Определить избыточное давление в трубе

Обновлено: 07.07.2024

ТЕМА 5. ГИДРАВЛИЧЕСКИЙ УДАР В ТРУБОПРОВОДАХ

Гидравлическим ударом называется резкое изменение давления в напорном трубопроводе вследствие внезапного изменения скорости движения жидкости в нем по причине полного или частичного закрытия задвижки, включения или выключения насоса.

Теоретическое обоснование явления гидравлического удара в трубах и разработка метода его расчета принадлежат крупнейшему русскому гидромеханику Н.Е. Жуковскому.

При мгновенном закрытии крана непосредственно возле задвижки образуется область возмущения А вследствие перехода кинетической энергии остановившихся слоев жидкости в потенциальную энергию, которая вызывает расширение стенок трубопровода и сжатие жидкости (рис. 5.1). Таким образом, с учетом деформации стенок трубопровода и сжимаемости жидкости, явление гидравлического удара можно назвать упругим ударом, сопровождающимся волновым характером изменения давления вдоль трубы (рис. 5.2).

А – область возмущения; ро – начальное давление в трубе;
- ударное повышение давления Рисунок 5.1 – К понятию гидравлического удара
Рисунок 5.2 – График изменения давления во времени при гидравлическом ударе

Указанная упругая деформация жидкости и трубы, распространяющаяся в направлении от крана к баку, происходит с очень большой скоростью , называемой скоростью ударной волны. Величину определяют по формуле Н.Е. Жуковского, м/с:


(5.1)


где – модули упругости соответственно жидкости и материала трубопровода (см. Приложение 7), Па;

d – диаметр потока (внутренний диаметр трубы), мм;


– толщина стенки трубы, мм.


Явление гидравлического удара характеризуется еще одним основным параметром , называемым ударным повышением давления. Его величина зависит от вида гидравлического удара:

- при полном гидравлическом ударе:


(5.2)


– средняя скорость движения жидкости до закрытия задвижки, м/с;


– скорость распространения ударной волны, м/с.

Этот вид удара имеет место при выполнении неравенства:


(5.3)

(5.4)

где l – длина трубопровода, равная расстоянию от задвижки до бака;

ауд – скорость распространения ударной волны;

Т – фаза гидравлического удара, с;

- при неполном гидравлическом ударе:


(5.5)

Вследствие резкого повышения давления при гидроударе могут возникать осложнения в нормальной работе трубопровода вплоть до разрыва его стенок и аварий оборудования насосных станций. Поэтому для предотвращения нежелательных последствий гидроудара необходимо соблюдение неравенства:


(5.6)


где – допустимое для материала напряжение на разрыв, Па;


– величина расчетного значения напряжения в стенках


(5.7)


где – полное избыточное давление в трубопроводе, Па;


d и – соответственно внутренний диаметр и толщина стенок


– соответственно начальное и атмосферное давление, Па.

Таким образом, гидроудар в трубе является нежелательным процессом, который надо всячески избегать и не допускать. И если нельзя полностью исключить его, то по мере возможностей избегать ситуацию прямого (полного) гидроудара. Как видно из анализа формулы (5.5) это можно сделать за счет увеличения времени закрытия крана tзакр и уменьшения длины рассматриваемого напорного трубопровода l.

Пример 15

Рисунок 5.3 – К примеру 15

Поскольку трубопровод является простым, начальную скорость в трубе найдем по формуле



где по условию задачи


располагаемый напор


Находим скорость распространения ударной волны


Ударное повышение давления в трубе



Ответ: = 3,44 МПа

Пример 16

По стальному трубопроводу длиной l = 2 км, диаметром d = 300 мм и толщиной стенки = 10 мм подается вода. Определить силу давления на запорный диск задвижки, установленной в конце трубы, если время ее закрытия tзакр = 3 с, а объемный расход = 0,1 м 3 /с; диаметр запорного диска D = 0,35 м.


Дано: l = 2 км = 2000 м; d = 300 мм; = 10 мм;


tзакр = 3 с; = 0,1 м 3 /с; D = 0,35 м;

жидкость – вода; материал стенок – сталь


Найти: F и .

Определяем среднюю скорость в трубе до закрытия задвижки


Находим скорость распространения ударной волны



Вычисляем фазу гидравлического удара:


Так как выполняется условие tзакр < Т, то имеет место полный гидравлический удар.

Повышение давления при полном гидроударе вычисляем по формуле Н.Е. Жуковского:


.

Находим величину силы давления, действующей на запорный диск:


Определяем напряжение в стенке трубы



Допустимое напряжение на разрыв стали, из которой изготовлен трубопровод Неравенство (5.6) выполнено.


Ответ: F = 1,7 · 10 5 = 26,7 МПа.

Определить повышение давления и напряжение в стенке трубы перед затвором при резком закрытии последнего в течение времени tзакр . Исходные данные к задаче приведены в табл. 91.

Задача 92. Определить ударное и полное значение избыточного давления в трубопроводе при внезапном закрытии задвижки. Исходные данные к задаче приведены в табл. 92.

Задача 93. Определить начальную скорость u0 движения жидкости в трубопроводе с задвижкой, в которой имеет место гидравлический удар. Установить также вид гидравлического удара. Исходные данные к задаче приведены в табл. 93.

Задача 94. Определить ударное повышение давления и напряжение в стенке трубы s перед задвижкой при резком ее закрытии. Исходные данные к задаче приведены в табл. 94.

Задача 95. Какой вид гидравлического удара будет происходить в трубопроводе, оснащенного задвижкой, при резком ее закрытии? Чему равно ударное повышение давления? Исходные данные к задаче приведены в табл. 95.

Самостоятельный гидравлический расчет трубопровода

Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя. Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.


Многолетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:

  • минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
  • круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
  • форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
  • процесс изготовления труб круглой формы относительно простой и доступный.

Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.

Основными параметрами, характеризующими трубопровод являются:

  • условный (номинальный) диаметр – DN;
  • давление номинальное – PN;
  • рабочее допустимое (избыточное) давление;
  • материал трубопровода, линейное расширение, тепловое линейное расширение;
  • физико-химические свойства рабочей среды;
  • комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
  • изоляционные материалы трубопровода.


Условный диаметр (проход) трубопровода (DN) – это условная безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).

Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.

Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода. Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.

Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.

Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.

Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.

Основные положения гидравлического расчета

Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.

Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний, по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:


Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:

  • ламинарный поток (Re<2300), при котором носитель-жидкость движется тонкими слоями, практически не смешивающимися друг с другом;
  • переходный режим (2300<Re<4000), который характеризуется нестабильной структурой потока, когда отдельные слои жидкости перемешиваются;
  • турбулентный поток (Re>4000) – устойчивый режим, при котором в каждой отдельной точке потока происходит изменение его направления и скорости, что в итоге приводит к выравниванию скорости движения потока по объему трубы.

Критерий Рейнольдса зависит от напора, с которым насос перекачивает жидкость, вязкости носителя при рабочей температуре и геометрических размеров используемой трубы (d, длина). Данный критерий является параметром подобия для течения жидкости,поэтому, используя его, можно осуществлять моделирование реального технологического процесса в уменьшенном масштабе, что удобно при проведении испытаний и экспериментов.

Проводя расчеты и вычисления по уравнениям, часть заданных неизвестных величин можно взять из специальных справочных источников. Профессор, доктор технических наук Ф. А. Шевелев разработал ряд таблиц для проведения точного расчета пропускной способности трубы. Таблицы включают значения параметров, характеризующих как сам трубопровод (размеры, материалы), так и их взаимосвязь с физико-химическими свойствами носителя. Кроме того, в литературе приводится таблица приближенных значений скоростей движения потока жидкости, пара,газа в трубе различного сечения.

Подбор оптимального диаметра трубопровода

Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.

Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:


При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).


Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:


Расчет падения напора и гидравлического сопротивления

Полные потери напора жидкости включают в себя потери на преодоление потоком всех препятствий: наличие насосов, дюкеров, вентилей, колен, отводов, перепадов уровня при течении потока по трубопроводу, расположенному под углом и т.д. Учитываются потери на местные сопротивления, обусловленные свойствами используемых материалов.

Другим важным фактором, влияющим на потери напора, является трение движущегося потока о стенки трубопровода, которое характеризуется коэффициентом гидравлического сопротивления.

Значение коэффициента гидравлического сопротивления λзависит от режима движения потока и шероховатости материала стенок трубопровода. Под шероховатостью понимают дефекты и неровности внутренней поверхности трубы. Она может быть абсолютной и относительной. Шероховатость различна по форме и неравномерна по площади поверхности трубы. Поэтому в расчетах используется понятие усредненной шероховатости с поправочным коэффициентом (k1). Данная характеристика для конкретного трубопровода зависит от материала, продолжительности его эксплуатации, наличия различных коррозионных дефектов и других причин. Рассмотренные выше величины являются справочными.

Количественная связь между коэффициентом трения, числом Рейнольдса и шероховатостью определяется диаграммой Муди.

Для вычисления коэффициента трения турбулентного движения потока также используется уравнение Коулбрука-Уайта, с использованием которого возможно наглядное построение графических зависимостей, по которым определяется коэффициент трения:


В расчётах используются и другие уравнения приблизительного расчета потерь напора на трение. Одним из наиболее удобных и часто используемых в этом случае считается формула Дарси-Вейсбаха. Потери напора на трение рассматриваются как функция скорости жидкости от сопротивления трубы движению жидкости, выражаемой через значение шероховатости поверхности стенок трубы:


Потери давления по причине трения для воды рассчитывают по формуле Хазена — Вильямса:


Расчет потерь давления

Рабочее давление в трубопроводе – это на большее избыточное давление, при котором обеспечивается заданный режим технологического процесса. Минимальное и максимальное значения давления, а также физико-химические свойства рабочей среды, являются определяющими параметрами при расчёте расстояния между насосами, перекачивающими носитель, и производственной мощности.

Расчет потерь на падение давления в трубопроводе осуществляют по уравнению:


Примеры задач гидравлического расчета трубопровода с решениями

Задача 1

В аппарат с давлением 2,2 бар по горизонтальному трубопроводу с эффективным диаметром 24 мм из открытого хранилища насосом перекачивается вода. Расстояние до аппарата составляет 32 м. Расход жидкости задан – 80 м 3 /час. Суммарный напор составляет 20 м. Принятый коэффициент трения равен 0,028.

Рассчитайте потери напора жидкости на местные сопротивления в данном трубопроводе.

Исходные данные:

Расход Q = 80 м 3 /час = 80·1/3600 = 0,022 м 3 /с;

эффективный диаметр d = 24 мм;

длина трубы l = 32 м;

коэффициент трения λ = 0,028;

давление в аппарате Р = 2,2 бар = 2,2·10 5 Па;

общий напор Н = 20 м.

Решение задачи:

Скорость потока движения воды в трубопроводе рассчитывается по видоизмененному уравнению:

w=(4·Q) / (π·d 2 ) = ((4·0,022) / (3,14·[0,024] 2 )) = 48,66 м/с

Потери напора жидкости в трубопроводе на трение определяются по уравнению:

HТ = (λ·l) / (d·[w 2 /(2·g)]) = (0,028·32) / (0,024·[48,66] 2 ) / (2·9,81) = 0,31 м

Общие потери напора носителя рассчитываются по уравнению и составляют:

Потери напора на местные сопротивления определяется как разность:

Ответ: потери напора воды на местные сопротивления составляют 7,45 м.

Задача 2

По горизонтальному трубопроводу центробежным насосом транспортируется вода. Поток в трубе движется со скоростью 2,0 м/с. Общий напор составляет 8 м.

Найти минимальную длину прямого трубопровода, в центре которого установлен один вентиль. Забор воды осуществляется из открытого хранилища. Из трубы вода самотеком изливается в другую емкость. Рабочий диаметр трубопровода равен 0,1 м. Относительная шероховатость принимается равной 4·10 -5 .

Исходные данные:

Скорость потока жидкости W = 2,0 м/с;

диаметр трубы d = 100 мм;

общий напор Н = 8 м;

относительная шероховатость 4·10 -5 .

Решение задачи:

Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.

Значение скоростного напора определяется по соотношению:

w 2 /(2·g) = 2,0 2 /(2·9,81) = 0,204 м

Потери напора воды на местные сопротивления составят:

Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):

Полученное значение потери напора носителя на трение составят:

Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10 -3 Па·с, плотность воды – 1000 кг/м 3 ):

Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10 -3 ) = 200000

Согласно рассчитанному значению Re, причем 2320 <Re< 10/e, по справочной таблице рассчитаем коэффициент трения (для режима гладкого течения):

λ = 0,316/Re 0,25 = 0,316/200000 0,25 = 0,015

Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:

l = (Hоб·d) / (λ·[w 2 /(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м

Ответ:требуемая длина трубопровода составит 213,235 м.

Задача 3

В производстве транспортируют воду при рабочей температуре 40°С с производственным расходом Q = 18 м 3 /час. Длина прямого трубопровода l = 26 м, материал - сталь. Абсолютная шероховатость (ε) принимается для стали по справочным источникам и составляет 50 мкм. Какой будет диаметр стальной трубы, если перепад давления на данном участке не превысит Δp = 0,01 мПа (ΔH = 1,2 м по воде)? Коэффициент трения принимается равным 0,026.

Исходные данные:

Расход Q = 18 м 3 /час = 0,005 м 3 /с;

длина трубопровода l=26 м;

для воды ρ = 1000 кг/м 3 , μ = 653,3·10 -6 Па·с (при Т = 40°С);

шероховатость стальной трубыε = 50 мкм;

коэффициент трения λ = 0,026;

Решение задачи:

Используя форму уравнения неразрывности W=Q/F и уравнение площади потока F=(π·d²)/4 преобразуем выражение Дарси – Вейсбаха:

∆H = λ·l/d·W²/(2·g) = λ·l/d·Q²/(2·g·F²) = λ·[(l·Q²)/(2·d·g·[(π·d²)/4]²)] = =(8·l·Q²)/(g·π²)·λ/d 5 = (8·26·0.005²)/(9,81·3,14²)· λ/d 5 = 5,376·10 -5 ·λ/d 5

d 5 = (5,376·10 -5 ·λ)/∆H = (5,376·10 -5 ·0,026)/1,2 = 1,16·10 -6

d = 5 √1,16·10 -6 = 0,065 м.

Ответ: оптимальный диаметр трубопровода составляет 0,065 м.

Задача 4

Проектируются два трубопровода для транспортировки невязкой жидкости с предполагаемой производительностью Q1 = 18 м 3 /час и Q2 = 34 м 3 /час. Трубы для обоих трубопроводов должны быть одного диаметра.

Определите эффективный диаметр труб d, подходящих под условия данной задачи.

Исходные данные:

Решение задачи:

Определим возможный интервал оптимальных диаметров для проектируемых трубопроводов, воспользовавшись преобразованным видом уравнения расхода:

Значения оптимальной скорости потока найдем из справочных табличных данных. Для невязкой жидкости скорости потока составят 1,5 – 3,0 м/с.

Для первого трубопровода с расходом Q1 = 18 м 3 /час возможные диаметры составят:

d1min = √(4·18)/(3600·3,14·1,5) = 0,065 м

d1max = √(4·18)/(3600·3,14·3.0) = 0,046 м

Для трубопровода с расходом 18 м 3 /час подходят трубы с диаметром поперечного сечения от 0,046 до 0,065 м.

Аналогично определим возможные значения оптимального диаметра для второго трубопровода с расходом Q2 = 34 м 3 /час:

d2min = √(4·34)/(3600·3,14·1,5) = 0,090 м

d2max = √(4·34)/(3600·3,14·3) = 0,063 м

Для трубопровода с расходом 34 м 3 /час возможные оптимальные диаметром могут быть от 0,063 до 0,090 м.

Пересечение двух диапазонов оптимальных диаметров находится в интервале от 0,063 м до 0,065 м.

Ответ: для двух трубопроводов подходят трубы диаметром 0,063–0,065 м.

Задача 5

В трубопроводе диаметром 0,15 м при температуре Т = 40°C движется поток воды производительностью 100 м 3 /час. Определите режим течения потока воды в трубе.

диаметр трубы d = 0,25 м;

расход Q = 100 м 3 /час;

μ = 653,3·10 -6 Па·с (по таблице при Т = 40°С);

ρ = 992,2 кг/м 3 (по таблице при Т = 40°С).

Решение задачи:

Режим течения потока носителя определяется по значению числа Рейнольдса (Re). Для расчета Re определим скорость движения потока жидкости в трубе (W), используя уравнение расхода:

W = Q·4/(π·d²) = [100/3600] · [4/(3,14·0,25²)] = 0,57 м/c

Значение числа Рейнольдса определим по формуле:

Re = (ρ·W·d)/μ = (992,2·0,57·0,25) / (653,3·10 -6 ) = 216422

Критическое значение критерия Reкр по справочным данным равно 4000. Полученное значение Re больше указанного критического, что говорит о турбулентном характере течения жидкости при заданных условиях.

Тема: Типы давления

Типы давления

- все разновидности давления - абсолютное, избыточное, дифференциальное, вакууметрическое и т.д.

- какими датчиками ОВЕН каждое из давлений измеряется?

- применение преобразователей давления в различных процессах промышленности (и не только)

Автор: Антон Колеров, продукт-менеджер по датчикам давления

Ниже та же статья для тех, кто хочет почитать ее прямо здесь

Что такое давление?

Давление – это физическая величина, равная отношению силы давления движущихся молекул вещества к площади поверхности. Разделяют давление твёрдых и текучих сред. И именно для измерения давления сплошных текучих сред (жидкостей и газов) используются преобразователи (датчики) давления.

Особенности измерения давления текучих сред


Давления текучих сред измеряются относительно двух различных уровней (опорных точек):

• уровень абсолютного вакуума – состояние среды, из которого удалены все молекулы и атомы (состояние вещества в космосе);
• уровень текущего атмосферного (барометрического) давления – давление на открытом воздухе в данной местности. Этот уровень постоянно меняется из-за метеорологических процессов.

Типы давлений в измеряемых датчиками процессах



Давление абсолютное (ДА) – это давление, отсчитываемое от точки абсолютного нуля («космического» вакуума). Измеряется крайне редко в силу сложной технической реализации, как правило, в лабораторных или сверхвысокоточных установках.

Примеры точек измерения ДА:

· установка по верификации авиационных двигателей;
· сублимационная сушка;
· узел коммерческого учёта газа.

Для измерения абсолютного давления в подобных процессах обычно используют преобразователи давления ОВЕН ПД100И-ДА модели 1х1. Наиболее применяемая модификация – ОВЕН ПД100И-ДА1,0-111-0,25.


Давление избыточное (ДИ) – это давление, отсчитываемое от текущего атмосферного давления в сторону увеличения. Избыточное давление указывает, насколько давление внутри процесса больше атмосферного. Избыточное давление – самое распространённое.

Примеры точек измерения ДИ:

· давление в подающем трубопроводе в ИТП, ЦТП, котельной;
· давление воды после насоса «подъёма» воды на водоканале;
· давление до и после редуктора в газораспределительном узле ГРП / ГРЩ.

Для измерения избыточного давления в гидро- и пневмосистемах, системах водоподготовки, котельной автоматике и объектах газового хозяйства применяются датчики ОВЕН ПД100-ДИ модели 1х1, которые характеризуются повышенной точностью измерения и устойчивостью к гидроударам. Наиболее востребованная модификация – ОВЕН ПД100-ДИ1,0-111-0,5.

Давление дифференциальное (ДД) или «перепад» – это разница давлений между двумя произвольными точками (местами) в измеряемом процессе, как правило, отсчитываемое от точки с меньшим абсолютным давлением в сторону большего.

Примеры точек измерения ДД:

· уровень жидкостей в герметичных ёмкостях с избыточным давлением;
· засорение вентиляционного фильтра и контроль работы вентилятора;
· контроль износа подшипника ротационного счётчика газа.


Для измерения перепада давления или расхода измеряемой среды применяются преобразователи давления ОВЕН ПД200-ДД модели 155. Наиболее востребованная модификация ОВЕН ПД200-ДД0,007-155-0,1-2-Н.


Давление вакуумметрическое (ДВ) или «разрежение» («тягометрия») – это давление, отсчитываемое от текущего атмосферного давления в сторону уменьшения.

Примеры точек измерения ДВ:

· разрежение в топке котла котельной;
· давление в испытательной вакуум-камере.

Для данных измерений применяют преобразователи ОВЕН ПД100И-ДВ модели 121 с высокочувствительным сенсором. Присоединение «торцевая мембрана» позволяет производить измерение сильнозагрязнённых и вязких сред. Наиболее востребованная модификация – ОВЕН ПД100И-ДВ0,1-121-0,5.


Давление избыточно-вакуумметрическое (ДИВ) или «тягонапорометрия» – это давление, средняя точка (12 мА) характеристики которого соответствует текущему атмосферному давлению. Одним датчиком измеряется как разрежение (4 мА), так и избыточное давление (20 мА) относительно средней точки.

Примеры точек измерения ДИВ:

· давление в дымоходе котельной;
· дымосос литейной печи;
· давление в «чистом» помещении.

Для данных измерений применяют преобразователи ОВЕН ПД100И-ДИВ модели 811. Они измеряют низкие давления неагрессивных газов, в том числе печных и горючих. Самая востребованная модификация ОВЕН ПД100И-ДИВ0,0005-811-1,5.


Давление гидростатическое (ДГ) – это избыточное давление столба жидкости над точкой погружения датчика, отсчитываемое от текущего атмосферного.

Примеры точек измерения ДГ:

· уровень воды над насосом в скважине водозабора;
· уровень воды в сточной ёмкости водоканала;
· уровень воды в водонапорной башне Рожновского.

Для измерений уровня жидкости используют датчики ОВЕН ПД100И-ДГмодели 167 с измерительной мембраной из нержавеющей стали и встроенным гидрометрическим кабелем. Данная модель имеет степень пылевлагозащиты IP68. Самая применяемая модификация ОВЕН ПД100И-ДГ0,04-167-0,5.10.

Абсолютное и избыточное давления. Вакуум

где избыточное давление риз6 =gh.

Из последнего равенства следует, что избыточное давление изменяется в зависимости от глубины по линейному закону. В координатах p/g —h такому изменению соответствует биссектриса координатного угла (рис. 3).


Рис.3 Эпюра распределения

гидростатического давления по высоте.

Абсолютное давление не может быть отрицательным, так как жидкость не сопротивляется растяжению, т. е. рабс > О (или ра6с /g >0).

где hвак — вакуумметрическая высота.

т.е. вакуумметрическая высота возрастает с уменьшением абсолютного давления и достигает максимума, когда ра5с = 0 (отрицательным абсолютное давление быть не может): h вак max = r0 /g.

Пример 1.Определить избыточное давление в забое скважины глубиной h = 85 м, которая заполнена глинистым раствором плотностью р = 1250 кг/м 3 .

Решение. Избыточное давление


Пример 2.Определить избыточное давление воды в трубе по показаниям батарейного ртутного манометра. Отметки уровней ртути от оси трубы (рис. 2.22): z, = 1,75 м; z2 = 3 м; z3 = 1,5 м; z4 = 2,5 м.

Решение.


Батарейный ртутный манометр состоит из двух последовательно соединенных ртутных манометров. Давление воды в трубе уравновешивается перепадами уровней ртути, а также перепадами уровней воды в трубках манометра. Суммируя показания манометра от открытого конца до присоединения его к трубе, получим:


где rВ — плотность воды (рв = 1000 кг/м 3 ); ррт — плотность ртути (ррт= 13 600 кг/м 3 ).

Подставив заданные значения, получим

rИЗБ= 13 600-9,81(2,5 - 1,5) - 1000-9,81(3- 1,5) + 13 600 ·9,81(3- 1,75) + 1000-9,81 1,75 @ 0,303 • 10 6 Па = 0,3 МПа.

Пример 3.Определить силу суммарного давления воды на плоский щит, перекрывающий канал (рис. 2.23), и усилие, которое необходимо приложить для подъема щита. Ширина канала b = 1,8 м, глубина воды в нем И = 2,2 м. Вес щита G = 15 кН. Коэффициент трения щита по опорам f= 0,25.


Решение.Сила суммарного давления на щит

Р = рсw= pghcbh = pgh 2 b/2.

Построим эпюру избыточного гидростатического давления. В точке В гидростатическое давление рв = pgh.

Отложим от точки В в направлении, перпендикулярном щиту, отрезок, равный рв (со стороны действия давления), и соединим начало полученного вектора (точку С) с точкой А. Полученный треугольник ABC — эпюра гидростатического давления.

По эпюре гидростатического давления определим силу суммарного давления на щит, которая равна объему этой эпюры:


Полученная формула одинакова с ранее написанной. Подставив в эту формулу заданные значения, получим

Р = 1000• 9,81 · 2,2 2 -1,8:2 = 42,7 • 10 3 Н « 42,7 кН. Усилие, необходимое для подъема щита,

Т= G+fP= 15 + 0,25-42,7 = 25,7 кН.

Практическая работа № 3.

Тема: Расчет гидравлического пресса.

Цель работы: Ознакомиться с устройством гидравлического пресса;научиться определять усилие прессования.

1. Начертить схему гидравлического пресса.

2. Пояснить принцип работы гидравлического пресса.

Данные для расчета взять из таблицы.

Вариант F,H D,мм d,мм а,мм в,мм Вариант F,H D,мм d,мм а,мм в,мм

4. Вывод по работе.

Контрольные вопросы:

1. Какой закон гидростатики лежит в основе работы гидростатических машин?

Расчет необходимого давления воды в трубопроводе: для чего это нужно и как производится

Комфорт в доме трудно представить без водопровода. А появление новой техники в виде стиральной, посудомоечной машин, бойлера и прочих агрегатов ещё больше повысило его роль в жилье образца 21 века. Но эти агрегаты требуют, чтобы вода поступала из водопровода с определённым напором. Поэтому человек, решивший обустроить свой дом системой водоснабжения, должен знать, как произвести расчёт требуемого давления воды в трубопроводе, чтобы все устройства работали нормально.

Расчет давления воды в трубопроводе

Для нормального функционирования водопровода давление в нем должно соответствовать нормам

Определение показателя

Давление в трубопроводе принято подразделять на следующие виды: рабочее, условное, пробное и расчётное. Без знания их отличий произвести расчёт перепада давления транспортируемой по инженерной коммуникации жидкости будет сложно. Соответственно, при подборе подходящих элементов водопровода хозяин столкнётся с трудностями, не позволяющими обеспечить комфортное пребывание в жилом помещении.

  1. Рабочее. Это наружное или внутреннее, обязательно максимальное избыточное давление, фиксируемое при стандартных составляющих протекания процесса транспортировки воды в нормальных условиях.
  2. Условное. Используют этот показатель при расчёте прочности трубопроводов (и сосудов), которые функционируют под определённым давлением при температуре воды 20˚С.
  3. Пробное. Этот простой показатель измеряется во время испытания конструкции. На его основе отслеживается поведение элементов системы при изменении давления в водопроводе. Такой подход служит своего рода генеральной страховкой перед прокладыванием сети.
  4. Расчётное. Под таковым подразумевается максимальное избыточное давление в полости трубопровода, продуцируемое транспортируемым по нему веществом. Следует учитывать, что воздействию подвергаются не только трубы, но и все элементы, входящие в состав инженерной коммуникации. Именно на основе расчётного давления определяется толщина стенки водопроводной трубы. От этого зависит функциональность, а также длительность эксплуатации системы и, конечно же, безопасность обитателей дома.

Расчет давления воды в трубопроводе

Напор воды в кране зависит от давления в водопроводной системе

Простой пример расчета давления в трубе

Как известно, не так давно водопровод подключался к водонапорной башне. Благодаря именно этому сооружению в сети водопровода создаётся давление. Единица измерения данной характеристики – атмосфера. Причём, размер расположенной вверху башни ёмкости не влияет на значение этого параметра, он зависит только лишь от высоты башни.

Полезно знать! На практике давление измеряется в метрах водяного столба. При заливании воды в трубу высотой 10 метров, в нижней точке будет фиксироваться давление, равное одной атмосфере.

Рассмотрим пример с домом в 5 этажей. Его высота – 15 метров. То есть на один этаж приходится 3 метра. Башня высотой 15 метров создаст на первом этаже давление 1,5 атмосферы. Значение этого показателя в трубе на втором этаже будет уже 1,2 атмосферы. Получается это вычитанием из числа 15 высоты одного этажа – 3 метра, и делением результата на 10. Проделав дальнейший расчёт, нам станет понятно, что на 5-м этаже давление будет отсутствовать. Логика подсказывает, что для обеспечения водой людей, проживающих на последнем этаже потребуется соорудить более высокую башню. А если речь идёт, например, о 25-этажном доме? Возводить такие большие сооружения никто не будет. С этой целью современные системы водоснабжения оборудуются глубинными насосами.

Давление на выходе подобного агрегата высчитывается очень просто. Например, если глубинный насос, мощности которого хватает поднять воду до отметки 50 метров водяного столба, погрузить в скважину на 15 метров, на уровне поверхности земли он создаст давление 3,5 атмосферы (50-15/10 = 3,5).

Расчет давления воды в трубопроводе

Обеспечить необходимый показатель давления в системе можно при помощи насоса

Как рассчитывается толщина трубы от действия давления

Когда вода движется по трубе, возникает сопротивление от трения её о стенки, а также о различные преграды. Это явление получило название гидравлическое сопротивление трубопровода. Его численное значение находится в прямой пропорциональной зависимости от скорости потока. Из предыдущего примера мы уже знаем, что на разных высотах давление воды различно, и эту особенность следует учитывать при расчёте внутреннего диаметра трубы, то есть её толщины. Упрощённая формула для вычисления данного параметра по заданной потере напора (давления) выглядит так:

Двн = КГСопр×Дл. тр./ПД×(Уд.вес×Ск/2g),

где: Двн. – внутренний диаметр трубопровода; КГСопр. – коэффициент гидравлического сопротивления; Дл.тр — длина трубопровода; ПД – заданная или допускаемая потеря давления между конечным и начальным участками магистрали; Уд.вес. – удельный вес воды — 1000 кг/ (9815 м/; Ск. – скорость потока м/сек.; g – 9,81 м/сек2. Всем известная константа — ускорение силы тяжести.

Потеря давления в арматуре и фасонных частях трубопровода с достаточной точностью определяется по потерям в прямой трубе эквивалентной длины и с таким же условным проходом.

Как рассчитать стенки трубы по давлению

Точный расчёт данного показателя стальных труб, которые работают под воздействием избыточного внутреннего давления, включает два этапа. Сначала вычисляется так называемая расчётная толщина стенки. Затем к полученному числу прибавляется толщина износа от коррозии.

Расчет давления воды в трубопроводе

Расчет давления необходим для подбора толщины стенок трубы

Совет! Изготавливая и монтируя трубопровод, не устанавливайте отдельные случайные вставки. Чтобы не спровоцировать аварию, работайте только с теми, размеры которых совпадают с расчётными.

Таким образом, обобщённая формула для расчёта толщины стенок выглядит следующим образом:

где: Т – искомый параметр – толщина стенок; РТС – расчётная толщина стенок; ПК — прибавка на коррозионный износ.

Расчётную толщину стенки в зависимости от давления вычисляем по следующей формуле:

где: ВИД – внутреннее избыточное давление; Днар. – наружный диаметр трубы; ДР — допустимое напряжение на разрыв; КПШ – коэффициент прочности шва. Его значение зависит от технологии изготовления труб. На завершающем этапе расчета стенки трубы по давлению прибавляем к РТС значение параметра ПК. Берётся оно из справочника.

Давление и диаметр трубы

Правильное определение сечения труб не менее важно, чем их выбор по материалу изготовления. При некорректном расчёте диаметра и давления, в трубе возникнет турбулентность воздуха, в ней присутствующем, и в потоке воды. Из-за этого движение жидкости по трубе будет сопровождаться повышенным шумом, а на внутренней поверхности ветки водоснабжения сформируется большое количество известковых отложений. Кроме того, следует помнить, что существование зависимости давления от диаметра трубы может негативно отразиться на пропускной способности водопровода. На практике, многие обитатели квартир и домов сталкивались с ситуацией, когда при одновременном включении нескольких кранов напор воды резко падал. Возникает эта неприятность по двум причинам: когда давление упало во всей системе и при заниженном диаметре подключённых труб.

Расчет давления воды в трубопроводе

От диаметра трубы зависит пропускная способность водопроводной сети

Ниже приведена таблица для максимального расчётного расхода воды через трубопроводы наиболее распространённых диаметров при различном значении давления.

Таблица 1

В большинстве стояках среднее значение давления находится в диапазоне атмосфер.

Расчёт домашнего водопровода

С практической точки зрения давление в водопроводе чаще всего ассоциируется с объёмом поставляемой воды за единицу времени, то есть с пропускной способностью ветки водоснабжения. В этом контексте и будет рассмотрен вопрос расчёта бытового водопровода. После изучения паспортных данных приборов и агрегатов, потребляющих воду, суммируется общий расход. Затем к полученной цифре добавляется расход всех установленных и используемых водоразборных кранов.

Расчет давления воды в трубопроводе

Для домашнего водопровода, работающего от скважины, выбор труб зависит от мощности насоса

Полезная информация! Одно такое сантехническое устройство пропускает через себя за одну минуту порядка 5-6 литров воды.

После этого все числа суммируются, и на выходе получается общий расход в доме воды. С учётом этих данных, покупается труба с диаметром, который обеспечит нужным давлением и, соответственно, количеством воды все водоразборные приборы, работающие одновременно.

Если домашний водопровод планируется подключить к городской сети, у хозяина выбора нет, он будет вынужден пользоваться тем, что имеется. Иное дело, если речь идёт о частном доме, питающимся от скважины. Тогда следует покупать насос, способный обеспечить водопровод давлением, которое соответствует расходам. Выбор производится по паспортным данным подобного агрегата. В определении диаметра вам поможет ниже размещённая таблица.

Таблица 2

Здесь приведены параметры лишь наиболее часто используемой трубной продукции.

Современные средства

Если нет времени либо вы не склонны к математике, рассчитать расход воды через трубопровод с учётом перепада давления можно, воспользовавшись онлайн калькулятором. Интернет изобилует сайтами с таки инструментарием. Чтобы произвести гидравлический расчёт, необходимо учесть коэффициент потерь. Такой подход предполагает выбор:

  • падения напора на погонный метр трубопровода;
  • длины участка;
  • внутреннего диаметра трубы;
  • вида и материала водопроводной системы (пластмасса, железобетон, асбоцемент, чугун, сталь). Современные онлайн калькуляторы учитывают даже, например, меньшую шероховатость пластиковой поверхности по сравнению со стальной;
  • способа расчёта сопротивления.

Кроме того, пользователю доступны опции учёта дополнительных характеристик трубопроводов, в частности, таких, как тип покрытия. Например:

  • цементно-песчаное, нанесённое различными методами;
  • внешнее полимерцементное или пластиковое;
  • новые или проработавшие определённый срок трубопроводы с битумным покрытием либо без защитного внутреннего покрытия.

Если расчёт будет сделан правильно, при условии выполнения монтажа с соблюдением всех требований к водопроводу нарекания не возникнут.

Читайте также: