Стальные трубы по способу защиты от коррозии различают

Обновлено: 07.07.2024

КАК ЗАЩИТИТЬ ТРУБОПРОВОД ОТ КОРРОЗИИ

Защита трубопровода от коррозии – задача не только изготовителей или строителей, но и проектировщика сети и конечного пользователя. Феномен коррозии может быть обусловлен недостаточно сбалансированным составом протекающей по трубам жидкости, некорректным сочетанием различных металлов или, наконец, недостаточным вниманием к защите трубопровода.

Коррозия трубопроводов – явление, обусловленное, главным образом, электрохимическими реакциями окисления металла при взаимодействии с влагой. Металл постепенно видоизменяется на ионном уровне и, распадаясь, исчезает с поверхности трубы. Окисление, характеризующее феномен коррозии металлических трубопроводов, может происходить по различным причинам и, следовательно, возникает на основе различных механизмов. Процесс окисления может зависеть от характера жидкости, протекающей по трубопроводу, или от свойств среды, в которой проложен трубопровод. В этой связи при выборе наиболее подходящих способов противодействия механизмам коррозии необходимо учитывать особенности ситуации, в которой она наблюдается. В некоторых случаях борьба с коррозией осуществляется принятием усиленных мер по химической обработке протекающей жидкости с целью скорректировать ее коррозийные свойства, в других случаях – использованием защитных покрытий для трубопроводов (внутренних или внешних) или применением специальных способов так называемой «катодной защиты». Прежде всего, необходим тщательный подбор материала для трубопровода. Целесообразным представляется использование материалов, менее подверженных коррозии (например, меди или нержавеющей стали).

При их использовании на начальной стадии коррозии образуется сплошная тонкая поверхностная оксидная пленка («инертная пленка»), которая затем защищает находящийся под ней металл от воздействия коррозии. Тем не менее, и на таких материалах по разным причинам могут образоваться очаги коррозии. Причина – неравномерное образование пленки или ее прорыв. Использование более ценных материалов не всегда оправдано по причине их высокой стоимости.

Химическая обработка агрессивной воды

Вода, протекающая по трубопроводу, может иметь агрессивные свойства. Зачастую это обусловлено обработкой такой воды хлором или процессами коагуляции и флокуляции, происходящими в воде непосредственно на станции водоподготовки. Агрессивность может быть обусловлена содержанием в воде кислорода, хлора, карбонатов и бикарбонатов. Агрессивность уменьшается при возрастании уровня кислотности и жесткости и возрастает при повышении температуры и содержании растворенных воздуха и углекислого газа.

Основная цель химической обработки воды – преобразовать потенциально агрессивную воду в слабокальцирующую. Умеренная жесткость, на самом деле, желательна, поскольку способствует образованию на внутренней поверхности трубы отложений солей кальция, которые и защищают металл. Добавлением в воду соответствующих ингибирующих веществ можно затормозить процесс коррозии, редуцируя ее до менее опасных проявлений (равномерная коррозия вместо глубокой локальной), а также способствовать – при помощи химической реакции – образованию известковых отложений, которые, плотно прилипая к металлу, образуют покрытие, защищающее его от коррозийного воздействия. В водопроводных сетях общего пользования обработка воды сводится, главным образом, к добавлению кальция [Ca(OH)2], или соды (NaOH), или карбоната натрия (Na2CO3). На участках водопровода, обеспечивающих распределение воды по отдельным точкам водоразбора, эффективным способом антикоррозийной защиты считается обработка воды особыми «секвеструющими» добавками (главным образом, полифосфатами). Основанная задача добавок такого рода – корректирование чрезмерной жесткости воды, которая в противном случае может привести к образованию нежелательных очагов известковых отложений. В стальных оцинкованных трубопроводах при добавлении в воду полифосфатов, фосфатов или силикатов на внутренней поверхности трубопровода образуется пленка полифосфата, фосфата или силиката цинка или железа, защищающая металл от коррозии. Применять такие реагенты в водопроводных сетях питьевого назначения разрешено при условии соблюдения требований, установленных действующими санитарно-эпидемиологическими регламентами.

В последнее время на рынке появились комплексные, современные составы серии "СП-В" для химической защиты трубопроводов от коррозии, минеральных отложений и накипи.

Ингибиторы марки "СП-В" уже готовы к использованию в различных средах, содержат все необходимые компоненты для защиты, являются экологически безопасными.

Для защиты заглубленных стальных трубопроводов анод размещается на расстоянии не менее 3 м от трубы и подключается к ней посредством медного изолированного кабеля сечением не менее 10 мм 2 , приваренного на обоих концах.

Защитные покрытия

Покрытия можно наносить как на внутренние, так и на внешние поверхности трубопровода. Защитное покрытие образует защиту трубопровода, которая бывает активного или пассивного типа. В некоторых случаях могут сочетаться оба типа защиты. В случае активной защиты покрытие создает условия, препятствующие распространению коррозии металла. Поверхность стальных труб покрывается более или менее плотным слоем электрохимически менее благородного металла (обычно цинка), который, защищая основной металл, берет на себя воздействие коррозии. Активная защита в большей степени защищает внутреннюю поверхность трубы от коррозийного воздействия протекающей жидкости. С внешней стороны такая защита образует базовое покрытие, усиленное пассивной защитой.

Задача пассивной защиты – предохранить металлические трубы от разрушающего воздействия окружающей среды. На заглубленных участках водопроводов очень важно бывает надежно защитить металл от непосредственного контакта с грунтом. Аналогичная защита используется для достижения – при помощи внутреннего покрытия – в трубопроводах предназначенных для доставки воды особо агрессивного типа. Нанесение защитных слоев, выполняемых из лаков, красок или эмалей, создает непрерывный непроницаемый барьер, который защищает находящийся под ним металл от коррозийного воздействия среды.

Для этой цели чаще всего используются битумные продукты, получаемые от перегонки угля или нефти или из синтетических смол, термопластичных (полиэтилен, полипропилен, полиамиды) и термоотверждающихся (эпоксидные, полиуретановые, сложные полиэфиры).

Перед покрытием необходимо произвести соответствующую подготовку обрабатываемой поверхности трубы и тщательно очистить ее от всего, что может оказаться вредным в плане коррозии (влага, остатки лака, пятна жира или масла, грязь или пыль, ржавчина). Для внешней защиты трубопроводов открытого заложения можно прибегнуть к лакокрасочным покрытиям или порошковым пластическим материалам. Нанесение покрытия осуществляется различными способами в зависимости от материала трубопровода. Жидкие составы наносятся кисточкой, погружением в раствор или опрыскиванием из пистолета.

Порошковые вещества (преимущественно пластические материалы) наносятся на трубу, предварительно разогретую до температуры, превышающей температуру плавления порошка. Порошок наносится на поверхность трубы электростатическим способом или воздушным напылением. Термопластичные материалы могут наноситься также методом экструзии. Нанесение поверхностных слоев из металла (например, цинка) производится посредством погружения трубы в расплавленный металл или при помощи электролитического осаждения. Еще один метод, часто используемый для покрытия заглубленных в грунт трубопроводов, заключается в равномерном нанесении на предварительно очищенную трубу сплошной пленки из защитного материала, имеющего хорошие прилипающие свойства, и последующем нанесении защитного слоя из битумной смеси и двух слоев стекловаты (или ткани), пропитанных битумной смесью, для придания устойчивости к внешним воздействиям.

Лучше, если защитная обработка нарезанных труб будет проведена на заводе-изготовителе.

На объекте при укладке защитным покрытием заделываются только швы и соединительные муфты, а также возможные места повреждений заводского покрытия.

Трубы, имеющие заводское покрытие, следует предохранять при штабелировании, перевозке и проведении монтажных работ от ударов, царапин и иного механического воздействия, способного повредить битумный слой. Следует учитывать, что защитная обработка по прошествии определенного времени теряет первоначальные свойства. Отсюда необходимость периодического осмотра сети, текущего и профилактического обслуживания.

Заглубленный трубопровод подвержен коррозии вследствие агрессивности почвы. В зависимости от свойств почвы (точнее, параметров ее сопротивления) и металла, из которого изготовлен трубопровод, образуются коррозийные батареи. Металл, выполняющий функцию анода относительно почвы, выступающей в этом случае катодом, стремится к разложению и переходу в раствор.

Один из видов защитных мероприятий – это пассивная защита. Для прокладки трубопровода используются трубы с защитным влагонепроницаемым покрытием с изолирующими соединительными муфтами. В этом случае электрическая протяженность трубопровода нарушается, тормозится обмен электрическим током между трубами и почвой. Следует признать, что такой подход не всегда дает стопроцентный результат, поскольку в местах, где защитное покрытие труб нарушено в процессе укладки трубопровода, возможно образование очагов коррозии. С коррозией можно бороться методом «катодной защиты»: если искусственно понизить потенциал металла, подавляется анодная реакция. Для этого необходимо осуществить электрическое подключение трубопровода к сети, имеющей в своем составе анод. Так называемый «расходуемый анод» выполняется из металла, имеющего большую электроотрицательность, т. е. менее благородного, чем железо. Как правило, в этих целях используется магниевый сплав. При таком подключении коррозия локализуется на магнии, который медленно разлагается сам и защищает трубопровод. В случае практического применения данной технологии следует прежде всего замерить степень агрессивности почвы.

Затем на участках, где необходимо организовать защиту трубопровода, в расчетных точках вкапывается некоторое количество расходуемых анодов. Вес и число анодов определяются с таким расчетом, чтобы обеспечить антикоррозийную защиту трубопровода на период 10–15 лет.

Еще один способ, предохраняющий металл от агрессивности почвы, – это защита «индуцированным током». Для этого используется внешний источник постоянного тока, который идет от питающего устройства, состоящего из трансформатора и выпрямителя. Положительный полюс питающего устройства подключен к анодному рассеивателю (заземление, состоящее из графитового или железосодержащего анода), отрицательный – к трубопроводу, представляющему объект защиты. Передаваемый защитный ток определяется параметрами трубопровода (длина, диаметр, имеющаяся степень изоляции) и степенью агрессивности почвы. Ток, рассеиваемый заземлением, создает электрическое поле, обволакивающее трубу и понижающее его потенциал, что и дает защитный эффект. Надежность и эффективность катодной защиты обеспечиваются, в том числе, периодическим осмотром сети, проверкой работоспособности используемого оборудования и своевременным устранением неисправностей.

Блуждающий ток

Блуждающий ток – это электрический ток, появляющийся в некоторых грунтах от дисперсии электрифицированных, например, железнодорожных (трамвайных) путей, где рельсы выполняют роль возвратных проводников питающих подстанций. Другим источником блуждающего тока может быть заземление электрического промышленного оборудования. Как правило, это ток большой силы, и воздействует он в первую очередь на трубопровод, отличающийся хорошей проводимостью (в частности, со сварными соединениями). Такой ток поступает в трубу в определенной точке, играющей роль катода, и, преодолев более или менее продолжительный отрезок трубопровода, выходит в другой точке, выступающей в качестве анода. Происходящий при этом электролиз и дает коррозию металла. Прохождение тока на участке от катода до анода вызывает переход железосодержащих частиц в раствор и со временем может привести к истончению и в конечном итоге перфорации трубы. Повреждение тем существенней, чем выше сила проходящего тока. Коррозийное действие блуждающего тока, безусловно, более разрушительно, чем действие коррозийных батарей, образующихся вследствие агрессивности почвы.

Против него эффективным оказываются меры «электрического дренажа». Суть методики следующая: в определенной точке трубопровод посредством специального кабеля, имеющего низкое электрическое сопротивление, подключается непосредственно к источнику блуждающего тока (например, к подстанции или железнодорожному пути). Подключение необходимо соответствующим образом поляризовать (при помощи однонаправленных переходников) таким образом, чтобы ток всегда шел в направлении от трубопроводак источнику дисперсии. Электрический дренаж требует строгого соблюдения сроков регламентных осмотров, тщательной наладки и регулярной проверки. Чаще всего эта методика сочетается с другими способами защиты.

Перепечатано с сокращениями из журнала RCI №8. 2003.

Перевод с итальянского С.Н. Булекова.

Расходуемый анод

Заглубленный магниевый блок в силу позиции, занимаемой магнием на шкале электрохимического потенциала относительно железа, ведет себя как анод в коррозионной батарее, образующейся между ним и стальным трубопроводом.

Ток, генерируемый электродвижущей силой коррозионной батареи, перемещается в направлении «анод – почва – труба – соединительный кабель – анод». Медленное разложение магния защищает трубопровод от коррозии.

Данная система применяется в основном для защиты стальных резервуаров и трубопроводов ограниченной протяженности (от нескольких сот метров до нескольких километров).

Обычно анод помещается в хлопковый (или джутовый) мешок в глинистую смесь, задача которой – обеспечить равномерность расхода анода и требуемый уровень влажности, а также предотвратить образование пленки, затрудняющей его разложение.

Доступ к электрическому кабелю и проверка состояния защитного покрытия путем замера силы тока батареи обеспечивается через специальный колодец.

Катодная защита «индуцированным током»

Для организации такой защиты требуется генератор постоянного тока, к отрицательному полюсу которого подключается защищаемый трубопровод. Положительный полюс соединяется с системой анодных рассеивателей, заглубленных на том же участке почвы.

Соединительный кабель должен иметь низкое электрическое сопротивление и хорошую изоляцию. Электрический ток, производимый генератором, посредством анодов передается в почву и поступает на трубопровод. Трубопровод выполняет роль катода и таким образом защищается от коррозии. Ток идет по следующему маршруту: электрогенератор – соединительный кабель – электрод-рассеиватель – грунт – защищаемая металлическая структура – соединительный кабель – электрогенератор. Используемые аноды – малорасходуемого типа (как правило, графитовые или железосодержащие) – заглубляются на 1,5 м на расстоянии 50–100 м от трубопровода. Генератор постоянного тока (125–500 Вт) обычно состоит из выпрямителя тока, питающегося от электросети через трансформатор.

Антикоррозийное покрытие труб

Антикоррозийное покрытие труб

Коррозия представляет собой определенный процесс, при котором твердые тела со временем разрушаются. Это может происходить не только из-за определенных химических реакций. Иногда коррозия является результатом электрохимических процессов. Она зачастую проявляется на поверхности вещества и свидетельствует о том, что началось его последующее разрушение. Некоторые химические элементы, способны вступать в реакции с окружающей средой, как результат на некоторых поверхностях может образовываться коррозия, разрушающая даже прочные материалы.

Существует коррозия, которая проявляется на различных материалах. Однако наиболее распространенной является коррозия металлов. Из-за подобного результата химической реакции экономика многих стран терпит серьезные убытки. Все дело в том, что наиболее распространенным видом коррозии является ржавчина, из-за которой порой приходится менять всю металлическую конструкцию.

На данный момент все большую популярность приобретают трубы с антикоррозионным покрытием, позволяющие сохранить общую работоспособность устройства, частью которого они являются. Благодаря подобной разработке большинство производителей различных товаров вздохнули с облегчением. Ведь теперь нет необходимости в том, чтобы через несколько лет осуществляет демонтаж и повторную установку труб, которые были повреждены коррозией металла.

Виды коррозии металлов

Виды коррозии металлов

Стоит две основные разновидности коррозии, отличающиеся между собой по степени ущерба, которые она способна причинить. Различают прямую и косвенную коррозии.

Если коррозия нанесла прямой ущерб, в данном случае металлическое покрытие не подлежит восстановлению. Поэтому придется менять все оборудование, которое состоит из металлических частей. Если коррозия уже повредила металл, лучше всего обеспечить антикоррозийную защиту. Она, в свою очередь, стоит немалых денег, однако после обработки специальными веществами химическими растворами обновленное металлическое покрытие уже не будет подвергаться окислению и разрушению от коррозии.

Она по этой причине стоит немалых денег. Однако после обработки специальными веществами и химическими растворами обновленное металлическое покрытие уже не будет подвергаться окислению и разрушению от коррозии.

Если вред был косвенным, происходит замена, лишь некоторых частей металлической конструкции.

Финансовые средства в данном случае уйдут на:

  • закупку соответствующего металла,
  • снижение мощности оборудования, если металлическая конструкция состоит из труб и другого подобного оборудования,
  • улучшение продукции, основным элементом которой является металлический каркас.

Защита от коррозии является главной задачей современных конструкторов, разрабатывающих различные металлические детали. Чтобы конструкция прослужила несколько десятилетий, необходимо создать все условия для ее защиты от воздействия внешних факторов и различных атмосферных явлений, способность влиять на структуру металла.

Современные технологии позволяют разработать антикоррозионное покрытие стальных труб, обеспечивающее металлическую конструкцию дополнительной защитой от химических элементов, которыми зачастую контактируют с её поверхностью.

Трубы с защитным покрытием

Трубы с защитным покрытием

Так как на данный момент всё большую популярность приобретают нефть и газ как универсальные виды топлива, стоит задуматься над тем, чтобы обеспечить для них качественную транспортировку.

Поэтому важно создавать на предприятиях такие трубы, которые были бы защищены специальным антикоррозийным покрытием, предотвращающим разрушение стенок труб или же возникновения на их поверхности коррозии, которая приводит к их разрушению.

Создаются проекты, которые были бы призваны повысить безопасность энергетики в той или иной стране. Можно сказать, что в наше время в мире наблюдается отраслевой бум в трубопроводном транспорте. Таким образом, была создана ситуация, позволяющая обеспечить строительство систем трубопроводов, которые могли бы стать альтернативой уже имеющимся.

Россия представляет собой быстро развивающуюся страну, которая старается придумывать и разрабатывать всё новые и совершенные типы защитных покрытий. Удивительно, но наши специалисты уже создали трубы, содержащие изоляцию из полиэтилена.

Важно осознавать тот факт, что установку подобных труб способен произвести качественно только профессионал, разбирающийся в подобных вопросах.

Не секрет, что технологии, обеспечивающие решение подобных задач, придуманы уже несколько десятилетий тому назад. Если труба имеет 3-х слойную полимерную изоляцию, состоящую из нескольких слоёв, тогда и изоляция мест стыка труб должна быть аналогичной. Единственным видом подобного типа изоляции будут термоусаживающиеся манжеты.

Как избавиться от коррозии

Как избавиться от коррозии

Для того чтобы конструкция из металла прослужила дольше, необходимо обрабатывает покрытие специальными веществами, позволяющими предупредить образование коррозии на поверхности материала.

Наиболее распространены трубы с внутренним антикоррозионным покрытием, ведь благодаря защитному слою, они дольше служат. Специальные химические вещества, которые впоследствии будут защищать металлические трубы, наносят на их внутреннюю часть. При этом, если коррозия спровоцирует ржавчину на внешней поверхности трубы предотвратить ее распространения будет уже сложнее. В таком случае, производители стараются заранее побеспокоиться сохранности всей поверхности трубы.

Поэтому стоимость такого оборудования, состоящего из нескольких металлических частей, будет значительно выше. Производители указывают на сопроводительных инструкциях к товару, нанесение на металл специальных защитных веществ.

Если такой защиты нет, труба сможет прослужить несколько лет до того момента, пока внешние факторы, воздействующие на ее поверхность, не приведут к частичному или же полному разрушению металла.

При этом, не важно где находится труба в помещении или же на улице. Даже если оно является частью коммуникаций и расположена в морской воде, ее поверхность подвержена влиянию различных химических веществ.

Особенно в защите от коррозии нуждаются:

  • различные виды трубопроводов, расположенных не только на открытом воздухе, но и в воде,
  • оборудование, основной частью которого является металл,
  • металлические каркасы различных жилых помещений и построек промышленного типа,
  • всевозможные резервуары,
  • строительные краны,
  • мосты,
  • теплообменники.

Как избавиться от коррозии при помощи ЛКМ

Существуют так же трубы с наружным антикоррозионным покрытием, созданные специально для последующей установки на предприятиях и в промышленных цехах, где зачастую и происходит большинство основных химических реакций и процессов, ускоряющих производство товаров.

Наружная защита труб от коррозии важно так же, как и внутренняя. Однако, если у производителя нет дополнительных финансовых средств на закупку соответствующего оборудования, можно сэкономить значительные финансовые средства, если приобрести данный вид труб. Россия на данный момент выделяет большие инвестиции в разработку и последующее производство специальных веществ, обеспечивающих защиту труб от возникновения на ее поверхности ржавчины и других признаков коррозии.

Некоторые регионы России отличаются влажным климатом. Это идеальное место для возникновения на стенках металлических покрытий не только ржавчины, но и как следствие коррозии, полностью разрушающей металлическое покрытия любой толщины и формы. Если учесть все вышеперечисленные факторы, что на данный момент коррозия является основной проблемой, не позволяющей нашей стране развиваться полноценно. Когда наши специалисты смогут наладить производство специальных веществ, разработанных для антикоррозийной защиты металлических поверхностей, государство сэкономит значительные финансовые средства, которые ежегодно тратится на закупку подобных химических составов за рубежом.

К тому же, исчезает необходимость в том, чтобы через некоторое время менять трубы и другие металлические покрытия, срок эксплуатации которых истекает из-за ржавчины и коррозии, разрушающей их поверхность.

Применение средств антикоррозийной защиты способны значительно снизить материальные убытки большинства развитых стран мира.

При этом России необходимо занять свое место среди производителей подобных товаров. Это позволит нашей стране занять лидирующие позиции не только в сфере производства необходимых товаров и химических элементов, предотвращающих разрушения металлических поверхностей. Таким образом, можно будет заключить чувство взаимовыгодных контрактов, которые позволят России сотрудничать с другими государствами.

Трубы с защитным покрытием от коррозии

Существует несколько способов позволяющих нанести антикоррозийное защитное покрытие на поверхность металла. Наиболее распространенным выступает барьерный метод обработки металлической поверхности. То есть нанесение вещества происходит непосредственно на саму поверхность покрытия. Даже если она при этом содержит дополнительные химические вещества, антикоррозийная защита будет выполнять все, возложенные на нее функциональные характеристики и свойства. Например, если металлическая поверхность окрашена каким-либо лакокрасочным материалам или же содержит примеси других веществ и материалов таких как нейлон, вещество никто не вступать с ними в различные химические реакции, а сохранит прочную структуру.

Подобно тому, как лакокрасочные материалы создают защитную пленку на поверхности материала, антикоррозийные вещества образуют дополнительное покрытие, которые в свою очередь не смываются водой. Со временем даже подобное антикоррозийные вещества теряет свои свойства. Поэтому со временем необходимо повторять процедуру обработки.

Однако, перед тем как выбрать определенные средства для защиты металлической поверхности, необходимо учитывать также особенности самого металла. Даже условия, при которых происходит процесс нанесения вещества на металл, играет важную роль для его дальнейшей эксплуатации и производительности.

Поэтому российские производители всерьез задумались над тем, чтобы создать эффективное недорогое средство для защиты металлических поверхностей от повреждений и всевозможных последствий коррозии.

Технологи уже добились определенных результатов, разработав несколько универсальных составов взаимодействующих с большинством металлов. Но они все же, нуждаются в доработке и дальнейшем совершенствовании. Впоследствии эти составы и вещества позволят обеспечить полноценную защиту трубам и другим металлическим конструкциям.

Антикоррозийное покрытие стальных труб

Таблица. Основные характеристики покрытий и материалов, применяемых для защиты стальных трубопроводов.
Типы покытий
БитумноеЛакокрасочноеСтеклоэмалевоеМеталлизационное
Применяемые материалыРулонные, с изоль-

Повышенные требования к подготовке поверхности. Низкий сухой остаток (содержание растворителя до 60%). Высокая токсичность. Возможность оседания пигментов на дно тары (необходимость частого перемешивания). Недопустимость попадания влаги на само покрытие в процессе производства. Повышенные требования к подготовке поверхности. Длительный процесс подготовки материала перед нанесением при применении в трассовых условиях (5-6 часов).

Высокая токсичность применяемых растворителей

Не отработаны технологии защиты сварных стыков.

Покрытия чувствительны к ударам (повышенные требования при хранении, транспортировке и монтаже труб с покрытием)

Для защиты стыков в трассовых условиях требуется применение органосиликатных эмалей

материалы по теме

Абразивные порошки больше не нужны. 3M продемонстрировала инновационную разработку

Абразивные порошки больше не нужны. 3M продемонстрировала инновационную разработку

Основными векторами развития нефтегазовой промышленности становится создание способов и технических инструментов за надежностью трубопроводов, а также скважинной и емкостной аппаратуры.

Антикоррозийные покрытия

Антикоррозийные покрытия

Разнообразным изделиям и конструкциям из металла, использующимся в разнообразных строительных работах, необходима надёжная защита от воздействия внешней агрессивной среды и, в первую очередь, они должны быть обработаны антикоррозийным покрытием.

Предприятие по антикоррозионной защите труб открыто на территории Краснодарского края

Предприятие по антикоррозионной защите труб открыто на территории Краснодарского края

27 ноября текущего года в Тимашевске состоялось торжественное открытие нового предприятия – «Трубных покрытий и сервиса».

Стальные трубы по способу защиты от коррозии различают

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТРУБОПРОВОДЫ СТАЛЬНЫЕ МАГИСТРАЛЬНЫЕ

Общие требования к защите от коррозии

Steel pipe mains.
General requirements for corrosion protection

____________________________________________________________________
Текст Сравнения ГОСТ Р 51164-98 с ГОСТ 25812-83 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________

ОКС 23.040.90
ОКП 13 0000

Дата введения 1999-07-01

1 РАЗРАБОТАН Инжиниринговой научно-исследовательской компанией Всероссийский научно-исследовательский институт по строительству трубопроводов и объектов ТЭК (АО ВНИИСТ), Всероссийским научно-исследовательским институтом природного газа и газовых технологий (ВНИИГАЗ) и Институтом проблем транспорта энергоресурсов (ИПТЭР)

ВНЕСЕН Министерством топлива и энергетики Российской Федерации

2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 23 апреля 1998 г. N 144

3 ВВЕДЕН ВПЕРВЫЕ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает общие требования к защите от подземной и атмосферной коррозии наружной поверхности стальных (малоуглеродистые низколегированные стали класса не выше К60) магистральных трубопроводов, транспортирующих природный газ, нефть и нефтепродукты, и отводов от них, трубопроводов компрессорных, газораспределительных, перекачивающих и насосных станций, а также нефтебаз, головных сооружений нефтегазопромыслов (включая резервуары и обсадные колонны скважин), подземных хранилищ газа, установок комплексной подготовки газа и нефти, трубопроводов теплоэлектростанций, соединенных с магистральными трубопроводами (далее - трубопроводы), подземной, подводной (с заглублением в дно), наземной (в насыпи) и надземной прокладках, а также трубопроводов на территории других аналогичных промышленных площадок.

Стандарт не распространяется на теплопроводы и трубопроводы, проложенные в населенных пунктах, коллекторах, зданиях, многолетнемерзлых грунтах и в водоемах без заглубления в дно.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

3 ОБЩИЕ ПОЛОЖЕНИЯ

3.1 Требования настоящего стандарта должны выполняться при проектировании, строительстве, монтаже, реконструкции, эксплуатации и ремонте трубопроводов и являются основой при разработке нормативной документации (НД), используемой при защите от коррозии конкретных видов трубопроводов, утвержденной в установленном порядке и согласованной с Госгортехнадзором России.

3.2 Защита трубопроводов от коррозии должна обеспечивать их безаварийную (по этой причине) работу на весь период эксплуатации.

3.3 При всех способах прокладки, кроме надземной, трубопроводы подлежат комплексной защите от коррозии защитными покрытиями и средствами электрохимической защиты, независимо от коррозионной агрессивности грунта.

3.4 При надземной прокладке трубопроводы защищают от атмосферной коррозии металлическими и неметаллическими покрытиями в соответствии с НД на эти покрытия.

3.5 Участки трубопроводов при надземной прокладке должны быть электрически изолированы от опор. Общее сопротивление этой изоляции при нормальных условиях должно быть не менее 100 кОм на одной опоре.

3.6 Магистральные трубопроводы, температура стенок которых в период эксплуатации ниже 268 К (минус 5 °С), не подлежат электрохимической защите в случае отсутствия негативного влияния блуждающих токов источников переменного (50 Гц) и постоянного тока.

Если в строительный период температура стенок и грунта выше указанной температуры, то они подлежат временной электрохимической защите на срок с момента засыпки до момента стабилизации технологического режима эксплуатации согласно НД.

3.7 На нефтегазопромысловых объектах допускается не применять электрохимическую защиту и (или) защитные покрытия при условии технико-экономического обоснования с учетом коррозионной агрессивности грунтов и срока службы объекта при обеспечении безопасной эксплуатации и исключении экологического ущерба.

Обсадные колонны скважин допускается защищать от коррозии только средствами электрохимической защиты.

3.8 Тип, конструкция и материал защитного покрытия и средства электрохимической защиты трубопроводов от коррозии должны быть определены в проекте защиты, который разрабатывается одновременно с проектом нового или реконструируемого трубопровода.

В проекте должны учитываться возможные изменения условий коррозии трубопровода.

3.8.1 Проекты противокоррозионной защиты для трубопроводов длиной более 100 км должны проходить экспертизу в специализированных организациях на соответствие требованиям государственной стандартизации.

3.9 Каждый вновь построенный трубопровод должен иметь сертификат соответствия качества противокоррозионной защиты государственным стандартам и другой НД. Для эксплуатируемых трубопроводов сертификат соответствия может быть выдан только после комплексного обследования. Сертификаты соответствия выдаются органами по сертификации, внесенными в Госреестр.

3.10 Комплексное обследование трубопроводов с целью определения состояния их защиты от коррозии и коррозионного состояния должно проводиться периодически организациями, имеющими право на выполнение этих работ в соответствии с требованиями настоящего стандарта.

Стальные трубы по способу защиты от коррозии различают

Единая система защиты от коррозии и старения

Общие требования к защите от коррозии

Unified system of corrosion and ageing protection. Underground constructions. General requirements for corrosion protection

____________________________________________________________________
Текст Сравнения ГОСТ 9.602-2016 с ГОСТ 9.602-2005 см. по ссылке.
- Примечание изготовителя базы данных.
____________________________________________________________________

МКС 77.060, 75.200

Дата введения 2017-06-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2015 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Обществом с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" (ООО "Газпром ВНИИГАЗ"), Открытым акционерным обществом "Инжиниринговая нефтегазовая компания - Всесоюзный научно-исследовательский институт по строительству и эксплуатации трубопроводов, объектов ТЭК" (ОАО ВНИИСТ), Обществом с ограниченной ответственностью "НефтегазТехЭкспертиза" (ООО "НефтегазТехЭкспертиза") и Саморегулируемой Организацией - Некоммерческим Партнерством содействия в реализации инновационных программ в области противокоррозионной защиты (СРО НП "СОПКОР")

2 ВНЕСЕН Межгосударственным техническим комитетом по стандартизации МТК 523 "Техника и технологии добычи и переработки нефти и газа"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 31 августа 2016 г. N 90)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

4 Приказом Федерального агентства по техническому регулированию и метрологии от 7 октября 2016 г. N 1327-ст межгосударственный стандарт ГОСТ 9.602-2016 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2017 г.

ВНЕСЕНА поправка, опубликованная в ИУС N 1, 2021 год

Поправка внесена изготовителем базы данных

Введение

Подземные металлические сооружения (трубопроводы, резервуары, опоры, фундаменты) являются одной из самых капиталоемких составляющих промышленных объектов. От их надежного, бесперебойного функционирования зависит промышленная безопасность и жизнеобеспеченность промышленных и аграрных предприятий, городов и населенных пунктов.

Значительное влияние на срок службы подземных металлических сооружений оказывает коррозионная агрессивность окружающей среды (включая биокоррозионную агрессивность грунтов), а также внешние техногенные воздействия (блуждающие и индуцированные токи), которые могут привести к существенному снижению надежности и безопасности эксплуатируемых сооружений и в несколько раз сократить срок их службы.

Единственно возможным способом борьбы с этим негативным явлением является своевременное применение мер по противокоррозионной защите стальных подземных сооружений.

В настоящем стандарте установлены критерии опасности коррозии и методы их определения; требования к защитным покрытиям, нормативы их качества для разных условий эксплуатации подземных сооружений (адгезия защитных покрытий к поверхности трубы, адгезия между слоями защитных покрытий, стойкость к растрескиванию, стойкость к удару, стойкость к воздействию светопогоды и др.) и методы оценки качества защитных покрытий; регламентированы требования к электрохимической защите, а также методы контроля эффективности противокоррозионной защиты.

В настоящем стандарте учтены новейшие научно-технические разработки и достижения в практике противокоррозионной защиты, накопленные эксплуатационными, строительными и проектными организациями.

Внедрение настоящего стандарта позволит увеличить срок службы и надежность подземных металлических сооружений, сократить расходы на их техническую эксплуатацию.

1 Область применения

Настоящий стандарт устанавливает общие требования к защите от коррозии наружной поверхности подземных (в том числе подводных с заглублением в дно) стальных сооружений, проложенных ниже уровня поверхности земли или в обваловании, выполненных из углеродистых и низколегированных сталей (далее - сооружения): трубопроводов, транспортирующих природный газ (газопроводы магистральные и распределительные), нефть, нефтепродукты, и отводов от них; резервуаров (в том числе траншейного типа); водопроводов; трубопроводов тепловых сетей; свай, шпунтов, колонн и других несущих стальных подземных конструкций. Настоящий стандарт также устанавливает требования по ограничению токов утечки на источниках блуждающих токов, оказывающих влияние на защиту от коррозии подземных сооружений: электрифицированный рельсовый транспорт, линии передачи энергии постоянного тока по системе "провод-земля", промышленные предприятия, потребляющие постоянный электрический ток в технологических целях.

Настоящий стандарт не распространяется на следующие сооружения: железобетонные и чугунные сооружения; на сооружения специального оборонного и космического назначения, морские и прибрежные сооружения, в том числе, трубопроводы; сооружения атомных, приливных, гидроэлектрических станций и плотин; коммуникации, прокладываемые в зданиях; кабели в металлической оболочке; трубопроводы тепловых сетей с пенополиуретановой тепловой изоляцией и трубой-оболочкой из жесткого полиэтилена (конструкция "труба в трубе"), имеющие действующую систему оперативного дистанционного контроля состояния изоляции трубопроводов.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 9.039-74 Единая система защиты от коррозии и старения. Коррозионная агрессивность атмосферы

ГОСТ 9.102-91 Единая система защиты от коррозии и старения. Воздействие биологических факторов на технические объекты. Термины и определения

ГОСТ 9.103-78 Единая система защиты от коррозии и старения. Временная противокоррозионная защита металлов и изделий. Термины и определения

ГОСТ 9.401-91 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Общие требования и методы ускоренных испытаний на стойкость к воздействию климатических факторов

ГОСТ 12.0.004-90 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения

ГОСТ 12.1.003-83 Система стандартов безопасности труда. Шум. Общие требования безопасности

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.2.004-75 Система стандартов безопасности труда. Машины и механизмы специальные для трубопроводного строительства. Требования безопасности

ГОСТ 12.3.016-87 Система стандартов безопасности труда. Строительство. Работы антикоррозионные. Требования безопасности

ГОСТ 12.4.172-87 Система стандартов безопасности труда. Комплект индивидуальный экранирующий для защиты от электрических полей промышленной частоты. Общие технические требования и методы контроля

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

ГОСТ 1050-2013 Металлопродукция из нелегированных конструкционных качественных и специальных сталей. Общие технические условия

ГОСТ 2583-92 Батареи из цилиндрических марганцево-цинковых элементов с солевым электролитом. Технические условия

ГОСТ 4166-76 Реактивы. Натрий сернокислый. Технические условия

ГОСТ 4233-77 Реактивы. Натрий хлористый. Технические условия

ГОСТ 4234-77 Реактивы. Калий хлористый. Технические условия

ГОСТ 5180-84 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 5272-68 Коррозия металлов. Термины

ГОСТ 6323-79 Провода с поливинилхлоридной изоляцией для электрических установок. Технические условия

ГОСТ 6456-82 Шкурка шлифовальная бумажная. Технические условия

ГОСТ 6616-94 Преобразователи термоэлектрические. Общие технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 8711-93 (МЭК 51-2-84) Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 2. Особые требования к амперметрам и вольтметрам

ГОСТ 9812-74 Битумы нефтяные изоляционные. Технические условия

ГОСТ 10821-2007 Проволока из платины и платинородиевых сплавов для термоэлектрических преобразователей. Технические условия

ГОСТ 11262-80 Пластмассы. Метод испытания на растяжение

ГОСТ 11645-73 Пластмассы. Метод определения показателя текучести расплава термопластов

ГОСТ 12026-76 Бумага фильтровальная лабораторная. Технические условия

ГОСТ 14236-81 Пленки полимерные. Метод испытаний на растяжение

ГОСТ 14261-77 Кислота соляная особой чистоты. Технические условия

ГОСТ 15140-78 Материалы лакокрасочные. Методы определения адгезии

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 16336-77 Композиции полиэтилена для кабельной промышленности. Технические условия

ГОСТ 16783-71 Пластмассы. Метод определения температуры хрупкости при сдавливании образца, сложенного петлей

ГОСТ 17299-78 Спирт этиловый технический. Технические условия

ГОСТ 17792-72 Электрод сравнения хлорсеребряный насыщенный образцовый 2-го разряда

Читайте также: