Оборудование насосных скважин виды сшн коэффициент подачи глубиннонасосной установки

Обновлено: 07.07.2024

Skvazhina (1)

6. Эксплуатация скважин с помощью штанговых глубиннонасосных установок. Схема установки и принцип ее работы.

Оборудование СШНУ состоит из двух частей: наземного и подземного. Наземное оборудование состоит из станка-качалки, привода, станции управления и устьевой арматуры. Подземное оборудование включает в себя колонну НКТ, колонну штанг, глубинный насос и, при необходимости, другие элементы (хвостовик, газовый или газопесочный якорь, якорь для фиксации колонны НКТ в обсадной колонне и т.п.).

Рис. 9 3 . Принципиальная схема СШНУ.

1 — станция управления; 2 — балансир; 3

— головка балансира; 4 — стойка балансира; 5

— шатун; б — кривошип; 7 — редуктор; 8 — приводной двигатель; 9 — тормоз; 10 — противовесы; 11 — металлическая рама; 12 — бетонный фундамент; 13 — канатная подвеска; 14 — траверсы; 15 — полированный шток; 16 — устьевая арматура; 17 — колонн» штанг; 18 — колонна НКТ; 19 — плунжер насоса; 20 — нагнетательный клапан; 21 — всасывающий клапан; 22 — цилиндр насоса; 23

Основным элементом наземного оборудования является станок-качалка, состоящий из балансира 2, головки балансира 3, стойки 4, шатуна 5, кривошипа 6, редуктора 7, приводного двигателя 8, тормоза 9 и противовесов 10. Управление наземным оборудованием осуществляется специальной станцией 1. Станок-качалка, редуктор и приводной двигатель монтируются на металлической раме 11, устанавливаемой на бетонном фундаменте 12. Головка балансира 3 имеет канатную подвеску 13, соединенную с

полированным штоком 15 с помощью траверс 14. Устье скважины оборудовано устьевой арматурой 16. Станок-качалка предназначен для восприятия нагрузок, действующих в точке подвеса штанг (ТПШ) в течение насосного цикла, и преобразования вращательного движения ротора приводного двигателя в возвратно-поступательное движение головки балансира. Редуктор 7 предназначен для снижения числа оборотов приводного двигателя 8 и повышения крутящего момента на выходном валу, на котором закреплены кривошипы 6. Кривошипы 6 соединены шатунами 5 с балансиром 2. На входном валу редуктора имеется шкив, соединенный клиноременной передачей со шкивом приводного двигателя 8. В системе имеется также тормоз 9. Приводной двигатель устанавливается и закрепляется на салазках. При необходимости изменения числа качаний балансира заменяется размер шкива на приводном двигателе. Изменение длины хода полированного штока 15 (перемещения головки балансира) осуществляется изменением радиуса кривошипа 6 перестановкой шатуна 5, для чего кривошип имеет несколько отверстий. Кроме того, кривошип имеет устройство, позволяющее перемещать вдоль него противовесы 10, добиваясь наилучшего

уравновешивания нагрузок, действующих в ТПШ.

В настоящее время промышленностью выпускается значительное количество типоразмеров станков-качалок (СК), отличающихся грузоподъемностью, длиной хода полированного штока и числом качаний, предназначенных для эксплуатации скважин различных категорий. Устьевая арматура 16 имеет выкидной манифольд, манифольд затрубного пространства, а также сальниковое устройство, через которое проходит полированный шток 15. Подземное оборудование включает колонну штанг 17, предназначенную для передачи возвратно-поступательного движения головки балансира плунжеру 19 глубинного насоса, а также для восприятия нагрузок, действующих на штанги в течение насосного цикла. Имеется колонна НКТ 18, на нижнем конце которой закреплен цилиндр насоса 22. Плунжер глубинного насоса имеет один или два нагнетательных клапана 20, а цилиндр насоса — всасывающий клапан 2. К приему насоса закреплен хвостовик 23. Цилиндр скважинного насоса имеет различное конструктивное оформление, а внутренняя его поверхность тщательно обработана, равно как и наружная поверхность плунжера. Вместе они составляют пару трения. Как видно из рис. 9.3, при ходе головки балансира вверх плунжер также перемещается вверх; при этом нагнетательный клапан 20 закрывается под действием веса продукции скважины, находящейся в НКТ. При снижении давления в цилиндре насоса до величины, меньшей, чем давление на приеме (давление в скважине перед всасывающим клапаном), всасывающий клапан 21 открывается и цилиндр насоса заполняется скважинной продукцией (такт всасьшания). При ходе плунжера вниз давление в цилиндре насоса повышается, всасывающий клапан закрывается, а когда давление в цилиндре насоса (под плунжером) становится большим, чем давление над плунжером, открывается нагнетательный клапан, и продукция из цилиндра через плунжер перетекает в колонну НКТ (такт нагнетания). Затем цикл повторяется. Следует отметить, что колонна штанг работает в очень сложных условиях, связанных не столько с длительным контактом со скважинной продукцией (а она может быть и коррозионно-активной), сколько со сложными и переменными во времени нагрузками (растягивающими, сжимающими, изгибающими и крутящими). Расчет колонны штанг с учетом всех действующих нагрузок является сложной физической задачей. Одним из основных технологических вопросов является подача скважинной штанговой насосной установки.

7. Оборудование насосных скважин. Виды СШН. Коэффициент подачи глубиннонасосной установки.

КЛАССИФИКАЦИЯ ПЛУНЖЕРНЫХ ГЛУБИННЫХ НАСОСОВ

1. По конструкции 1.1. Насосы простые (с одним плунжером постоянного диаметра).

1.2. Насосы дифференциальные (с двумя и более плунжерами различных диаметров).

1.3. Трубные насосы (цилиндр спускается на колонне НКТ, а плунжер — на штангах).

1.4. Вставные насосы (цилиндр и плунжер спускаются вместе на колонне штанг).

1.5. Насосы с неподвижным цилиндром и движущимся плунжером.

1.6. Насосы с движущимся цилиндром и неподвижным плунжером.

2. По характеру всасывания продукции 2.1. Всасывание при ходе вверх.

2.2. Всасывание при ходе вниз. 2.3. Всасывание при ходе вверх и вниз.

3. По принципу действия 3.1. Одинарного действия. 3.2. Двойного действия.

4. По назначению 4.1. Для добычи жидкости в обычных условиях.(9,2 а)

4.2. Для добычи жидкости со значительным содержанием свободного газа.(9,2 в)

4.3. Для добычи вязких жидкостей.(9,2 б) 4.4. Для добычи больших объемов жидкости(9,2г)

4.5. Для добычи жидкости с содержанием механических примесей (песка).(9,2 д).

Рис. 9.2. Принципиальные схемы глубинных плунжерных насосов:

1— цилиндр; 2 — плунжер; 3 — всасывающий клапан; 4 — нагнетательный клапан; 5 — колонна штанг; 6 — уплотнитель; 7 — отверстие в цилиндре насоса; 8 — полки-пескоприемники; 9 — отверстие в полой штанге; а — насос обычный (простой); б — насос для откачки вязких жидкостей; в — насос для откачки жидкости со значительным содержанием свободного газа; г — насос высокой производительности; д — насос для добычи жидкости с механическими примесями

Таким образом, за один насосный цикл «ход вверх — ход вниз» объем продукции, откачиваемый из скважины, составляет:

Обозначим число двойных ходов плунжера в мин через п. Тогда теоретическая минутная подача насоса составит Q' T :

Переходя к суточной подаче установки, умножим (9.6) на 1440 (число минут в сутках) и получим суточную теоретическую подачу установки Q т

где n – число двойных ходов плунжера в мин (число качаний балансира в мин).

Обозначая длину хода полированного штока (на поверхности) через S, введем понятие условно теоретической подачи Q т.усл :

Введение условно теоретической подачи связано с тем, что длина хода плунжера S пл в каждом конкретном случае является неизвестной величиной и может существенно отличаться от известной длины хода полированного штока S. Таким образом, условно теоретическая подача установки может быть легко рассчитана в любой момент времени, для чего достаточно измерить (знать) длину хода полированного штока S. Фактическая суточная подача установки, измеряемая на поверхности по жидкости (после процесса сепарации) Q ф может не совпадать с Q т.усл по целому ряду причин. Отношение фактической подачи установки Q ф к условно теоретической подаче ее Q т.усл назовем коэффициентом подачи установки и обозначим его через η:

С учетом выражения (9.8) фактическая подача такова:

Рассмотрим, от чего зависит фактическая подача установки (коэффициент подачи).

1. Коэффициент наполнения скважинного насоса —β. Этот коэффициент характеризует степень заполнения цилиндра насоса при такте всасывания жидкостью, поступающей из скважины. Так как продукция скважины в общем случае состоит из жидкой

и газовой фаз, то при такте всасывания часть объема цилиндра насоса может заполняться газовой фазой, что снижает коэффициент наполнения насоса жидкостью (β < 1).

2. Упругие деформации штанг и труб, характеризуемые коэффициентом η λ :

Таким образом, коэффициент, учитывающий упругие деформации, таков: η λ <=> 1 3. Рассмотрим влияние утечек продукции скважины как в самом насосе (зазор

«цилиндр—плунжер», клапаны), так и на пути движения продукции от насоса до устья (через резьбовые соединения НКТ, через возможные нарушения труб за счет их протертости штангами и т.п.). Обозначим суммарные утечки продукции через Q ут . Коэффициентом утечек η ут назовем отношение объема утечек Q ут к условно теоретической подаче Q т.усл :

Таким образом, коэффициент, учитывающий утечки (1 - η ут ), всегда меньше единицы 4. Коэффициент, учитывающий объемные свойства продукции скважины (нефть,

нефть + вода). Отношение фактической подачи жидкости в поверхностных условиях Q фп к фактической подаче, приведенной к термобарич-м условиям в скважине (в насосе) Q фс :

Независимо от обводненности продукции при вн(Р с , Т с ) > 1 и вв(Р с , Т с ) > 1 коэффициент, учитывающий объемные свойства продукции, η об < 1 . Во всех других случаях: в н (Р с , Т с ) > 1 и в в (Р с , Т с ) = 1; вн(Рс, Тс) < 1 и вв(Р с , Т с ) = 1; вн(Р с , Т с ) > 1 и вв(Р с , Т с ) > 1

и др. необходимо проводить дополнительный анализ величины коэффициента η об .

В общем случае коэффициент подачи η является произведением всех рассмотренных коэффициентов.

8. Производительность насоса. Коэффициент наполнения и определяющие его факторы.

Коэффициентом наполнения насоса β называется отношение объема жидкости, поступившей в цилиндр насоса из скважины Vжс при такте всасывания, к объему, описанному плунжером F:

Под мертвым пространством насоса Vм будем понимать разность объема цилиндра насоса Vц и объема, описываемого плунжером Vs между нижней и верхней мертвыми точками (объем между всасывающим и нагнетательным клапанами, когда плунжер находится в

нижней мертвой точке):

При выводе зависимости для коэффициента наполнения принимаем следующие допущения:

1. Процесс изотермический.

2. Свободный газ равномерно распределен в жидкости в цилиндре насоса.

3. Процесс растворения свободного газа в жидкости и процесс выделения растворенного газа из жидкости равновесный.

4. Утечки отсутствуют.

Введем следующие обозначения:

где R ц — газовое число в цилиндре насоса при давлении всасывания Р вс ;

где R M — газовое число в мертвом пространстве насоса (плунжер находится в НМТ) при давлении нагнетания Р наг .

и введем следующее обозначение

Коэффициент К называется коэффициентом мертвого пространства и характеризует численно долю мертвого пространства в объеме, описываемом плунжером.

С учетом обозначений (9.26) и (9.45) перепишем выражение (9.44) в виде:

откуда окончательно получаем:

Выражение (9.46) является общей формулой для расчета коэффициента наполнения скважинного насоса в рамках принятых допущений.

Анализ полученного выражения показывает, что мертвое пространство всегда оказывает отрицательное влияние на коэффициент наполнения (т.е. оно является вредным пространством) даже при откачке чистых жидкостей. Поэтому в реальных условиях не-

возможно получить коэффициент наполнения, равный 1. Количественное же влияние на коэффициент наполнения различных факторов различно. Соотношение R ц и R м связывает все процессы, происходящие в цилиндре насоса при его работе, и определяет фазовые превращения продукции скважины.

Из общей зависимости (9.46) можно получить соответствующие выражения для частных случаев:

9. Нагрузки на штанги. Упругие деформации штанг и труб под действием статических нагрузок.

При ходе вверх максимальная нагрузка, действующая в ТПШ, такова:


(9.76)

При ходе вниз нагрузка, действующая в ТПШ, минимальна и такова:


.

Соединение штанг с плунжером осуществляется с помощью клетки клапана; при этом на нижней торец штанг действует гидростатическое давление Р, равное сумме гидростатического давления от веса столба смеси в НКТ Р см.т и устьевого давления Ру


. (9.81)

Таким образом, нагрузка от веса штанг в смеси G шт.см будет таковой:


(9-82)

где G шт — вес колонны штанг в воздухе, Н;

f шт — площадь поперечного сечения штанг, м2.

где b' — коэффициент «плавучести» штанг в смеси при Р у > 0:

Нагрузка от веса столба смеси (жидкости) в НКТ:


(9.86)

где F — площадь поперечного сечения плунжера насоса, м2. Нагрузка от давления на устье скважины:


(9.87)

Нагрузка от давления в затрубном пространстве скважины (давлением от веса столба газа высотой Н дин пренебрегаем):


(9.88)

где Р у , Р з — соответственно давления на устье скважины в НКТ и в затрубном пространстве, Н/м2.

Нагрузка от веса столба смеси (жидкости) в затрубном пространстве скважины:


(9.89)

УПРУГИЕ ДЕФОРМАЦИИ ШТАНГ И ТРУБ Таким образом, деформация колонн штанг и труб является значительной только под

действием нагрузки (G T - G 3 ). При ходе штанг вверх колонна штанг увеличивает под действием нагрузки (G T - G 3 ) свою длину на величину i шт :

При ходе вниз нагрузка (G T - G 3 ) снимается с колонны штанг, вследствие чего длина колонны штанг сокращается на величину i шт , и передается на колонну НКТ, под действием которой длина колонны НКТ увеличивается на величину i т :

где f тр — площадь поперечного сечения труб по металлу, м2.

В результате этих деформаций перемещение плунжера в цилиндре насоса начнется только тогда, когда ТПШ скомпенсирует за счет перемещения полированного штока вверх удлинение штанг на величину i шт и сжатие труб на величину i т , т.е. полированный

шток переместится вверх на величину (i шт + i т ) прежде, чем начнется движение плунжера вверх. Обозначим:


(9-99) и назовем величину λ потерями хода плунжера S пл в сравнении с ходом полированного штока S


(9.100)

Подставляя (9.97), (9.98) в (9.99), получим :

Нагрузка от веса штанг является максимальной в ТПШ и нулевой — в месте крепления штанг к плунжеру. При больших глубинах спуска насоса и использовании одноразмерной колонны штанг (f шт = c o n s t ) нагрузка в ТПШ может оказаться чрезвычайно большой. Для снижения этой нагрузки проектируют ступенчатую колонну штанг, уменьшая поперечное сечение (диаметр) штанг сверху вниз. Потери хода плунжера для ступенчатой колонны штанг с количеством ступеней «n» таковы:

Штанговые глубинные насосы (ШГН): конструкция, принцип работы, разновидности


Штанговые скважинные насосы — это распространенный вид оборудования, которое позволяет добывать из скважин пластовую жидкость. Этот тип промышленных установок широко применяется в сфере добычи нефти, его изготовление регулируется, согласно ГОСТ Р 51896-2002. Он эксплуатируется в наибольшей части фонда действующих скважин в сфере нефтедобычи.

Элементы насосных установок

Установка скважинная насосная имеет привод ШСН, позволяющий осуществлять перемещение объекта непосредственно под воздействием насосных штанг. Среди ее основных действующих элементов, согласно ГОСТу 2002, насосы скважинные штанговые выделяются:

  • цельный цилиндр неподвижного типа, имеющий удлинители;
  • подвижный насосный плунжер;
  • клапаны, включая всасывающие и нагнетательные;
  • замки.

Каждый из удлинителей СН навертывается на цилиндр со всех его сторон. Они должны выдвинуть плунжер из него во время действия насосной конструкции. Промышленные скважинные установки функционируют без остаточных отложений внутри неподвижного цилиндра. В результате плунжер не заедает, поэтому ремонт штанговых насосов выполняется без каких-либо проблем. Применяемые в отечественной промышленности вставные насосы оснащаются следующими видами узлов:

  • Замковой опорой.
  • Цилиндром.
  • Плунжером.

Установка скважинного насоса находится под напряжением, поэтому для изготовления деталей для различных типов штанговых скважинных насосов или ШСН необходимы высоколегированные стали. От этих материалов зависит длительность и безотказность полезного использования насосного оборудования. Герметичность их посадки обеспечивается высокой точностью выпуска деталей для насосов. Это относится и к резьбовым соединениям. Все элементы установки отличаются полной взаимозаменяемостью. Среди основных элементов ее конструкции предусмотрена наземная часть, состоящая из следующих звеньев, представляющих собой:

  • Колонну.
  • Цепь с винтом натяжения.
  • Противовес с упором.
  • Подвески (канатная, устьевого штока).
  • Узел канатных блоков.
  • Муфта-зубчатая.
  • Звездочки ведомую и ведущую.
  • Ограничитель схода каната.
  • Ограждение и купейную дверь.
  • Кожух ременной передачи.

Штанговые глубинные насосы (ШГН): конструкция, принцип работы, разновидности

Конструкция насосной установки с электродвигателем и станцией управления предусматривает несколько площадок:

  • обслуживания ведомой звездочки;
  • редуктора;
  • канатных блоков;
  • переднюю поворотную.

Оборудование имеет комплекс, представляющий собой наземный сегмент установки, который называется станком-качалкой. Элементы этой конструкции оставались неизменными долгие годы. Установка с дифференциальным преобразующим механизмом и редуктором оснащена клиноременной передачей, позволяющей приводить в действие станок-качалку.

Российскими предприятиями выпускался исключительно привод цепной штангового скважинного насоса. Устройства, заменившие насос ручной, находятся еще на стадии совершенствования с 2002 г.

Принцип действия ШГН

  • Принцип действия ШГН
  • Типы штанговых насосов
  • Достоинства и недостатки трубных и вставных насосов
  • Принцип действия и маркировка штанговой насосной установки
  • Источники:

ШГН предназначены для откачивания из скважин жидкостей с температурой не более 130 градусов, обводненностью не более 99% по объему, вязкостью до 0,3 Па*с, содержанием механических примесей до 350 мг/л, свободного газа на приеме не более 25%.

Штанговый насос состоит из цельного неподвижного цилиндра, подвижного плунжера, всасывающего и нагнетательных клапанов, замка (для вставных насосов), присоединительных и установочных деталей.

В скважину на колонне подъемных труб спускают плунжерный насос, состоящий из цилиндрического корпуса 1 (цилиндра), внутри которого имеется пустотелый поршень 2 (плунжер). В верхней части плунжера установлен нагнетательный клапан 3. В нижней части неподвижного цилиндра устанавливается всасывающий клапан 4. Плунжер подвешен на колонне насосных штанг 5, которые передают ему возвратно- поступательное движение от специального механизма (станка-качалки), установленного на поверхности.

При ходе плунжера вверх жидкость из скважины поступает через всасывающий (приемный) клапан в цилиндр насоса, так как под плунжером создается давление намного меньше чем в скважине. При ходе плунжера вниз всасывающий клапан закрывается под действием давления жидкости под плунжером и объем жидкости из цилиндра через полый канал плунжера и открытый нагнетательный клапан, открытие которого происходит от давления жидкости, находящейся под плунжером и полом канале плунжера, поступает в подъемные трубы.

В процессе непрерывной работы насоса жидкость заполняет объем подъемных труб, а затем направляется на поверхность.

Наиболее широко распространены насосы двух видов: вставные и невставные (трубные).

Штанговые насосы используются для подачи жидкости из глубоких скважин. Чаще всего штанговый насос используют при добычи нефти.

В поршень штангового насоса установлен обратный клапан, пропускающий жидкость в одном направлении.

Запорным элементом представленного клапана является шарик.

При движении поршня вниз шарик перемещается вверх, клапан открывается, пропуская жидкость через поршень.

При движении поршня вверх шарик прижимается к седлу, клапан под действием давления столба жидкости закрывается.

Условия использования ШСН

Штанговые глубинные насосы (ШГН): конструкция, принцип работы, разновидности

Изготавливаемые типы скважинных штанговых насосов осуществляют подъем жидкости. Государственный стандарт предусматривает деление колонн НКТ по методу крепления на 2 типа:

  • Вставные (НСВ).
  • Невставные (НСН).

Трубный насос или НСН, имеющий седло ВК (всасывающего клапана), оснащен цилиндром, опускание которого происходит в скважину на НКТ. Плунжер, предусматривающий наличие клапанов, должен опуститься в скважину перед сосом, а затем входит в цилиндр. Это осуществляется посредством штанг. Чтобы обеспечивалось соединение плунжеров установок с шариками клапанов всасывающего типа, применяются специальные штоки.

Минусом НСН является не только сложность процесса сборки, но и долгое время подъема устройства на поверхность. Ликвидировать неисправности конструкции сложно. Вставные насосы собираются на поверхности, после производится их спуск под землю на штангах внутрь колонн НКТ на определенную глубину скважины.

Трубный скважинный насос требует при подъеме насосного цилиндра установки из-под земли извлекать ее целиком. Это условие считается основной отличительной чертой НСН от НСВ. Вставные насосы в 2-2,5 раза увеличивают скорость спускоподъемных операций, что облегчает труд рабочих, осуществляющих ремонт скважин.

Вставной насос обладает меньшей подачей, чем невставной. Это обусловлено наличием труб заданного диаметра. Спуск НСВ осуществляется на штангах, а укрепление либо уплотнение элемента при наличии посадок производится на замковой опоре цилиндра. Она должна опуститься на НКТ.

Осуществлять подъем насоса из нефтяной скважины с помощью НСВ следует одновременно с извлечением колонны штанг при значительной глубине спуска. Эксплуатация НСВ осуществляется, если скважина обладает малым дебитом. Движение плунжера НСН является вертикальным, так как спуск и подъем осуществляются через штанги.

Типы штанговых насосов

Существует два основных типа штанговых насосов:

  • вставные
  • трубные (невставные)

Принцип действия ШГН - фото 4

Трубный штанговый насос

Плунжер насоса перемещается в гильзе, которая присоединена к колонне труб. Гильза устанавливается в скважину вместе с трубами, ля того, извлечь ее можно только вместе с трубами.

Как добывают нефть? Работа нефтяного промысла - фотография 5

В плунжере расположен обратный клапан 1. Еще один клапан 2 крепится к нижней части гильзы.

При движении плунжера вниз клапан 1 открывается, пропуская жидкость из скважины в полость над плунжером, клапан 2 в этот момент закрыт.

При перемещении плунжера вверх, клапан 1 закрывается, плунжер вытесняет жидкость вверх по скважине. Клапан 2 в этот момент открыт, жидкость из пласта заполняет полость в скважине.

Вставной штанговый насос

Плунжер и гильзу вставного штангового насоса помещают в уже установленную колонну труб.

Штанговый глубинный насос - фото 6

При перемещении плунжера вверх клапан 1 закрывается на позволяя жидкости перетекать обратно, жидкость поднимается по скважине вверх. Клапан 2 в этот момент открыт, жидкость из пласта поступает под плунжер.

Разновидности устьевого оборудования

Устьевой шток, представляющий собой особую штангу, необходим для соединения колонны штанг с канатной подвеской. Он имеет полированную поверхность, выпускается без головок с типом резьбы, который предусматривает стандарт. Чтобы защитить полированный шток от коррозии осуществляется окрашивание, цинкование, ингибирование. Функции, выполняемые устьевым оборудованием НС, являются следующими:

  • обеспечение герметизации затрубного пространства;
  • отвод скважинной продукции;
  • подвешивание НКТ.

Насосная установка оснащается устьевым оборудованием, включающим:

  • Устьевой сальник. Обеспечивает герметизацию выхода устьевого штока за счет сальниковой головки.
  • Тройник. Ввинчивается в муфту НКТ, он необходим для отвода скважинной продукции.
  • Крестовина. Позволяет подвесить колонну НКТ на конусе, чтобы правильно расположить ее относительно скважинной оси.
  • Запорные краны, а также обратные клапаны.

Для самоустановки сальниковой головки предусмотрено шаровое соединение. Это обеспечивается при несоосности сальникового штока и НКТ, у которых отсутствует совпадение осей. Это важно для исключения износа уплотнительной набивки и облегчения смены специальной набивки. Наличие крестовины позволяет опускать приборы в затрубное пространство посредством устьевого патрубка, имеющего задвижку.

Комплектация станка-качалки

Среди узлов станка-качалки выделяются:

  • Рама.
  • Стойка, имеющая вид усеченной 4-гранной пирамиды;
  • Балансир, оснащенный поворотной головкой.
  • Траверса с шатунами.
  • Редуктор.

Комплектация СК предусматривает набор шкивов, позволяющих изменять число качаний путем дискретного регулирования. Смена и натяжение ремней двигателя происходит достаточно быстро с использованием поворотной рамы-салазок. Монтаж станка-качалки производится на раму, смонтированную на железобетонном фундаменте. Для фиксации насосного балансира применяется шкив, который носит название тормозной барабан. Головка обеспечивает проход насосной установки в процессе ремонта скважины под землей.

Совершаемое головкой балансира движение по дуге предполагает ее соединение со штангами и устьевым штоком за счет гибкой канатной подвески, регулирующей посадку насосного плунжера в цилиндр СН. Амплитуда перемещения головки балансира регулируется посредством изменения участка сочленения кривошипа с шатуном относительно оси вращения. Перемещение грузов на балансир приводит к уравновешиванию действия станка-качалки. Процесс рассматривается как балансирное, роторное либо комбинированное штанговое уравновешивание.

Основные разновидности

По своему конструктивному исполнению штанговые глубинные насосы могут быть:

  • вставными;
  • невставными.

Опускание в скважину вставных штанговых глубинных насосов, как и их извлечение из нее, осуществляется в собранном виде. Для того чтобы выполнить такую операцию, плунжер помещают внутрь цилиндра, и вся конструкция на насосных штангах опускается в шахту.

Типы насосов ШГН по способу крепления к колонне

Типы насосов ШГН по способу крепления к колонне

Вставные ШГН также подразделяются на устройства двух видов:

  • вставные насосы с верхним расположением замка (НВ1);
  • насосы, замок которых располагается в их нижней части (НВ2).

Вставные устройства используют преимущественно для обслуживания скважин большой глубины, характеризующихся также небольшим дебитом откачиваемой из них жидкой среды. Использование таких насосов ШГН, для извлечения которых достаточно осуществить подъем штанг, с которыми соединена вся конструкция насоса, намного упрощает ремонт скважины, если в этом возникает необходимость.

Схема работы установки с ШГН

Схема работы установки с ШГН

Для того чтобы поместить в скважину штанговый глубинный насос невставного типа, необходимо выполнить более сложные действия. В скважину сначала помещают цилиндр, для чего используют НКТ, а только затем, используя штанги, в уже установленный цилиндр опускают плунжер с клапанами. Извлечение штангового глубинного насоса данного типа также осуществляется в два приема: в первую очередь из цилиндра насоса извлекается плунжер с клапанами, а затем из скважины поднимается цилиндр с НКТ.

Невставные устройства также подразделяются на несколько категорий:

  • насосные установки без ловителя (НН);
  • невставные глубинные насосы с захватным штоком (НН1);
  • невставные насосы с ловителем (НН2).

Глубинные штанговые насосы производятся различных типоразмеров и исполнений, в том числе по специальным заказам для работы в особых условиях

Глубинные штанговые насосы производятся различных типоразмеров и исполнений, в том числе по специальным заказам для работы в особых условиях

Среди перечисленных выше видов невставного оборудования наиболее популярными стали устройства, оснащенные ловителем (НН2). Объясняется высокая популярность последних тем, что механизм их опорожнения отличается простотой конструкции и, соответственно, большей надежностью в эксплуатации.

Выбор оборудования той или иной модели осуществляется в зависимости от конкретных условий эксплуатации, а также от характеристик жидкой среды, которую планируется откачивать с его помощью.

Скважинный штанговый насос исполнения НН2Б

Скважинный штанговый насос исполнения НН2Б

Достоинства и недостатки цепного привода

Модель ПЦ-80х6,1 в нашей стране производится предприятием АО «Ижнефтемаш». Отечественное оборудование создано на основе разработки американского предприятия Weatherford под названием Rotaflex. Конструкция привода оборудована рамой, которая размещена на отдельном основании. В процессе сборки оборудования на раму производится установка следующих деталей:

  • электрического двигателя;
  • редуктора;
  • ременной передачи;
  • ведущей и ведомой звездочек;
  • каретки с противовесом;
  • колонны штанг.

Штанговые глубинные насосы (ШГН): конструкция, принцип работы, разновидности

Для соединения элементов используются гибкие звенья непрерывного типа. В нефтедобывающей отрасли широко применяются не только балансирные приводы, которые считаются традиционными, но и безбалансирные, т. е. цепные. Преимущества, которые имеет привод цепной скважинного штангового насоса, могут быть следующими:

  • Размеры безбалансирных приводов и их масса в меньшей степени зависят от длины хода, чем параметры этих элементов станка-качалки балансирного типа.
  • Скорость движения штанг привода цепного меньше по части хода, чем параметр скорости подъема колонны за цикл у станков-качалок балансирного типа в 1,6-1,7 раза.
  • Производительность оборудования увеличивается, а расходы энергии на подъем скважинного продукта сокращаются.
  • Коэффициент использования мощности (КИМ) повышается, поскольку нагрузка электрического двигателя на привод штангового скважинного насоса равномерная.

Нагрузка различных типов, приходящаяся на штанги, снижается в условиях спокойного режима откачки скважинной жидкости на длинном ходу. Перечисленные достоинства позволяют привести в соответствие следующие виды показателей, характеризующих работу оборудования:

  • откачка состава, имеющего высокую степень вязкости;
  • количество аварийных ситуаций, произошедших со штангами;
  • износ труб, включая штанги;
  • коэффициент наполнения скважинного насоса;
  • длительность срока эксплуатации устьевого сальника и его производительность.

При всей надежности устройства балансирный привод отличается следующими недостатками:

  • Короткий срок использования редуктора.
  • Разрушение деталей, входящих в состав преобразующего механизма.
  • Усложненная перестановка пальцев шатунов.
  • Высокий уровень трудоемкости движения грузов при достижении их равновесия.
  • Неуравновешенность масс.
  • Важность обустройства фундамента под установку, обладающего высокой стоимостью.

Модификация насосов российского производства отличается присоединительными параметрами.

Как читать маркировку

Для того чтобы определить, к какой категории относится глубинный штанговый насос, а также узнать, какими характеристиками обладает такое устройство, достаточно расшифровать его маркировку. Такая маркировка, расшифровка которой не представляет больших сложностей, выглядит следующим образом:

XХХ Х – ХX – ХХ – ХX – Х

Буквы и цифры, присутствующие в такой маркировке, последовательно обозначают следующие параметры:

  • тип штангового насоса, который, как уже говорилось выше, может относиться к одной из следующих категорий: HB1, НВ2, НН, HH1, НН2;
  • тип конструктивного исполнения цилиндра и конструктивные особенности устройства в целом;
  • условный диаметр плунжера, измеряемый в мм (современные модели штанговых глубинных насосов по данному параметру могут относиться к устройствам следующих категорий: 29, 32, 38, 44, 57, 70, 95 и 102 мм);
  • максимальный ход, который может совершать плунжер (для того чтобы узнать, на какое расстояние в мм перемещается плунжер, значение в маркировке необходимо разделить на сто);
  • напор в м вод. ст., который способен обеспечить представленный глубинный насос (это значение в маркировке также необходимо разделить на сто);
  • группа посадки (по степени увеличения расстояния, имеющегося между плунжером и внутренними стенками цилиндра, рассматриваемые устройства могут соответствовать одной из следующих групп посадки: 0, 1, 2, 3).

Группы посадок насоса в зависимости от величины зазора между цилиндром и плунжером

Группы посадок насоса в зависимости от величины зазора между цилиндром и плунжером

Конструктивные элементы насосной установки

Вставные и невставные штанговые насосы схожи по своей конструкции. Ее схема включает следующие элементы:

  • станок-качалка;
  • штанги;
  • тройник;
  • уплотнения;
  • фундамент;
  • насосно-компрессорные трубы в подвеске;
  • шток.

Принцип работы насосной установки предполагает следующее. Наличие защитного приспособления на приеме насоса обеспечивает использование газового либо песочного фильтра. Это позволяет создать новый тип установки ШСН с различными приводами:

  • ленточным;
  • цепным;
  • канатным и др.

Крутящий момент должен передаваться от двигателя редуктору, затем он достигает нижней звездочки на его валу, далее переходит на тяговую цепь, обеспечивающую преобразование вращательного движения звездочки в поступательное.

Соединение тяговой цепи с кареткой осуществляется через скалку при наличии груза для поддержания равновесия. Существуют различные группы посадок используемых насосов, отличающиеся по размерам пространства в промежутке между цилиндром установки и плунжером. Чем большей вязкостью обладает скважинная жидкость, тем более высокой является группа посадки. Производительность установки зависит от конструктивных параметров насосов. Они определяются величиной диаметра конструктивного элемента плунжера и соответствующей длиной хода этой детали:

  • от 29 до 57 мм, от 1,2 до 6,0 м — для НСВ;
  • от 32 до 95 мм, от 0,6 до 4,5 м — для НСН.

Обозначение НСН2-32-30-12-0 можно расшифровать следующим образом:

  • 0 — отображение группы посадки;
  • 12х100 — максимально возможная глубина спуска насосного оборудования (м);
  • 30х100 — длина хода плунжера насоса (мм);
  • 32 — величина диаметра плунжера (мм).

Предназначение насосной штанги, представляющей собой стержень, которой оснащен штанговый насос, заключается в передаче возвратно-поступательного движения устройства по схеме плунжер-насос. Насосная штанга оснащена утолщенными головками на концах, ее сечение является круглым.

Для создания штанг требуются только легированные стали. Размер длины штанговых конструкций для нормальных эксплуатационных условий должен составлять 8 м. Длина колонн штанг регулируется с целью уравновешивания посадки плунжера в цилиндр. Оборудование предполагает наличие футовок или укороченных штанг, длина которых может составлять: 1, 1,2, 1,5, 2 и 3 м.

Для соединения штанг необходимы муфты. Отечественные предприятия осуществляют выпуск насосных стеклопластиковых штанг, для которых характерна большая коррозийная стойкость. В результате энергопотребление снижается до 20 %.

Эксплуатация нефтяных скважин глубинными насосами. Штанговая глубиннонасосная установка и принцип ее действия. Оборудование насосных скважин. Производительность глубинного насоса.

В мировой практике нефтедобычи получили распространение следующие глубиннонасосные установки:

Скважинные штанговые насосные установки (СШНУ).

Установки погружных центробежных насосов с электроприводом (УЭЦН).

Установки гидравлических поршневых насосов (УГПН).

Установки с винтовыми насосами и электроприводом (УЭВН).

Установки с диафрагменными насосами и электроприводом(УЭДН).

Установки со струйными насосами (УСН).


Не все из перечисленных глубиннонасосных установок играют одинаковую роль в добыче нефти. В нашей стране наибольшее распространение по фонду добывающих скважин получили СШНУ, а по объему добычи — УЭЦН. Это связано с тем, что установки СШНУ предназначены для эксплуатации низко- и среднедебитных скважин, а установки УЭЦН — для эксплуатации средне- и высокодебитных скважин. Остальные установки (УГПН, УЭВН, УЭДН, УСН) ни по фонду добывающих скважин, ни по добыче нефти не могут пока конкурировать с СШНУ и УЭЦН и предназначены для определенных категорий скважин.

1 — станция управления; 2 — балансир;

3 — головка балансира; 4 — стойка балансира; 5 — шатун; б — кривошип; 7 — редуктор; 8 — приводной двигатель; 9 — тормоз; 10 — противовесы; 11 — металлическая рама; 12 —бетонный фундамент; 13 — канатная подвеска; 14 — траверсы; 15 — полированный шток; 16 — устьевая арматура; 17 — колонн» штанг; 18 — колонна НКТ; 19 — плунжер насоса; 20 — нагнетательный клапан; 21 — всасывающий клапан; 22 — цилиндр насоса; 23 — хвостовик

Схема СШНУ представлена на рис. Оборудование СШНУ состоит из двух частей: наземного и подземного. Наземное оборудование состоит из станка-качалки, привода, станции управ ления и устьевой арматуры. Подземное оборудование включает в себя колонну НКТ, колонну штанг, глубинный насос и, при не обходимости, другие элементы (хвостовик, газовый или газопесочный якорь, якорь для фиксации колонны НКТ в обсадной колонне и т.п.).

Принцип Действия

Как видно из рис. 9.3, при ходе головки балансира вверх плунжер также перемещается вверх; при этом нагнетательный клапан 20 закрывается под действием веса продукции скважины, находящейся в НКТ.При снижении давления в цилиндре насоса до величины, меньшей, чем давление на приеме (давление в скважине перед всасывающим клапаном), всасывающий клапан 21 открывается и цилиндр насоса заполняется скважинной продукцией (такт всасывания). При ходе плунжера вниз давление в цилиндре насоса повышается, всасывающий клапан закрывается, а когда давление в цилиндре насоса (под плунжером) становится большим, чем давление над плунжером, открывается нагнетательный клапан, и продукция из цилиндра через плунжер перетекает в колонну НКТ (такт нагнетания). Затем цикл повторяется.

(Более подробно расписано оборудование СШНУ)

Основным элементом наземного оборудования является станок качалка, состоящий из балансира 2, головки балансира 3, стойки 4, шатуна 5, кривошипа 6, редуктора 7, приводного двигателя 8, тормоза 9 и противовесов 10. Управление наземным оборудованием осуществляется специальной станцией 1. Станок-качалка, редуктор и приводной двигатель монтируются на металлической раме 11, устанавливаемой на бетонном фундаменте 12. Головка балансира 3 имеет канатную под веску 13, соединенную с полированным штоком 15 с помощью траверс 14. Устье скважины оборудовано устьевой арматурой 16. Станок качалка предназначен для восприятия нагрузок, действующих в точке подвеса штанг (ТТШ1) в течение насосного цикла, и преобразования вращательного движения ротора приводного двигателя в возвратно поступательное движение головки балансира. Редуктор 7 предназначен для снижения числа оборотов приводного двигателя 8 и повышения крутящего момента на выходном валу, на котором закреплены кривошипы 6. Кривошипы 6 соединены шатунами 5 с балансиром 2. На входном валу редуктора имеется шкив, соединенный клиноременной передачей со шкивом приводного двигателя 8. В системе имеется также тормоз 9. Приводной двигатель устанавливается и закрепляется на салазках. При необходимости изменения числа качаний балансира заме няется размер шкива на приводном двигателе. Изменение длины хода полированного штока 15 (перемещения головки балансира) осуществляется изменением радиуса кривошипа 6 перестановкой шатуна 5, для чего кривошип имеет несколько отверстий. Кроме того, кривошип имеет устройство, позволяющее перемещать вдоль него противовесы 10, добиваясь наилучшего уравновешивания нагрузок, действующих в ТПШ. Устьевая арматура 16 имеет выкидной манифольд, манифольд затрубного пространства, а также сальниковое устройство, через которое проходит полированный шток 15..

Подземное оборудование включает колонну штанг 17, предназначенную для передачи возвратно-поступательного движения головки балансира плунжеру 19 глубинного насоса, а также для восприятия нагрузок, действующих на штанги в течение насосного цикла. Имеется колонна НКТ 18, на нижнем конце которой закреплен цилиндр насоса 22. Плунжер глубинного насоса имеет один или два нагнетательных клапана 20, а цилиндр насоса — всасывающий клапан 2. К приему насоса закреплен хвостовик 23.

Цилиндр скважинного насоса имеет различное конструктивное оформление, а внутренняя его поверхность тщательно обработана, равно как и наружная поверхность плунжера. Вместе они составляют пару трения.

Читайте также: