трубы. Эту величину обозначают

При р2 = 0 .(истечение в атмосферу) величина е совпадает с тем относительным погружением (ε = h/L), о котором шла речь при рассмотрении физической характеристики процесса движения ГЖС.

Выражение (VII.11) является более общим, так как учиты­вает противодавление р2.

Уравнение (VII.9) может быть записано в дифференциаль­ной форме при L→0

dp = pcgdl + hTppcgdl + h ус pc qdl (VI1.12)

или в конечных разностях

∆р = Pcg∆l + hrppcgl + hycpcg∆l. (VI1.13)

Величины рc, hтр,, hyc зависят от термодинамических условий потока, изменяющихся с глубиной, и в первую очередь сущест­венно зависят от давления. Эти условия непрерывно изменя­ются вдоль трубы и их аналитический учет достаточно сложен. Задача сводится к интегрированию уравнения (VII.12) в преде­лах от 0 до L либо к численному суммированию приращений давления, определяемых (VII. 13), также в пределах от 0 до L. Чем меньше участки трубы ∆l, на которые может быть разбита вся длина подъемных труб, тем меньше будут изменяться сла­гаемые, входящие в уравнение баланса давления.

Если для таких коротких участков трубы рассчитать паде­ние давления ∆pj, то общий перепад составит сумму

n = L/∆l. (VII.15)

Из (VII. 14) следует, что если известно давление вверху Р2, то

Если известно давление внизу р1 то

Таким образом, задача сводится к расчету потерь давления на коротких участках подъемника при заданных параметрах движения (q, d, Г, р и пр.) и последующем их суммировании. Очевидно, чем больше п, т. е. чем меньше ∆l, тем точнее будет такое решение. Однако практика подобных вычислений показы­вает, что при n=10—15 достигается достаточная точность.

Читайте также: