Принцип работы эцн в нефтяной скважине

Обновлено: 07.07.2024

Принцип работы УЭЦН

Искусственное поддержание пластового давления достигается методами законтурного, приконтурного и внутриконтурного заводнения.

Законтурное заводнение применяют при разработке сравнительно небольших по размерам залежей. Он заключается в закачке водыв пласт через нагнетательные скважины, размещаемые за внешним контуром нефтеносности на расстоянии 100 м и более. Добывающие скважины располагаются внутри контура нефтеносности параллельно контуру.

В результате заводнения приток воды к пласту увеличивается и давление в нефтяной залежи поддерживается на высоком уровне.

Приконтурное заводнение применяют на месторождениях с низкой проницаемостью продуктивных пластов в водяной части залежи. Вода нагнетается в скважины, расположенные в периферийной приконтурной зоне залежи.

Привнутриконтурном заводнении вода нагнетается в пласт через скважины, расположенные непосредственно на площади нефтяной залежи. Внутриконтурное заводнение применяют на крупном месторождении разделением его рядами нагнетательных скважин на отдельные эксплуатационные объекты, которые в дальнейшем эксплуатируются как самостоятельные залежи. При этом обычно все скважины после бурения эксплуатируются сначала на нефть, затем через одну осваиваются под нагнетание.

Внутриконтурное заводнение подразделяется:

- блоковое заводнение– залежь разрезают рядами нагнетательных скважин на блоки;

- сводовое заводнение– воду нагнетают в скважины одного прямолинейного ряда или кольцевого ряда, расположенного в сводовой части залежи;

- площадное заводнение– при котором нагнетательные и добывающие скважины чередуются в строгой закономерности (данный вид заводнения применяется в случае низкой проницаемости и высокой вязкости нефти);

- очаговое (избирательное)заводнение – очаги заводнения обычно создают на участках не испытывающих влияния заводнения и где происходит падение пластового давления и снижение отборов нефти.

Широкое применение в нашей стране получили погружные установки центробежных электронасосов. Начали применяться гидропоршневые насосы, и прошли успешные промышленные испытания винтовые насосы. Средний дебит нефтяной скважины, оборудованной такой установкой, составляет 120—140 т/сут, в то время как дебит скважин, оборудованных штанговыми на­сосными установками, всего 15 т/сут. Большое преимущество этих установок — простота обслуживания, большой межремонтный период работы — более 1 года. Нередки случаи, когда на отдельных месторождениях установки работают более 2—3 лет без подъема.

УСТАНОВКА ПОГРУЖНОГО ЦЕНТРОБЕЖНОГО ЭЛЕКТРОНАСОСА

Установка погружного центробежного электронасоса состоит из следующих основных элементов: насосного агрегата (на­сос, электродвигатель, протектор), который спускается на колонне насосно-компрессорных труб; бронированного кабеля; устьевой арматуры; автотрансформатораи станции управ­ления.

Погружной электродвигатель (ПЭД) 1 расположен под на­сосом, вал которого соединяется с валом насоса посредством шлицевого соединения вала протектора. ПЭД представляет собой асинхронный двигатель трехфазного тока в герметичном исполнении — помещен в стальную трубу, заполненную транс­форматорным маслом. Ток питания подводится через брони­рованный кабель, который спускается в скважину парал­лельно насосно-компрессорным трубам (НКТ) и крепится к ним хомутиками. Конец кабеля плоский. Кабель имеет кабельную муфту для соединения токоподвода с выводными концами статорной обмотки. Питание электродвигателя осуществляется от промысловой сети, напряжение которой регулируется авто­трансформатором.Управление и контроль за работой насоса проводят с помощью станции управления.

Длина электродвигателя в зависимости от мощ­ности может достигать 10 м. Статор двигателя состоит из магнитныхи немагнитныхпакетов, собранных в общем кор­пусе. Обмотка статора (общая для всех пакетов) выполнена из масло- и теплостойких материалов. Ротор двигателя состоит из отдельных секций, собранных на валу. Между роторными секциями установлены промежуточные опорные подшипники ка­чения или скольжения. Скорость вращения ротора ПЭД со­ставляет около 3000 об/мин.




Для серийных центробежных насосных установок выпускают двигатели мощностью от 10 до 125 кВт. Наружные диаметры корпусов равны 103, 117 и 123 мм. В настоящее время выпу­скаются погружные электродвигатели в термостойком испол­нении для эксплуатации установок при температурах до 95°С.

Погружной центробежный электронасос монтиру­ется также в стальной трубе. Рабочие колесасобраны на валу(на шпонке) скользящей посадкой. Колеса расположены в соответствующих направляющих аппаратахкак на подпят­никах. Для уменьшения трения в расточку нижнего диска ко­леса запрессованы текстолитовые шайбы 6. Вал поддержива­ется подшипниками: верхним — скольженияи нижним радиально-упорным. Число рабочих колец и направляющих ап­паратов (ступеней) в серийно выпускаемых насосах колеблется от 84 до 332. Длина корпуса насоса не превышает обычно 5,5 м. При большом числе ступеней их размещают в двух, а иногда и в трех корпусах, соединенных в секции одного насоса. В сое­динительном патрубке верхней части насоса устанавливают обратный шариковый клапан, который необходим для заполне­ния НКТ жидкостью перед пуском насосного агрегата в экс­плуатацию и удержания жидкости в них при вынужденных остановках работы скважины. Над обратным клапаном в конце НКТ имеется сливной патрубок, используемый для спуска жидкости при подъеме насосного агрегата на поверхность.

В зависимости от условий эксплуатации используют также насосы в износоустойчивом исполнении, которые применяют в обводненных скважинах со значительным содержанием песка (до 1 %). Рабочие колеса этих насосов изготовляют из полиа­мидной смолы, а в корпусе насоса устанавливают промежуточ­ные резино-металлические подшипники.

Протектор состоит из двух герметично изолированных друг от друга секций, через которые проходит вал с двумя шлицевыми концами для соединения посредством специальных муфт с валами насоса и электродвигателя. Верхняя секция заполнена специальной смазкой для снабжения упорных подшипников насоса, а нижняя секция — трансформаторным маслом для подачи в электродвигатель по мере ее убыли при работе. Давление в секциях протектора несколько больше давления в скважине, что предотвращает возможность попадания скважинной жидко­сти в двигатель.

Корпусы насоса, протектора и электродвигателя соединены между собой фланцами. Наружные диаметры корпуса насоса и протектора соответственно равны 92 и 114 мм.

Устье скважины оборудуют устьевым оборудованием ОУЭН. Насосный агрегат на НКТ подвешивают на специ­альной разъемной эксцентричной планшайбе, имеющей отвер­стие для кабеля.Крестовинанавинчивается на ответную муфту колонной головки и имеет боковые задвижки. Места ввода кабеля и НКТ уплотняются разъемным корпусом и ре­зиновым уплотнителем, который поджимается разъемным фланцем. Межтрубное пространство соединено с выкидной ли­нией , на которой установлен обратный клапан для отвода газа при работе скважины. Задвижка 8 позволяет спускать в скважину различные измерительные приборы и механические скребки для очистки подъемных труб от парафина. С этой целью на тройнике устанавливают лубрикатор. Задвижка, установленная на выкиде устьевой арматуры, необходима для изменения режима работы скважины в процессе ее исследова­ния. Давления на выкиде и в межтрубном пространстве заме­ряются манометрами.

Уэцн принцип работы

Легко ли добыть нефть. Что такое УЭЦН и как он работает

УЭЦН – установка электроцентробежного насоса, она же - бесштанговый насос, она же ESP. По большому счету это обычный насосный агрегат. Необычного в нем то, что он тонкий (самый распространенный помещается в скважину с внутренним диаметром 123 мм), длинный (есть установки по 70 метров длиной) и работает в сложных условиях

Схема УЭЦН

В составе каждой УЭЦН есть следующие узлы:

ЭЦН (электроцентробежный насос) – главный узел. Насос делает основную работу – подъем жидкости. Насос состоит из секций, а секции из ступеней. Чем больше ступеней – тем больше напор, который развивает насос. Чем больше сама ступень – тем больше дебит (количество жидкости прокачиваемой за единицу времени). Чем больше дебит и напор – тем больше он потребляет энергии. Все взаимосвязано. Насосы кроме дебита и напора отличаются еще габаритом и исполнением – стандартные, износостойкие, коррозионостойкие, износо-коррозионостойкие.

ПЭД (погружной электродвигатель) Электродвигатель второй главный узел – крутит насос. Это обычный (в электрическом плане) асинхронный электродвигатель – только он тонкий и длинный. У двигателя два главных параметра – мощность и габарит. И опять же есть разные исполнения стандартный, теплостойкий, коррозионостойкий, особо теплостойкий. Двигатель заполнен специальным маслом, которое, кроме того, что смазывает, еще и охлаждает двигатель, и компенсирует давление, оказываемое на двигатель снаружи.

Протектор (гидрозащита) – стоит между насосом и двигателем. Он делит полость двигателя, заполненную маслом, от полости насоса, заполненной пластовой жидкостью, передавая при этом вращение. Кроме этого, он уравнивает давление внутри двигателя и снаружи.

Кабель. Бывает разных сечений (диаметров жил), отличается броней (обычная оцинкованная или из нержавейки) и температурной стойкостью. Есть кабель на 90, 120, 150, 200 и даже 230 градусов.

Дополнительные устройства

Газосепаратор (или газосепаратор-диспергатор, или просто диспергатор, или сдвоенный газосепаратор, или даже сдвоенный газосепаратор-диспергатор). Он отделяет жидкость от свободного газа на входе в насос. Часто, очень часто количества свободного газа на входе в насос вполне достаточно, что бы насос не работал – тогда ставят какое либо газостабилизирующее устройство. Если нет необходимости ставить газосепаратор – ставят входной модуль.

ТМС – это своего рода тюнинг. Кто как расшифровывает – термоманометрическая система, телеметрия.

Защитные устройства

Это обратный клапан (самый распространенный – КОШ – клапан обратный шариковый) – чтобы жидкость не сливалась из труб, когда насос остановлен. Для слива жидкости перед подъемом ставят сливной клапан (сливная муфта). Обратный и сливной клапан исполнены в виде переводников и устанавливаются в колонне НКТ над УЭЦН.

ЭЦН висит на насосно-компрессорных трубах. И смонтирован в следующей последовательности:Вдоль НКТ (2-3 километра) – кабель, сверху – КС, потом КОШ, потом ЭЦН, потом газосепаратор (или входной модуль), затем протектор, дальше ПЭД, а еще ниже ТМС. Кабель проходит вдоль ЭЦНа, сепаратора и протектора до самой головы двигателяВсе части УЭЦН секционные, секции длиной не более 9-10 метров и собирается установка непосредственно на скважине.

Основные узлы установки и их назначение УЭЦН

Скважинные центробежные насосы являются многоступен­чатыми машинами. Это обусловлено в первую очередь малыми значениями напора, создаваемым одной ступенью (рабочим ко­лесом и направляющим аппаратом). В свою очередь небольшие значения напора одной ступени (от 3 до 6-7 м водяного столба) определяются малыми величинами внешнего диаметра рабочего колеса, ограниченного внутренним диаметром обсадной ко­лонны и размерами применяемого скважинного оборудования - кабеля, погружного двигателя и т.д.

Конструкция скважинного центробежного насоса может быть обычной и износостойкой, а также повышенной коррози­онной стойкости. Диаметры и состав узлов насоса в основном одинаковы для всех исполнений насоса.

Скважинный центробежный насос обычного исполнения предназначен для отбора из скважины жидкости с содержанием воды до 99%. Механических примесей в откачиваемой жидко­сти должно быть не более 0,01 массовых % (или 0,1 г/л), при этом твердость механических примесей не должна превышать 5 баллов по Моосу; сероводорода — не более 0,001%. По требова­ниям технических условий заводов-изготовителей, содержание свободного газа на приеме насоса не должно превышать 25%.

Центробежный насос коррозионностойкого исполнения предназначен для работы при содержании в откачиваемой пластовой жидкости сероводорода до 0,125% (до 1,25 г/л). Износостойкое исполнение позволяет откачивать жидкость с содержанием механических примесей до 0,5 г/л.

Ступени размещаются в расточке цилиндрического корпуса каждой секции. В одной секции насоса может размещаться от 39 до 200 ступеней в зависимости от их монтажной высоты. Максимальное количество ступеней в насосах достигает 550 штук.

Рис. 6.2. Схема скважинного центробежного насоса:

1 - кольцо с сегментами; 2,3 - гладкие шайбы; 4,5 - шайбы амортизаторы; 6 - верхняя опора; 7 - нижняя опора; 8 - пру­жинное кольцо опоры вала; 9 - дистанционная втулка; 10 -основание; 11 - шлицевая муфта.

Модульные ЭЦН

Для создания высоконапорных скважинных центробежных насосов в насосе приходится устанавливать множество ступеней (до 550). При этом они не могут разместиться в одном корпусе, поскольку длина такого насоса (15-20 м) затрудняет транспор­тировку, монтаж на скважине и изготовление корпуса.

Высоконапорные насосы составляются из нескольких сек­ций. Длина корпуса в каждой секции не более 6 м. Корпусные детали отдельных секций соединяются фланцами с болтами или шпильками, а валы шлицевыми муфтами. Каждая секция насо­са имеет верхнюю осевую опору вала, вал, радиальные опоры вала, ступени. Приемную сетку имеет только нижняя секция. Ловильную головку — только верхняя секция насоса. Секции высоконапорных насосов могут иметь длину меньшую, чем 6 м (обычно длина корпуса насоса составляет 3,4 и 5 м), в зависи­мости от числа ступеней, которые надо в них разместить.

Насос состоит из входного модуля (рис. 6.4), модуля секции (модулей-секций) (рис. 6.3), модуля головки (рис. 6.3), обрат­ного и спускного клапанов.

Допускается уменьшить число модулей-секций в насосе, соответственно укомплектовав погружной агрегат двигателем необходимой мощности.

Соединения модулей между собой и входного модуля с двигателем фланцевые. Соединения (кроме соединения входного модуля с двигателем и входного модуля с газосепа­ратором) уплотняют резиновыми кольцами. Соединение валов модулей-секций между собой, модуля-секции с валом входного модуля, вала входного модуля с валом гидрозащиты двигателя осуществляют с помощью шлицевых муфт.

Валы модулей-секций всех групп насосов, имеющих одина­ковые длины корпусов 3,4 и 5 м, унифицированы. Для защиты кабеля от повреждений при спускоподъемных операциях на основаниях модуля-секции и модуля-головки расположены съемные стальные ребра. Конструкция насоса позволяет без дополнительной разборки использовать модуль насосный газосепаратор, который устанавливается между модулем вход­ным и модулем-секцией.

Технические характеристики некоторых типоразмеров ЭЦН для добычи нефти, изготавливаемых российскими фир­мами по техническим условиям представлены в таблице 6.1 и рис. 6.6.

Напорная характеристика ЭЦН, как видно на при­веденных выше рисунках, может быть как с западающей левой ветвью характеристики (малодебитные насосы), моно­тонно падающей (в основном для среднедебитных устано­вок), так и с переменным знаком производной. Такой характери­стикой в основном обладают высоко дебитные насосы.

Мощностные характеристики практически всех ЭЦН имеют минимум при нулевой подаче (так называемый «режим закрытой задвижки»), что обуславливает применение обратного клапана в колонне НКТ над насосом.

Рабочая часть характеристики ЭЦН, рекомендуемая фирмами-изготовителями, очень часто не совпадает с рабочей частью характеристик, определяемой общими методиками насосостроения. В последнем случае границами рабочей части характеристики являются величины подач в (0,7-0,75)Qo и (1,25-1,3Q0, где Q0 - подача насоса в оптимальном режиме работы, т.е. при максимальном значении КПД.

Погружные электродвигатели

Погружной электрический двигатель (ПЭД) — двигатель специальной конструкции и представляет собой асинхронный двухполюсный двигатель переменного тока с короткозамкнутым ротором. Двигатель заполнен маловязким маслом, которое выполняет функцию смазки подшипников ротора, отвода тепла к стенкам корпуса двигателя, омываемого потоком скважинной продукции.

Верхний конец вала электродвигателя подвешен на пяте скольжения. Ротор двигателя секционный; секции собраны на валу двигателя, изготовлены из пластин трансформаторного же­леза и имеют пазы, в которые вставлены алюминиевые стержни, закороченные с обеих сторон секции токопроводящими коль­цами. Между секциями вал опирается на подшипники. По всей длине вал электродвигателя имеет отверстие для циркуляции масла внутри двигателя, осуществляемой также через паз ста­тора. В нижней части двигателя имеется масляный фильтр.

Длина и диаметр двигателя определяют его мощность. Ско­рость вращения вала ПЭД зависит от частоты тока; при частоте переменного тока 50 Гц синхронная скорость составляет 3000 об/мин. Погружные электродвигатели маркируются с указани­ем мощности (в кВт) и наружного диаметра корпуса (мм), на­пример, ПЭД 65-117 — погружной электродвигатель мощностью 65 кВт и наружным диаметром 117 мм. Необходимая мощность электродвигателя зависит от подачи и напора погружного цен­тробежного насоса и может достигать сотен кВт.

Современные погружные электродвигатели комплектуются системами датчиков давления, температуры и других параме­тров, фиксируемых на глубине спуска агрегата, с передачей сигналов по электрическому кабелю на поверхность (станцию управления).

Двигатели мощностью более 180 кВт диаметром 123 мм, более 90 кВт диаметром 117 мм, 63 кВт диаметром 103 мм и мощностью 45 кВт диаметром 96 мм - секционные.

Секционные двигатели состоят из верхней и нижней секций, которые соединяются при монтаже двигателя на скважине. Каждая секция состоит из статора и ротора, устройство которых аналогично односекционному электродвигателю. Электриче­ское соединение секций между собой последовательное, вну­треннее и осуществляется с помощью 3-х наконечников. Герметизация соединения обеспечивается уплотнением при стыковке секций.

Для увеличения подачи и напора рабочей ступени цен­тробежного насоса применяют регуляторы частоты враще­ния. Регуляторы частоты вращения позволяют перекачивать среду в более широком диапазоне объемов, чем это возможно при постоянной скорости, а также осуществлять плавный контролируемый пуск погружного асинхронного двигателя с ограничением пусковых токов на заданном уровне. Это по­вышает надежность УЭЦН за счет снижения электрических нагрузок на кабель и обмотку двигателя при запуске установок, а также улучшает условия работы пласта при пуске скважины. Оборудование позволяет также в комплекте с установленной в УЭЦН системой телеметрии поддерживать заданный дина­мический уровень в скважине.

Одним из методов регулирования частоты вращения ротора УЭЦН является регулирование частоты питающего погружной двигатель электротока.

Оборудованием для обеспечения этого метода регулирова­ния оснащены станции управления российского производства СУРС-1 и ИРБИ 840.

Гидрозащита

Для увеличения работоспособности погружного электро­двигателя большое значение имеет надежная работа его гидро­защиты, предохраняющей электродвигатель от попадания в его внутреннюю полость пластовой жидкости и компенсирующей изменение объема масла в двигателе при его нагреве и охлаж­дении, а также при утечке масла через негерметичные элементы конструкции. Пластовая жидкость, попадая в электродвигатель, снижает изоляционные свойства масла, проникает через изоля­цию обмоточных проводов и приводит к короткому замыканию обмотки. Кроме того, ухудшается смазка подшипников вала двигателя.

В настоящее время на промыслах Российской Федерации широко распространена гидрозащита типа Г.

Гидрозащита типа Г состоит из двух основных сборочных единиц: протектора и компенсатора.

Основной объем узла гидрозащиты, формируемый эла­стичным мешком, заполнен жидким маслом. Через обратный клапан наружная поверхность мешка воспринимает давление продукции скважины на глубине спуска погружного агрегата. Та­ким образом, внутри эластичного мешка, заполненного жидким маслом, давление равно давлению погружения. Для создания избыточного давления внутри этого мешка на валу протектора имеется турбинка. Жидкое масло через систему каналов под избыточным давлением поступает во внутреннюю полость электродвигателя, что предотвращает попадание скважинной продукции внутрь электродвигателя.

Компенсатор предназначен для компенсации объема мас­ла внутри двигателя при изменении температурного режима электродвигателя (нагревание и охлаждение) и представляет собой эластичный мешок, заполненный жидким маслом и рас­положенный в корпусе. Корпус компенсатора имеет отверстия, сообщающие наружную поверхность мешка со скважиной. Внутренняя полость мешка связана с электродвигателем, а внешняя— со скважиной.

При охлаждении масла объем его уменьшается, и скважинная жидкость через отверстия в корпусе компенсатора входит в зазор между наружной поверхностью мешка и внутренней стенкой корпуса компенсатора, создавая тем самым условия полного заполнения внутренней полости погружного электродвигателя маслом. При нагревании масла в электродвигателе объем его увеличивается, и масло пере­текает во внутреннюю полость мешка компенсатора; при этом скважинная жидкость из зазора между наружной поверхностью мешка и внутренней поверхностью корпуса выдавливается через отверстия в скважину.

Все корпуса элементов погружного агрегата соединяются между собой фланцами со шпильками. Валы погружного насоса, узла гидрозащиты и погружного электродвигателя соединяются между собой шлицевыми муфтами. Таким образом, погружной агрегат УЭЦН представляет собой комплекс сложных электрических, механических и ги­дравлических устройств высокой надежности, что требует от персонала высокой квалификации.

Обратный и спускной клапаны

Обратный клапан служит для предотвращения обратного вращения (турбинный режим) ротора насоса под воздействием столба жидкости в колонне НКТ при остановках и облегчения повторного запуска насосного агрегата. Остановки погруж­ного агрегата происходят по многим причинам: отключение электроэнергии при аварии на силовой линии; отключение из-за срабатывания защиты ПЭД; отключение при периодической эксплуатации и т.п. При остановке (обесточивании) погружного агрегата столб жидкости из НКТ начинает стекать через насос в скважину, раскручивая вал насоса (а значит, и вал погруж­ного электродвигателя) в обратном направлении.

Если в этот период возобновляется подача электроэнергии, ПЭД начинает вращаться в прямом направлении, преодолевая огромную силу. Пусковой ток ПЭД в этот момент может превысить допустимые пределы, и, если не сработает защита, электродвигатель выходит из строя. Спускной клапан предназначен для слива жидкости из колонны НКТ при подъеме насосного агрегата из скважины. Обратный клапан ввинчен в модуль-головку насоса, а спускной - в корпус обратного клапана. Допускается устанавливать кла­паны выше насоса в зависимости от значения газосодержания у сетки входного модуля насоса.

При этом клапаны должны располагаться ниже сростки основного кабеля с удлинителем, так как в противном случае поперечный габарит насосного агрегата будет превышать до­пустимый.

Обратные клапана насосов 5 и 5А рассчитаны на любую подачу, группы 6 - на подачу до 800 м3/сут включительно. Конструктивно они одинаковы и имеют резьбу муфты и насосно-компрессорной гладкой трубы диаметром 73 мм. Об­ратный клапан для насосов группы 6, рассчитанный на подачу свыше 800 м3/сут, имеет резьбу муфты и НКТ гладкой трубы диаметром 89 мм.

Спускные клапана имеют такие же исполнения по резьбам, как и обратные. В принципе спускной клапан - это муфта, в боковую стенку которой вставлена горизонтально короткая бронзовая трубка (штуцер), запаянная с внутреннего конца. От­верстие в этом клапане вскрывают при помощи металлического стержня диаметром 35 мм и длиной 650 мм, сбрасываемого в трубу с поверхности. Стержень, ударяясь о штуцер, отламы­вает его в месте надреза и открывает отверстие в клапане.

В результате жидкость перетекает в эксплуатационную колонну. Применение такого спускного клапана не рекомендуется, если в установке используют скребок для очистки труб от парафина. При обрыве проволоки, на которой спускается скребок, он па­дает и ломает штуцер, происходит самопроизвольный перепуск жидкости в скважину, что приводит к необходимости подъема агрегата. Поэтому применяют спускные клапаны и других типов, приводимые в действие за счет повышения давления в трубах, без спуска металлического стержня.

Трансформаторы

Трансформаторы предназначены для питания установок погружных центробежных насосов от сети переменного тока напряжением 380 или 6000 В частотой 50 Гц. Трансформатор повышает напряжение, чтобы двигатель на вводе в обмотку имел заданное номинальное напряжение. Рабочее напряжение двигателей составляет 470-2300 В. Кроме того, учитывается снижение напряжения в длинном кабеле (от 25 до 125 В/км).

Трансформатор состоит из магнитопровода, обмоток вы­сокого напряжения (ВН) и низкого напряжения (НН), бака, крышки с вводами и расширителя с воздухоосушителем, пере­ключателя. Трасформаторы выполняются с естественным мас­ляным охлаждением. Они предназначены для установки на от­крытом воздухе. На высокой стороне обмоток трансформатора имеется 5-10 ответвлений, обеспечивающих подачу оптималь­ного напряжения на электродвигатель. Масло, заполняющее трансформатор, имеет пробивное напряжение 40 кВ.

Станция управления

Станция управления предназначена для управления рабо­той и защиты У ЭЦН и может работать в ручном и автоматиче­ском режимах. Станция оснащена необходимыми контрольно-измерительными системами, автоматами, всевозможными реле (максимальные, минимальные, промежуточные реле времени и т.п.). При возникновении нештатных ситуаций срабатывают соответствующие системы защиты, и установка отключается.

Станция управления выполнена в металлическом ящике, может устанавливаться на открытом воздухе, но часто разме­щается в специальной будке.

Кабельные линии

Кабельные линии предназначены для подачи электроэнер­гии с поверхности земли (от комплектных устройств и станций управления) к погружному электродвигателю.

К ним предъявляются достаточно жесткие требования — малые электрические потери, малые диаметральные габариты, хорошие диэлектрические свойства изоляции, термостойкость к низким и высоким температурам, хорошая сопротивляемость воздействию пластовой жидкости и газа и т.д.

Кабельная линия состоит из основного питающего кабеля (круглого или плоского) и соединенного с ним плоского кабеля-удлинителя с муфтой кабельного ввода.

Соединение основного кабеля с кабелем-удлинителем обе­спечивается неразъемной соединительной муфтой (сросткой). С помощью сростки могут быть соединены также участки основного кабеля для получения требуемой длины.

Кабельная линия на основной длине чаще всего имеет се­чение круглое или близкое к треугольному.

Для сокращения диаметра погружного агрегата (кабель+центробежный насос) нижняя часть кабеля имеет плоское сечение.

Кабель выпускается с полимерной изоляцией, которая на­кладывается на жилы кабеля в два слоя. Три изолированные жилы кабеля соединяются вместе, накрываются предохраняю­щей подложкой под броню и металлической броней. Металличе­ская лента брони предохраняет изоляцию жил от механических повреждений при хранении и работе, в первую очередь — при спуске и подъеме оборудования.

В прошлом бронированный кабель выпускался с резиновой изоляцией и защитным резиновым шлангом. Однако в скважине резина насыщалась газом и при подъеме кабеля на поверхность газ разрывал резину и броню кабеля. Применение пластмас­совой изоляции кабеля позволило существенно снизить этот недостаток.

У погружного двигателя кабельная линия заканчивается штепсельной муфтой, которая обеспечивает герметичное соеди­нение с обмоткой статора двигателя.

Верхний конец кабельной линии проходит через специаль­ное устройство в оборудовании устья скважины, которым обе­спечивается герметичность затрубного пространства, и соединя­ется через клеммную коробку с электрической линией станции управления или комплектного устройства. Клеммная коробка предназначена для предупреждения попадания нефтяного газа из полости кабельной линии в трансформаторные подстанции, комплектные устройства и шкафы станций управления.

Кабельная линия в состоянии транспортирования и хра­нения располагается на специальном барабане, используемом также при спусках и подъемах установок на скважинах, про­филактических и ремонтных работах с кабельной линией.

Выбор конструкций кабельных линий зависит от условий эксплуатации установок ЭЦН, в первую очередь, от температу­ры скважинной продукции. Часто кроме пластовой температуры используется расчетная величина снижения этой температуры за счет температурного градиента, а также повышение темпера­туры окружающей среды и самого скважинного агрегата за счет нагрева погружного электродвигателя и центробежного насоса. Повышение температуры может быть довольно значительным и составлять 20-30 °С. Другим критерием выбора конструкции кабеля является температура окружающего воздуха, которая влияет на работоспособность и долговечность изоляционных материалов кабельных линий.

Важными факторами влияющими на выбор конструкции кабеля являются свойства пластового флюида - коррозионная активность, обводненность, газовый фактор.

Для сохранения целостности кабеля и его изоляции при спускоподъемных операциях необходимо кабель фиксировать на колонне. НКТ. При этом необходимо применять фикси­рующие приспособления вблизи участка изменения диаметра колонны, т.е. около муфты или высадки под резьбу. При фик­сации кабеля необходимо следить за тем, чтобы кабель плотно прилегал к трубам, а в случае применения плоского кабеля надо следить за тем, чтобы кабель не был перекручен.

Простейшими приспособлениями для крепления кабелей к насосно-компрессорным трубам (НКТ) и узлам погружного насосного агрегата УЭЦН являются металлические пояса с пряжками или клямсы.

Крепление кабеля-удлинителя к узлам погружного агрегата (погружного насоса, протектора и двигателя) осуществляется в местах, указанных в руководствах по эксплуатации данного вида оборудования; крепление кабеля-удлинителя и основного кабеля к НКТ осуществляется по обе стороны каждой муфты НКТ на расстоянии 200-250 мм от верхнего и нижнего торцов муфты

Эксплуатация установок УЭЦН в наклонно -и криволиней­ных скважинах потребовала создания приспособлений для кре­пления кабелей и защиты их от механических повреждений.

Область применения УЭЦН

Установки ЭЦН выпускают для эксплуатации высокодебитных, обводненных, глубоких и наклонных скважин с дебитом 20-1000 м3/сут и высотой подъема жидкости 500-2000 м.

В области больших подач (свыше 80 м3/сут) УЭЦН имеют самый высокий КПД среди всех механизированных способов добычи нефти. В интервале подач от 50 до 300 м3/сут КПД УЭЦН превышает 40 %, но в области небольших подач КПД УЭЦН резко падает. Также установки ЭЦН меньше подверже­ны влиянию кривизны ствола скважины.

При использовании ЭЦН возможно применение эффек­тивных средств уменьшения отложений парафина в подъем­ных трубах. Применяются защитные покрытия НКТ, системы автоматической подачи специальных химических реагентов в скважину и автоматизированные установки со скребками, спускаемыми на проволоке. Монтаж наземного оборудования УЭЦН прост, так как станция управления и трансформатор не нуждаются в устройстве фундаментов. Эти два узла уста­новки ЭЦН размещают обычно в легких будках или в шкафах. Межремонтный срок работы установок ЭЦН составляет по Западной Сибири в среднем около года.

Применение новых кон­структивных разработок, а также усовершенствование способов диагностики, обслуживания и ремонта позволит в ближайшие годы увеличить межремонтные сроки в 1,5—2 раза.

Бесштанговые насосы содержат скважинный насос и сква­жинный привод насоса, непосредственно соединенные между собой. Энергия к приводу насоса подводится по кабелю (при электроприводе) или по трубопроводу (при гидро- или пнев­моприводе). Благодаря отсутствию длинной механической связи между приводом и насосом, бесштанговые насосы имеют значительно большую мощность, чем штанговые. Это дает воз­можность поддерживать большие отборы жидкости некоторыми видами бесштанговых насосов. В Российской Федерации уста­новками ЭЦН оснащено более 35 % всех нефтяных скважин и добывается более 65 % всей нефти.

Разработка бесштанговых насосов в нашей стране началась еще в начале XX века, когда А.С. Арутюнов вместе с В.К. Долго­вым разработали скважинный агрегат, в котором центробежный насос приводился в действие погружным электродвигателем. Впоследствии А.С. Арутюнов создал всемирно известную фир­му REDA - Русский электродвигатель Арутюнова.

Промышленные образцы центробежных насосов с электро­приводом были разработаны в Советском Союзе Особым конструкторским бюро по бесштанговым насосам (ОКБ БН). В настоящее время многие российские фирмы продолжают работы по созданию бесштанговых насосов новых типов и типоразмеров и следят за рациональным применением разра­ботанных конструкций.

В последние годы нефтяная промышленность получает большое количество новых видов УЭЦН, для изготовления которых чаще применяются высококачественные материалы и высокие технологии, которые ранее использовались лишь в аэрокосмических отраслях.

Как и чем добывают нефть.УЭЦН

Должна сказать, перед непосредственной темой нашей статьи, что до самой добычи и опускания УЭЦН в скважину, проводят очень много подготовительной работы. Это и разведка и строительство скважины, на которое, к слову, дается 20 дней и все остальные мероприятия. Сейчас же, добыча и непосредственное устройство самой УЭЦН.

УЭЦН – установка электроцентробежного насоса. С помощью УЭЦН добывается порядка 80% всей нефти в России.

Само все это устройство может быть в длину огромной (порядка 2-2,5км) вместе с НКТ. Так что выход из строя какого-либо его узла и простой скважины без дела (пока поднимут установку, пока заменят агрегат) может оцениваться ущербом от 2 млн рублей.

Само же устройство установки не такое уж и сложное. На представленной картинке оно не точное, но другой нет. Первым делом идет ПЭД с ТМС. Размеры и мощность двигателя индивидуальны для каждой скважины. Зависит от того сколько мощностей нужно.

ПЭД– погружной электродвигатель, является приводом ЭЦН. Если обычными словами, то состоит из статора и ротора. Бывают разными, как уже было сказано, по размерам и мощностям, но устройство одинаково. Статор – непосредственно сам корпус двигателя, выполненный из коррозийно-стойкого металла. Неподвижная часть асинхронного двигателя. Состоит из магнитопровода, который впрессован внутрь, а так же обмотки, которая уложена в пазы статора.

Ротор – представляет собой вал, на которой нанизаны так называемые «пакеты». Сами пакеты это по виду цилиндры, которые представляют собой сплав стали и меди.

Сам принцип работы, если свои словами и по-простому, таков: при включении в трехфазную сеть, на статоре образуется вращающееся магнитное поле, которое заставляет двигаться ротор, а благодаря этому образуется вращающий момент. Вращение ротора посредством вала передается исполнительному механизму и всей установки УЭЦН.

ТМС – телеметрическая система. Она передает все данные наверх (температура, давление и т.д)

Далее идет гидрозащита ПЭД. Так, как хоть толика воды убивает двигатель, для его защиты она и нужна. Обычно гидрозащита однокорпусная и состоит из 2 диафрагм и они заполнены маслом уже на момент монтажа УЭЦН. Принцип работы, по-простому, это пополнение маслом полости электродвигателя. Сама защита состоит из последовательно соединенных между собой посредством резьбы: головки, ниппелей с корпусами и основания. Внутри гидрозащиты размещается вал, который вращается в нескольких подшипниках, установленных в ниппелях. На обоих концах вала имеются шлицы для соединения с валами насоса и электродвигателя при монтаже на скважине.

Далее у нас идет входной модуль. Сам по себе он не большой совсем и его функция это тонкая фильтрация и предупреждение попадания механических примесей, содержащихся в пластовой жидкости, в рабочую полость погружного центробежного насоса. Именно через него поступает вся жидкость в установку. Устройство его очень простое. Это понятное дело сам вал, корпус и приемная сетка.

X Международная студенческая научная конференция Студенческий научный форум - 2018


Электроцентробежный насос предназначен для добычи скважиной жидкости либо её нагнетания в пласт. Принцип работы насоса состоит в нагнетании жидкости из колес в аппараты за счет центробежной силы, возникающей при вращении ротора с закрепленными на нем колесами. Проходные сечения рабочих органов определяют пропускную способность (подачу) насоса, а их количество - напор.

Установка УЭЦН состоит из погружного насосного агрегата (электродвигателя с гидрозащитой и насоса), кабельной линии (круглого плоского кабеля с муфтой кабельного ввода), колонны НКТ, оборудования устья скважины и наземного электрооборудования: трансформатора и станции управления (комплектного устройства). Трансформаторная подстанция преобразует напряжение промысловой сети до оптимальной величины на зажимах электродвигателя с учетом потерь напряжения в кабеле. Станция управления обеспечивает управление работой насосных агрегатов и его защиту при оптимальных режимах.

Конструкция и технические характеристики модулей УЭЦН

Многосекционный многоступенчатый электроцентробежный насос

Погружной электроцентробежный насос ПЭЦН в общем случае состоит из нескольких модуль - секций, достигая в длину нескольких метров.

Каждая секция включает в себя большое (до 100 и более) число ступеней. Рабочая ступень насоса состоит из рабочего колеса и направляющего аппарата (см. рисунок) и рассчитана на определенную подачу.

Требуемый напор насоса получают комбинированием необходимого числа ступеней. При работе насоса давление в нем плавно возрастает по его длине.

В случае отсутствия в компоновке погружного оборудования газосепаратора насос комплектуют входным модулем. При использовании газосепаратора во входном модуле нет необходимости.

Центробежный газосепаратор.

При эксплуатации скважин с высоким газосодержанием откачиваемой нефти для уменьшения вредного влияния свободного газа на работу ЭЦН в компоновку подземного оборудования включают дополнительный модуль - газосепаратор.

При работе газосепараюра происходит разделение потока на жидкую и газовую фазу в сепарационных барабанах под действием центробежной силы. При этом отсепарированный газ направляется в затрубное пространство, а дегазированная жидкость подается на прием насоса.

Использование эффективного газосепарзтора позволяет устойчиво эксплуатировать установки ПЭЦН в скважинах, где обьемное содержание свободного газа на входе в насос существенно превышает 30%.

В скважинах, где входное объемное газосодержание менее 30% (например, в высокообводненных скважинах) вредного влияния газа на работу насоса не отмечается и в использовании газосепаратора нет необходимости. Газосепаратор устанавливается между протектором гидрозащиты и нижней секцией ЭЦН.

Протектор

Протектор входит в состав гидрозащиты, предназначенной для защиты погружных маслозаполненных электродвигателей от проникновения пластовой жидкости в их внутреннюю полость, компенсации утечки масла и тепловых изменений его объема при работе электродвигателя и его остановках.

Протектор имеет две упругие диафрагмы (верхнюю и нижнюю), за счет деформации которых компенсируются изменения объема масла в электродвигателе.

Протектор устанавливается в верхней части погружного электродвигатепя между двигателем и газосепаратором (ипи приемным модулем насоса в случае отсутствия газосепаратора).

ПЭД

Погружной асинхронный электродвигатель служит для привода электроцентробежного насоса и состоит из ротора, статора, головки, основания и узла токоввода.

Внутренняя полость двигателя заполнена маслом. Фильтр для очистки масла расположен в нижней части двигателя.

Компенсатор

Компенсатор устанавливается в нижней части погружного электродвигателя.

Работа насоса основана на взаимодействии лопаток вращающегося рабочего колеса и перекачиваемой жидкости. Вращаясь, рабочее колесо сообщает круговое движение жидкости, находящейся между лопатками. Вследствие возникающей центробежной силы жидкость от центра колеса перемещается к внешнему выходу, а освободившееся пространство вновь заполняется жидкостью, поступающей под действием создаваемого разрежения. Из рабочего колеса жидкость забрасывается в направляющий аппарат, который по своим каналам направляет жидкость к центральной части следующего колеса. Вследствие такого принудительного отклонения потока жидкости, на внутренних стенках направляющего аппарата создается давление. Таким образом, скоростная энергия преобразуется в энергию давления.

Насосные секции могут быть различной длины, что обеспечивает оптимальный подбор насоса к любой скважине. По всей длине каждой секции установлены промежуточные радиальные подшипники. Надежная и продолжительная работа насосов в различных условиях эксплуатации обеспечивается оптимальным расстоянием между радиальными опорами. Насос может быть укомплектован горизонтальным входным модулем, фильтром любой конструкции.

Выше насоса установлен обратный шаровой клапан, облегчающий пуск установки после ее простоя, а над обратным клапаном – спускной клапан для слива жидкости из НКТ при их подъеме. Гидрозащита включает в себя компенсатор и протектор. Погружной насос, электродвигатель и гидрозащита соединяются между собой фланцами и шпильками. Валы насоса, двигателя и гидрозащиты имеют на концах шлицы и соединяются между собой шлицевыми муфтами.

Насос погружают под уровень жидкости в зависимости от количества свободного газа на глубину до 250-300 м, а иногда и до 600 м. Установки ЭЦН выпускают для эксплуатации высокодебитных, обводненных, глубоких и наклонных скважин с дебитом 25-1300 м3/сут и высотой подъема жидкости 500-2000 м. В зависимости от поперечного размера погружного агрегата УЭЦН подразделяют на три условные группы 5, 5А и 6 с диаметрами соответственно 92, 103 и 114 мм. Они предназначены для эксплуатации скважин с внутренними диаметрами эксплутационных колонн соответственно не менее 121,7; 130; 144,3 мм, а установки УЭЦН 6-500-1100 и УЭН 6-700-800 – для скважин диаметром эксплутационной колонны 148,3 мм. В качестве примера приведем три шифра установок: У3ЭЦН 5-130-1200, У2ЭЦНИ 6-350-110 и УЭЦН 5-180-1200, где кроме УЭЦН приняты следующие обозначения: 3 – модификация; 5 – группа насоса; 130 – подача,

м3/сут; 1200 – развиваемый напор, м; И – износостойкое исполнение; К – коррозионностойкое исполнение (остальные обозначения аналогичны).

Факторы, влияющие на снижение наработки подземного оборудования:

15% - Отказ ПЭД и отказ кабельной линии

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ:

1.Разработка нефтяных месторождений / Ю.П. Желтов Ю.П. - М.: «Недра», 1986. - 333с.

2.Лысенко В.Д. ”Разработка нефтяных месторождений. Теория и практика” М.Недра, 1996.-93с

3.Гиматудинов Ш.К. Справочное руководство по проектированию разработки и эксплуатации нефтяных месторождений. Добыча нефти. - М. «Недра», 1983. - 455с.

Читайте также: