Почему нержавейка в ванной ржавеет

Обновлено: 21.05.2024

Какие полки для ванной комнаты не ржавеют?

Здравствуйте. Не будут ржаветь полки для ванной, изготовленные из нержавеющих материалов: стекло, нержавеющая сталь, латунь, алюминий, пластик.

  • Пластиковые полки — бюджетный вариант, но их прочность оставляет желать лучшего. Из-за большой нагрузки они могут разломаться или не выдержат крепления. Подкупает многообразие вариантов дизайна.
  • Полки из нержавеющих металлов — важно проверять качество материала. Такие полки выдержат любые нагрузки, неприхотливы в уходе.
  • Держатели и полки Metaltex с покрытием Polytherm: "эксклюзивное ДВОЙНОЕ ПОКРЫТИЕ: не электризуется, не ржавеет, не токсично, легко моется, не царапается, отталкивает пыль." По отзывам — даже не остаются пятна водного камня! Легко найти в поиске по названию. Производитель дает 3 года гарантии на покрытие.
  • Стеклянные полочки в металлическом профиле — выглядят эстетично, но требуют постоянного ухода (если они будут контактировать с водой).

Лайфхак! Чтобы вновь купленная металлическая полочка для ванной не заржавела, окуните её в корабельный лак. Можно обработать яхтным лаком из пульверизатора. Слой лака сохранит блеск и чистоту надолго.

Как и почему ржавеет нержавеющая сталь

Всем известно словосочетание "нержавеющая сталь". Исходя из названия, логично сделать вывод, что речь идет о специальном виде стали, который из-за своих особенностей совершенно не подвержен коррозии. Но это не так. Название материала содержит определенное лукавство. Нержавеющая сталь тоже может заржаветь, причем иногда довольно быстро. А почему и когда это происходит, расскажем в этой небольшой обзорной заметке.

Прежде всего, коротко разберемся с механизмом защиты, который позволяет данному материалу в большинстве случаев гордо носить свое название - нержавейка или нержавеющая сталь. Как известно, что хотя все стали в качестве основного компонента содержат железо, многие их свойства, как положительные, так и отрицательные, зависят от легирующих добавок других элементов. Так вот, в случае нержавеющей стали основной легирующий компонент - это хром. Сталь может называться нержавейкой, если она содержит 12 и более процентов этого металла. Механизм защитного антикоррозионного действия у нее следующий - содержащийся в стали хром взаимодействует с кислородом воздуха, ну или иными окислителями, содержащимися во внешней среде. В результате этого процесса, образуется оксид хрома Cr2O3. Это соединение распределяется равномерной плотной пленкой по поверхности стального изделия, тем самым защищая его от дальнейшего взаимодействия с окислителем.

Получается прекрасная защита, да еще и обладающая способностью к самовосстановлению. Если пленка оксида хрома нарушается, например, из-за механического воздействия, то новый хром из состава стали быстро снова взаимодействует с кислородом, тем самым восстанавливая защитную пленку. И все кажется прекрасным, если бы не несколько довольно веских НЮАНСОВ!

НЮАНС N1. Сварные швы и нержавеющая сталь

Понятно, что если мы говорим о более-менее значительных металлоконструкциях, а не о бытовых предметах, то конструкция не является литой, а состоит из нескольких частей. Самый простой способ соединения металлов - это, конечно, сварка. В случае нержавеек используется аргонный тип сварки. Что же происходит в этом процессе? Металл разогревается и из обеих частей соединяемых металлических фрагментов образуется сварной шов. В процессе сварки в нем могут измениться концентрации исходных элементов, например, снизится концентрация хрома. Также в шов могут попасть посторонние примеси. Все это приводит к тому, что магический состав нержавейки, обеспечивающий ей самозащиту, нарушается, и при взаимодействии с кислородом не образуется защитный слой оксида. И нержавейка начинает ржаветь, причем зачастую быстрее обычной стали.

НЮАНС N2. Контакт нержавейки и углеродистой стали

Если в процессе строительства, монтажа или эксплуатации допустить прямой контакт между нержавейкой и любой обычной углеродистой сталью, то впоследствии столкнешься с неожиданным последствием. В месте такого контакта на блестящей поверхности нержавеющей стали возникнет бурый налет ржавчины, как будто это вообще не нержавейка. Это не страшно для целостности конструкции, но внешний вид изделия, однозначно портит. Зато и бороться с этим просто – аккуратность и все. Например, чистить изделие из нержавейки железной щеткой совершенно не рекомендуется.

НЮАНС N3. Подземное размещение изделий/конструкций из нержавеющей стали

Любой, даже самый хороший инструмент или материал, имеет граничные условия применения, определяющие его работоспособность. Нержавейка не исключение. Помните, в начале этой заметки, мы говорили о механизме самозащиты нержавеющей стали, благодаря образованию пленки оксида хрома. Так вот, при подземном размещении конструкции из нержавейки этот механизм не работает. В подземном воздухе другое содержание кислорода, и его не хватает, чтобы при необходимости возобновлять защитный оксидный слой. Поэтому нержавейка и начинает корродировать, причем довольно быстро. Часто это происходит путем образования острых дефектов маленького диаметра, похожих на прокол, так называемых питтингов. И если это был, например, некий расходный бак, или, что еще хуже трубопровод, то они могут потерять свою целостность, причем в считанные месяцы. И нержавейка тут совершенно не виновата – она просто не приспособлена к работе в таких условиях.

Вот такие вот основные причины возможной коррозии нержавеющей, а лучше сказать мало-ржавеющей стали. Если хочется узнать об этом явлении и способах защиты от него более подробно, то рекомендуем прочитать этот обзор . Мы же благодарим Вас, за то, что дочитали эту заметку до конца и желаем Вам поменьше коррозии в жизни, причем не только в прямом, но и в любых переносных смыслах!

Коррозия нержавеющей стали или как убрать налёт с нержавейки?

Для начала, обескураживающий факт: нержавеющих сталей в природе не существует. Именно так, ржавеют абсолютно все виды сталей. А нержавейкой в народе называют группу коррозионно-стойких сталей (так они правильно называются в профессиональной среде).

Сталь корродирует (ржавеет) с образованием рыжего налёта на поверхности металла Сталь корродирует (ржавеет) с образованием рыжего налёта на поверхности металла

Коррозия – это разрушение металла в результате воздействия окружающей среды. Окружающая среда может быть как простым атмосферным воздухом, так и концентрированной серной кислотой.

Коррозия бывает электрохимической и химической. Электрохимическая коррозия, это та самая коррозия, которую мы наблюдаем вокруг: ржавление стали, белый налёт на алюминии и зелёный на меди, потемнение нержавейки. С химической коррозией обычный обыватель в быту практически не сталкивается. Обычно она происходит при температуре 500-600 градусов в сухих средах (сухой воздух, углекислый газ) и жидких неэлектролитах. Скорость химической коррозии растет при повышении температуры, ударных нагрузках, воздействии радиации и электромагнитных полей. Её мы рассматривать не будем.

Детали покрытые коррозией теряют свою прочность, ведь коррозия распространяется не только по поверхности, но и в глубь металла - это называется межкристаллическая коррозия. Детали покрытые коррозией теряют свою прочность, ведь коррозия распространяется не только по поверхности, но и в глубь металла - это называется межкристаллическая коррозия.

Если говорить о коррозии совсем простым языком, то ионы солей (кислот) находящиеся в окружающей среде подлетают на поверхность металла, и откусывают его кусочек. А вновь образовавшиеся соединения это и есть тот самый налёт (рыжий, белый, зелёный) на поверхности металла.

Существует несколько способов защиты от электрохимической коррозии:

Нанесение на поверхность деталей электроположительных (иногда благородных) металлов.

Благородные металлы не пропускают ионы солей к стали, но стоит появиться даже небольшой трещине, как коррозия, наоборот, ускоряется в несколько раз. Благородные металлы не пропускают ионы солей к стали, но стоит появиться даже небольшой трещине, как коррозия, наоборот, ускоряется в несколько раз.

Нанесение покрытий из металлов способных пассивизироваться в коррозионной среде, т.е. создавать пленку, которая снижает скорость коррозии в несколько и, даже десятки раз.

Такое покрытие работает даже при нарушении целостности. Такое покрытие работает даже при нарушении целостности.

Третье – использование диэлектрических покрытий, разъединяющих электрическую пару.

Самый яркий пример такого покрытия - окрашивание деталей эмалями. Самый яркий пример такого покрытия - окрашивание деталей эмалями.

Четвертое – введение в состав материала добавок способствующих снижению коррозии (коррозионно-стойкие материалы).

Нержавеющая сталь самое оптимальное, но и самое дорогое решение для защиты деталей. Нержавеющая сталь самое оптимальное, но и самое дорогое решение для защиты деталей.

Для того, чтобы сталь приобрела стойкость к коррозии в её состав должно входить не менее 12% хрома. При этом значении скачкообразно возрастает её способность противостоять коррозии.

Химические соединения хрома, содержащиеся в стали, образуют на поверхности металла плёнку, которая препятствует возникновению коррозии. Такая защита называется пассивной.

Добавление никеля в сталь также способствует увеличению коррозионной стойкости. Соединения никеля отталкивают ионы солей, что повышает стойкость к серной, фосфорной и другим кислотам. Такая защита называется термодинамически активная.

Одна из самых лучших коррозионно-стойких сталей – это 12Х18Н10 (18% хрома и 10% никеля). Такую сталь в народе иногда ошибочно называют пищевой нержавейкой, а иногда – медицинской. На самом деле для хирургических инструментов и посуды применяют значительно менее дорогую сталь с содержанием хрома 13%, никеля в ней нет вообще.

Нержавеющую посуду для кухни изготавливают из стали 08Х13 с содержанием хрома 13% Нержавеющую посуду для кухни изготавливают из стали 08Х13 с содержанием хрома 13%

По стойкости к коррозии стали делят по десяти бальной шкале. Если скорость коррозии:

- менее 0,001 мм в год, то это «Совершенно стойкая сталь» с 1 баллом;

- 0,05-0,1 мм в год – «Стойкая» с 5 баллами;

- более 10 мм - «нестойкая» с 10 баллами.

Для примера стойкость «пищевой нержавейки» 12Х13 составляет: 5 баллов в азотной кислоте 5% концентрации, 10 баллов в 10% серной кислоте, 7 баллов в 15% уксусной кислоте. Именно поэтому, шашлык нужно мариновать в эмалированной, а не нержавеющей посуде – иначе она покроется тёмным налётом.

Так как убрать тёмный налет с нержавеющей посуды?

Если производитель посуды недобросовестный и добавляет в нержавеющую сталь мало хрома, а также, если Ваша посуда служит в достаточно суровых условиях, то возникновение темного (почти черного) налёта, это всего лишь вопрос времени. Этот темный налёт, это окислившиеся соединения хрома. Вообще, соединения хрома очень прочные и химически стойкие. Поэтому, скажем сразу, никакой химией эту черноту не снять. Более того, применение химии наоборот усилит черноту, поскольку химия будет способствовать окислению хрома.

Тёмный налёт у нержавеющей посуды появляется либо от некачественной стали, либо от неправильного использования кухонной утвари. Тёмный налёт у нержавеющей посуды появляется либо от некачественной стали, либо от неправильного использования кухонной утвари.

Так что же делать, спросите Вы? Ответа три: первый – это снять слой металла с налётом механическим путём – мелкой шкуркой, шлифовальной пастой (например, паста ГОИ), шлифовальной машинкой с войлочным кругом. Обычно, для этого нужны крепкие руки, растущие из нужного места. Второй способ – оставить всё как есть, этот налёт не является ядовитым и влияет только на внешний вид. Ну, и третий вариант, это заменить посуду на другую, более дорогую, с более качественной нержавеющей сталью.

Если Вы только купили такую посуду и хотите сберечь её внешний вид, то Вам нужно следовать нескольким правилам: не чистить нержавеющую посуду химией и кислотами (включая лимонную). Второе, подсаливать блюда в самом конце, снижение концентрации и времени воздействия солей при более высоких температурах благотворно влияет на стойкость металла. Не мариновать и не варить варенье в этой кастрюле.

Надеюсь, эта статья дала вам ответы на все Ваши вопросы. Хорошей посуды и удачного настроения!

Статья про коррозию нержавеющей стали

Почему хорошая нержавеющая сталь становится покрытой ржавчиной

Вы только что установили новую, полностью нержавеющую систему циркуляции воды – чистую, серебристую и красивую. Вы запустили свой технологический процесс, будучи уверенными, в том, что проблемы контаминации полностью решены. Но, по истечении нескольких месяцев, проба воды содержит бурую, желеобразную субстанцию в отобранной пробе. Вы открываете систему и обнаруживаете, что резервуар содержит внутри по всей поверхности бурые отложения. Вы открываете насос и обнаруживаете, что лопасти также с красным налетом, спиральная камера и выпускные отверстия также с красным налетом. Вы заглядываете в теплообменник и видите еще больше этого цвета. Золотники клапанов имеют все тот же буроватый налет у отверстий подачи. Что идет не так? Почему хорошая нержавеющая сталь поржавела?

Чтобы понять, что происходит, необходимо еще раз проанализировать основные сведения о нержавеющей стали и процессе коррозии.

Что такое нержавеющая сталь? Нержавеющая сталь является железом с добавкой хрома, чтобы придать железу свойство сопротивления окислению. Другие вещества добавляются для придания особых свойств или свойств нержавения для особых сред использования. Главное помнить, что нержавеющая сталь в основе своей представляет железо (около 70% для типа 304L и 69% для типа 316L).

Как корродирует нержавеющая сталь? Есть пять основных процесса, приводящих к коррозии нержавеющей стали: Однородная коррозия; Межкристаллитная коррозия; Гальваническая или обычная коррозия, включающая изъязвление и коррозию в трещинах; Коррозия в трещинах от механического воздействия; а также Коррозию, вызванную микробиологическими факторами (МИК). В дополнение, ряд механических процессов усиливает пять основных процессов образования ржавчины. Эти процессы включают эрозию, порообразование, истирание ( отслаивание), образование коррозионных элементов, а также изменения поверхности под термическим или электрическим воздействием. Все эти процессы имеют одну общую черту: слой пассивации оксидом хрома нарушается, и незащищенная железная составляющая окисляется. Для понимания явления ржавления рассмотрим только два процесса: Однородная или обычная коррозия и Изъязвляющая коррозия вместе с эрозией, изъязвлением и образованием коррозионных элементов.

Где возникает коррозия Коррозия может возникать в чистой воде, сверхчистой воде, паре, очищенной питьевой воде или неочищенной технической воде. На сегодняшний день выявлено пять процессов.

1. Контаминация железом Соединение нержавеющей стали с углеродистой сталью приведет к вытяжке железа на поверхности, которые будут подвержены ржавчине при пуске в эксплуатацию. Приваривание временных крепежей из углеродистой стали к нержавеющей стали с последующей шлифовкой швов приводит к истиранию хромированного слоя, который будет корродировать при эксплуатации системы. Использование проволочных щеток из углеродистой стали или шлифовальных кругов, загрязненных углеродистой сталью, приведут к образованию ржавчины. Механизм образования ржавчины весьма прост: ЖЕЛЕЗО + ВОДА + РЖАВЧИНА, Лучшее средство предупреждения образования ржавчины диктуется здравым смыслом: всегда покрывать все поверхности из углеродистого железа деревом, пластмассой или картоном во избежание контакта с нержавеющей сталью; никогда не приваривать углеродистую сталь к нержавеющей стали; всегда использовать щетки из исключительно нержавеющей стали и шлифовальные круги « предназначенные исключительно для нержавеющей стали»; всегда производить химическую пассивацию азотной или лимонной кислотой перед вводом в эксплуатацию. Ржавчина может вызвать изъязвление или точечное образование ржавчины на нержавеющей стали под воздействием окислителя, поэтому она должна быть удалена. Поэтому необходима пассивация, которая не только увеличивает коэффициент наличия хрома (по отношению к железу на поверхности), но и предотвращает любую контаминацию железом. Используются два основных технических регламента для чистки и пассивации: «ASTM A 380 «Стандартные условия чистки,
2
удаления накипи и пассивации частей, оборудования и систем из нержавеющей стали»» и «ASTM A 967 «Стандартные условия обработки химической пассивации частей из нержавеющей стали». Как обработанная, так и не обработанная вода могут приводить к ржавлению (даже умягченная вода). Причиной является содержание воды – в первую очередь, бикарбонаты железа. Умягчение не удаляет анионы, такие как карбонаты, бикарбонаты, сульфаты, хлориды и т.п., а только обеспечивает обмен с катионами, такими как кальций и магний с содой и калием. В отличие от карбоната железа, бикарбонат железа полностью растворим, но легко окисляется до карбоната железа. Карбонат железа нерастворим и имеет буро-коричневый цвет. Он растворяется в сильных кислотах. Обработанная или питьевая ( пригодная для питья) вода обычно очищается для удаления взвешенных твердых частиц, фильтруется для удаления мельчайших частиц и, уничтоженных хлором или диоксидом хлора, бактерий. Данный процесс имеет незначительные последствия или не имеет последствий для ионов бикарбоната постольку, поскольку он уравнивается низким содержанием углеродистого железа в трубопроводе и содержанием кислорода. При попадании воды во внутреннюю среду, такую как нержавеющая сталь или фарфор, бикарбонаты начинают окисляться: 2Fe(HCO3)2 + Ca(HCO3)2 + Cl ® 2Fe(OH)3_ + CaCl2 + 4CO2 2Fe(OH)3 ® Fe203 + H2 Окись железа Fe203 становится бурым, и, когда это происходит, это называется появлением красного железняка. Сварной шов начинает корродировать, в связи с бурыми отложениями, по причине образования коррозионных элементов под воздействием ржавчины и хлорида кальция. В необработанной воде происходит подобная реакция, за исключением присутствия хлора, и кислорода, растворенного в воде, являющегося активным реагентом. 6Fe(HCO3)2 O2®2Fe2(CO)3_ +2Fe (OH)2 + 4H2O Карбонат железа начинает присутствовать и гидроксид железа образовывает желеобразную субстанцию, которая выявляется как окислы железа. Присутствует незначительное отклонение цвета, т.к. гидроксид железа желтого цвета. В больших резервуарах наиболее бурые отложения обычно сверху и уменьшаются ко дну. Весьма обычно наблюдать относительно чистое состояние большого резервуара.

2. Чистая и высоко очищенная вода Чистая и высоко очищенная вода обычно используется в отраслях промышленности, где результат недостаточной очищенности может иметь существенные последствия: в таких как производство фармацевтической продукции или полупроводников. В фармацевтике она называется ВДИ или вода для инъекций. Типичная обработка предусматривает фильтрацию, умягчение, катионообмен и ионообмен, обратный осмос, обработку ультрафиолетом и, при необходимости, ионизацию. Процесс дистилляции может использоваться в качестве окончательной очистки. В результате получаем воду с чрезвычайно низкой проводимостью. Нержавеющая сталь типа 316L - обычный материал конструкции оборудования. Некоторые из этих комплексов остаются чистыми, но некоторые другие – ржавеют. Даже системы, которые прошли электрополировку, имеющие шероховатость поверхности менее 10 микродюймов (<10 m-in Ra) могут корродировать. В работе с горячим высоко чистым паром такие системы могут становиться черными, иногда, - блестяще черными, иногда, - черными с эффектом порошкообразного покрытия. Мы получили отдельные участки нержавеющего трубопровода, пораженного ржавчиной, из многих различных систем подачи чистой воды и пара. Слои ржавчины были исследованы рентгеноскопией(XPS), энергораспыляющей спектроскопией (EDS) и растрово-электронной микроскопией (SEM). Растрово-электронная микроскопия позволила произвести визуальное исследование поверхности, энергораспыляющая спектроскопия позволила по очкам проанализировать аномалии поверхностей, а рентгеноскопия позволила произвести послойный анализ ржавчины и выявление особенностей молекулярного строения. Подробные отчеты исследований приводятся в 1,2. Данное исследование позволило классифицировать процесс образования ржавчины в чистой и высоко чистой воде и паре по классам I, II и III.

Ржавчина класса II образуется в результате реакции из двух стадий: первая представлет собой растворение пассивационного слоя оксида хрома, а вторая состоит в окислении железа в материале: Cr2O3 + 10Cl-+ 2H2O ® 2CrCl3 + 4 HClO 2Fe + 3ClO- ® Fe2O3 + 3Cl- Данная реакция самоподдерживающаяся посредством взаимодействия хлора с хромом для образования гипохлористой кислоты в качестве побочного продукта, а гипохлористая кислота окисляет железо и образует еще больше хлорида. Увеличение содержания молибдена в нержавеющей стали увеличивает ее стойкость к воздействию хлорида. Подобным образом, замена железа в нержавеющей стали никелем улучшает ее стойкость к коррозии. Прогрессия сплавов с увеличивающейся стойкостью к воздействию хлорида: тип 304L (наименьшая), тип 316L, тип 317L, тип 304LМ, Сплав 625, Сплавы С-276 и С 22 (наивысшая). При любом контакте нержавеющей стали с хлорангидридом возникает опасность образования ржавчины. Жесткость рН >7 имеет обеспечивает меньшую возможность образования ржавчины, нежели жесткость рН < 7. Даже кратковременное воздействие хлорангидрида может стать отправной стадией ржавления, в особенности, если поверхность нержавеющей стали шероховатая. Механически полированные поверхности хуже, нежели электрополированные поверхности, так как при полировальных операциях остаются микроскопические изъязвления. Электрополировка удаляет эти изъязвления и производит пассивирующий слой с более высоким соотношением Cr: Fe. Изъязвления образуют элементы коррозии, где могут концентрироваться растворы хлорангидрида и продолжать реагировать, даже если система в целом оснащена промывкой с высокой жесткостью
4
воды. Использование сильнодействующих ПАВ в растворе промывки будет способствовать удалению хлорида.

5. Ржавчина класса III Данная ржавчина черная, а не бурая и образуется в присутствии пара высокой температуры. При первоначальном образовании она синяя, а затем становится черной, поскольку она нарастает до предельной толщины, предупреждающей дальнейшее проникание кислорода. Она может обнаруживаться в паровых системах высокой чистоты, работающих при высоких температурах. На электрополированных поверхностях нержавеющей стали такая ржавчина блестяще черная, а на непассивированных механически полированных поверхностях она может быть матово черной. Ржавчина данного класса на электрополированной поверхности, образует октаэдрические кристаллы, полностью покрывающие поверхность. Анализ с использованием рентгеновской фотоэлектронной спектроскопии показывает, что данный слой является полуторной окисью железа, обычно именуемой магнитным железняком. Он не удалется обычной чисткой, но может быть удален химическими средствами или шлифованием. Если ржавчина является блестяще черной, то ее можно оставить, так как она достаточно стабильна. Матовое покрытие слоем ржавчины может быть удалено и может потребовать чистки. После химической чистки, обычно с использованием горячей щавелевой кислоты, поверхность должна быть химически пассивирована. При последующем пуске системы в эксплуатацию она вновь может почернеть, но, хотелось бы надеяться, без образования матового ржавого покрытия. Данный тип ржавчины является продуктом реакции пара при высокой температуре с железом в нержавеющей стали, которая приводит к образованию магнитного железняка. Реакция происходит в два этапа: 3Fe0 + 4H2O ® FeO + Fe2)3 + 4H2 FeO + Fe2O3 ® Fe3O4 Часть оксида железа может замещаться оксидом никеля, но полуторная окись железа будет определять цвет покрытия.

Выводы Ржавление нержавеющей стали является результатом образования оксида, гидроксида или карбоната железа от воздействия внешних источников или разрушения пассивирующего слоя. Варианты цвета зависят от типа оксида, гидроксида или карбоната и особенностей воды, участвующей в образовании молекул. Цвет варьируется от оранжевого до бурого и черного. Ярко бурые образования на поверхности нержавеющей стали обычно свидетельствуют о контаминации поверхности соприкасающейся углеродистой сталью, сваркой углеродистой стали с нержавеющей, воздействием с насыщенными железом шлифовальными кругами или металлическими щетками. В неподготовленной воде изменение цвета может быть результатом окисления бикарбоната железа в воде, образующего неупорядоченные бурые отложения. Такое окисление может быть результатом добавления хлора или растворенного кислорода. В системах воды высокой очистки ржавчина может быть трех типов: Класса I бурого цвета - от внешних источников (обычно – от эрозии или изъязвления поверхностей насосов); Класса II бурого цвета – от хлорида, вызывающего коррозию поверхностей из нержавеющей стали; Класса III бурого, синего или черного цвета – обнаруживается в системах с паром высокой температуры.

Почему ржавеет нержавеющая сталь? Полное руководство

Почему ржавеет нержавеющая сталь

Нержавеющая сталь - довольно популярный вид металла с широким спектром применения. Этот материал используется для производства медицинских устройств, автомобильных деталей, ювелирных изделий и кухонной утвари, а также для многих других целей. Одна из особенностей нержавеющей стали - то, что она не ржавеет. Это правда?

Однако, если вы когда-либо владели или использовали изделие из нержавеющей стали, вполне вероятно, что вы просто заметили ржавчину (коррозию), и вы даже задаетесь вопросом, может ли его название быть неправильным. Почему ржавеет нержавеющая сталь? Читайте дальше, когда мы узнаем, как и почему нержавеющая сталь может ржаветь.

Наука о ржавлении нержавеющей стали

Как и в случае с другими металлами, за эффектом ржавчины металла из нержавеющей стали всегда стоит наука.

Чтобы понять, что вызывает ржавчину хромовой стали, в первую очередь важно иметь четкое понимание науки, которая обычно предотвращает ржавчину.

Сталь - это продукт железа и углерода. Нержавеющая сталь содержит железо, углерод и от 12 до 30% хрома.

Нержавеющая сталь включает в себя другие элементы, такие как никель и марганец, но хром является ключевым элементом, который делает ее устойчивой к ржавчине.

Когда поверхность обычной стали подвергается воздействию кислорода, она всегда образует оксид (Fe2O3), который имеет популярный цвет красной ржавчины.

Оксид железа не способен образовывать бесконечный слой на стали, потому что молекула оксида занимает большую площадь, чем лежащие в основе атомы железа. В конечном итоге он уходит, оставляя незащищенной необработанную сталь, что затем запускает неизбежный цикл ржавления.

Итак, как предотвратить ржавление?

Когда нержавеющая сталь подвергается воздействию кислорода, на поверхности образуется слой оксида хрома. Это происходит потому, что хром имеет очень сильное сродство к кислороду.

Оксид хрома в большинстве случаев представляет собой очень тонкий слой, который не отслаивается. Это предотвращает дальнейшее окисление нержавеющей стали.

Однако, когда хромовая сталь поцарапана и, следовательно, слой оксида хрома удален, новый слой оксида хрома будет формировать и защищать оставшуюся хромистую сталь под ним.

Пока присутствует достаточное количество хрома, слой оксида хрома будет обеспечивать адекватную защиту нержавеющей стали и предотвращать ее ржавление.

Причины коррозии нержавеющей стали

Почему ржавеет нержавеющая сталь

Теперь совершенно ясно, что нержавеющая сталь может ржаветь. Однако, если вы какое-то время использовали этот материал, вы, должно быть, заметили, что некоторые стали ржавеют слишком рано, в то время как другие могут служить вам долго, не ржавея. Что могло быть причиной этого?

Основная причина ржавчины нержавеющей стали - это коррозия. Коррозия избавляет от хрома, поэтому необработанная сталь подвергается воздействию различных элементов, которые могут ускорить ржавление.

Есть разные типы коррозии, которые приводят к ржавчине. Давайте посмотрим на каждый тип.

Щелевая коррозия: Щелевая коррозия возникает, когда поверхность нержавеющей стали лишена кислорода, например, при стыке или трещинах. Небольшая щель, созданная для устранения допуска, станет эпицентром ржавчины. В этом промежутке щели будет скапливаться вода или другая жидкость.

Кислород в жидкости со временем уменьшается, и это приведет к накоплению хлоридов.

Геометрию часто изменяют, чтобы удалить щели или способ скопления жидкости, но иногда решение также может заключаться в использовании другого металла, такого как титан, который сопротивляется хлоридам.

Общая коррозия

Этот тип коррозии происходит при минимальном вмешательстве внешних факторов. Это произойдет автоматически, когда pH металла из нержавеющей стали упадет ниже 1.

Межгранулярный приступ

Гранулы нержавеющей стали могут подвергаться воздействию различных элементов, например тепла. Высокая температура более 450 градусов по Цельсию может вызвать распад частиц углерода. При этом поверхность стали подвергается воздействию различных элементов.

Биметаллическая коррозия

Биметаллическая коррозия возникает, когда два разных металла с общим электролитом вступают в прямой контакт друг с другом. Эту коррозию иногда называют гальванической коррозией.

Произойдет окислительно-восстановительная реакция, что означает просто химические реакции восстановления и окисления. Результатом станут клетки, создающие электрический потенциал на поверхности металла.

Коррозия под напряжением

Внешнее напряжение, оказываемое на нержавеющую сталь, может вызвать коррозию в той или иной форме. Это, в свою очередь, подвергнет сталь воздействию различных элементов ржавчины.

Загрязнение при производстве и очистке, сварке

Мелкие частицы простой стали врезаются в поверхность и вызывают появление пятен на поверхности нержавеющей стали.

Если деталь обрабатывается на станке с ЧПУ, который также обрабатывает стальные детали, мелкие частицы стали могут в конечном итоге загрязнить охлаждающую жидкость. Обрабатываемая деталь из нержавеющей стали навсегда останется в поверхности.

Точно так же полировальные круги, которые используются для стальных деталей, а не для нержавеющих, могут аналогичным образом включать стальные частицы. Это касается других стальных инструментов, например гаечных ключей.

Именно эти инородные частицы, не являющиеся нержавеющими, подвергаются ржавчине и вызывают появление пятен на поверхности стали. Осмотрите зону хранения для механической обработки и убедитесь, что они не вызывают перекрестного загрязнения ваших нержавеющих деталей.

Как уберечь нержавеющую сталь от ржавчины

Будь то для небольших применений, таких как бытовая техника, или для промышленного применения, вы должны стремиться защитить нержавеющую сталь от ржавчины. Но как это сделать?

Есть несколько простых, но эффективных способов защиты нержавеющей стали от ржавчины. Вот некоторые из этих советов;

Чистите с помощью неабразивных инструментов: когда дело доходит до чистки деталей из нержавеющей стали, используйте мягкие предметы, например ткань. Они не разъедают поверхность металла, подвергая его коррозии.

Используйте чистящие средства, не содержащие хлора: это могут быть щелочные или щелочные хлорированные чистящие средства, поскольку они не разъедают сталь. Избегайте чистящих средств, содержащих четвертичные соли.

При чистке нержавеющей стали всегда используйте очищенную воду.

Никогда не используйте соляную кислоту для обработки стали.

Часто очищайте материалы изделий из нержавеющей стали, чтобы избавиться от стойких пятен.

Как удалить ржавчину с нержавеющей стали?

Как удалить ржавчину с нержавеющей стали?

Допустим, часть вашей нержавеющей стали уже заржавела или покрылась чешуей ржавчины. Могу ли я вернуть ему первоначальный вид?

Да, можно избавиться от ржавчины и сделать нержавеющую сталь снова блестящей. Вот несколько способов достижения этой цели:

Удаление загрязнений: Если ржавчина уже появилась, вы можете начать с физического удаления гранул перекрестного загрязнения. Также следует удалить тепловые оттенки, образовавшиеся вокруг пораженных участков.

Репассивация заржавевшей поверхности: Этот метод предполагает самостоятельное восстановление пораженной части. Пораженная часть защищена от катализаторов ржавчины, чтобы она могла восстановить свой первоначальный вид.

Использование пищевой соды: Этот метод идеально подходит для бытовой техники из нержавеющей стали. Сделайте раствор соды, затем протрите пораженные участки стали мягким полотенцем.

Используйте фосфорную кислоту

Вы также можете использовать фосфорную кислоту, чтобы избавиться от ржавчины на металле из нержавеющей стали. Основное преимущество этого чистящего раствора заключается в том, что он растворяет оксид железа, не вызывая коррозии на поверхности материала из нержавеющей стали.

Фосфорная кислота растворяет оксид железа с образованием фосфата железа и воды в качестве побочного продукта. Новый раствор легко удаляется со стали.

Хорошая новость заключается в том, что фосфорную кислоту легко приобрести в ближайшем магазине. Он также не агрессивен, поэтому не вызывает коррозии и не оставляет пятен на поверхности из нержавеющей стали.

Затем вы можете промыть поверхность дистиллированной или деионизированной водой.

Уксусная кислота хорошо работает, когда ее используют для очистки больших поверхностей, пораженных ржавчиной.

По окончании уборки также следует промыть поверхность дистиллированной или деионизированной водой.

Как удалить ржавчину с нержавеющей стали?

Меры предосторожности при удалении ржавчины из нержавеющей стали

Какой бы метод удаления ржавчины из нержавеющей стали вы ни использовали, необходимо соблюдать определенные меры предосторожности. Они включают;

-Избегайте использования стальной ваты и стальных щеток.

-Не используйте чистящие растворы, содержащие хлор, бром, йод и фтор.

-Держите сталь от воды для защиты в будущем.

У вас есть какие-либо другие вопросы о том, как предотвратить ржавление или удаление ржавчины на вашей стали, поговорите со специалистами по нержавеющей стали. Мы в Рош Индастри готовы оказать любую помощь.

Читать далее

Рошиндустри специализируется на высоком качестве Быстрое прототипирование, быстрый мелкосерийное производство и крупносерийное производство. Услуги быстрого прототипа, которые мы предоставляем, - это профессиональный инжиниринг, Обработка CNC включая фрезерные и токарные станки с ЧПУ, Изготовление листового металла или прототипирование листового металла, Умрите литье, металлическое тиснение, Вакуумное литье, 3D печать, SLA, Изготовление прототипов методом экструзии пластика и алюминия, Быстрая оснастка, Быстрое литье под давлением, Обработка поверхности закончить услуги и другие услуги быстрого прототипирования Китая, пожалуйста свяжитесь с нами прямо сейчас.

Почему нержавейка ржавеет?

Нержавеющие стали подвержены коррозии или по простому сказать ржавеют по нескольким очевидным причинам:

Химический состав стали: противодействует ржавчине наличие хрома в стали и чем его больше, тем более сталь противостоит коррозии. Существуют сплавы с различным содержанием хрома, в зависимоти от того, где будет использоваться материал

Условия в которых, так сказать, "работает" материал: есть типы нержавеющей стали, которые могут использоваться только в теплых помещениях и долго прослужить. Есть тыпы сталей, которые быстро ржавеют из-за постоянного контакта воды и воздуха(например баки, в которых постоянно меняется уровень воды)

Почему ржавеет нержавейка?

Иногда приходится слышать от заказчиков пожелание, чтобы при изготовлении изделия из нержавейки под зака з была использована сталь, которая не будет ржаветь. Иногда просят, чтобы была "не китайская". От чего зависит будет ли ржаветь нержавейка? Почему вообще это происходит?

По сути могут быть две причины. Первая - условия эксплуатации в агрессивной среде. И вторая - дефекты материала.

Рассмотрим эти явления подробнее.

точечная коррозия вызванная хлорсодержащими моющими веществами

Не все виды нержавеющей стали предназначены для эксплуатации в агрессивных средах. Например на пищевых производствах при технологических процессах используются хлорсодержащие моющие средства и там могут должна применяться нержавеющая сталь с повышенной коррозионной устойчивостью. То же самое относится к условиям эксплуатации в морской воде. По этой причине оборудование, например, из AISI 304 может попросту придти в негодность. Для агрессивных сред имеет смысл использовать AISI 316 или дуплексные виды нержавеющей стали, такие как Ferralium SD40, SAF 2205 или Zeron 100.

Вторая причина более распространена - ржавчина может возникнуть на поверхности металла в следствии механических повреждений или термической обработки(вызванные сваркой). Это так называемая точечная коррозия. Этот вид коррозии может начаться в металле где присутствуют посторонние примеси, например такие как сера.

Гладкая поверхность нержавеющего металла менее подвержена точечной коррозии чем шероховатая. На графике приведенном ниже показана зависимость коррозионной устойчивости от шероховатости поверхности. Эксперимент проводился с коррозионноустойчивой маркой нержавеющей стали AISI 316 в хлорсодержащей среде. На графике видно, что после того как шероховатость поверхности превышает Ra > 0,5 мкм, устойчивость к коррозии резко снижается. Таким образом, шероховатая поверхность AISI 316 делает ее коррозионную устойчивость даже хуже, чем полированная поверхность AISI 304.

зависимость коррозии от шероховатости поверхности

Следы ржавчины могут появиться даже в местах куда попала раскаленная окалина. Это происходит потому, что при температуре сварки выгорают легирующие элементы, в первую очередь хром. На металле в местах сварки образуются "следы побежалости"(иногда называют следы термического воздействия). В этих местах нержавейка неизбежно начнет ржаветь. Слой ржавчины, однако, может остаться только на поверхности металла, там где нет оксидной пленки, которая образуется благодаря хрому. То есть в глубь ржавчина развиваться не будет. Но выглядят следы побежалости и тем более ржавчина очень не эстетично. Чтобы этого не произошло сварочный шов обрабатывают специальными эмульсиями, травильными пастами или при помощи абразивных материалов. При очистке шва от железных окислов(окалины окисей) травильными пастами, следует работать в защитных очках и наносить только на остывший металл, поскольку в них может содержатся плавиковая кислота. После очистки зону сварного шва необходимо подвергнуть операции пассивации. Пассивация металла - это процесс обработки поверхности с целю образования на ней слоев соединений препятствующих коррозии. То есть недостаточно только очистить сварной шов от продуктов сварки, необходимо так же восстановить защитный слой. Для этого так же существует разнообразная химия: гели, пасты. Иногда используют для пассивации нержавейки азотную или лимонную кислоту.

электро-химическая пассивация нержавеки

Существуют инновационные методы очистки и пассивации. Например метод электро-химической пассивации нержавеющего металла. Причем этот процесс осуществляется без применения продуктов травления, которые очень вредны для здоровья и окружающей среды. Компания " Строй Металл " использует оборудование компании Surfox. Благодаря этому производительность и качество работ позволяют нам выполнять заказы по изготовлению изделий из зеркальной нержавейки для элитных магазинов одежды, ресторанов, элементов интерьера.

Читайте также: