Квадратурный смеситель принцип работы

Обновлено: 02.07.2024

Как выбрать смеситель по способу смешения воды?

Смесители необходимы для любой системы водоснабжения. Они выполняют водоразборную функцию, обеспечивая смешение холодной и горячей воды, а также регулируют ее расход и температуру. Срок службы во многом зависит от правильного выбора изделия по способу смешивания воды. Читайте до конца, и вы узнаете, какой смеситель выбрать в тех или иных условиях.

Способы смешения воды

По способу смешения воды существуют шаровые, маховиковые, термостатические, электронные, порциально-нажимные устройства. Рассмотрим их особенности подробнее.

Шаровые (однорычажные, однорукие, монокомандные) смесители имеют механизм переключения с помощью керамических картриджей. Они бывают диаметром d-35, d-40, d-45, d-47. К данной группе относятся и хирургические смесители с удлиненной ручкой. Такие устройства используют для воды, прошедшей тонкую очистку, так как твердые частицы могут повредить керамическую поверхность детали. Это приводит к возникновению протечек, невозможности регулирования напора и температуры воды. Диаметр картриджа определяет объем водопотребления в арифметической прогрессии. При бережной эксплуатации, срок службы данного типа смесителей составляет более 10 лет.

Маховиковые (двухвентильные, «ёлочка») водоразборные устройства оснащены кран-буксами. Запорный элемент бывает металлокерамическим или с резиновой прокладкой. В первом варианте перекрытие потока происходит посредством пластин из керамики. Угол закрытия составляет 90 — 180 градусов. Кран-буксы с резиновой прокладкой могут применяться при воде низкого качества за счет исключения трения между перекрывающими элементами. Поворот маховика составляет 360 и более градусов.

Термостатические смесители имеют две ручки, одна из которых регулирует поток, а вторая отвечает за управление температурой. Термостатический картридж дает возможность устанавливать постоянный уровень нагревания путем смешивания потоков холодной и горячей воды. Это особенно удобно для домовладений, где проживают маленькие дети или люди с ограниченными возможностями.

Электронные (сенсорные, бесконтактные) приборы регулируются с помощью панели управления или чувствительного датчика. Особенностью бесконтактных смесителей является то, что цикл подачи воды завершается автоматически. Для начала цикла требуется поднести руки к датчику на смесителе. При необходимости повторить цикл. Посредством регулятора температуры можно изменить соотношение горячей и холодной воды на выходе, но нельзя полностью отключить одну из них. Сенсорные модели имеют панель управления на корпусе или отдельной плате. Все процессы настраиваются прикосновениями к дисплею. Для электронных водоразборных устройств необходимо постоянное подключение к электросети 220 Вт.

Порционно-нажимные модели контролируют объем потребления воды за счет управления длительностью цикла подачи. При нажатии на ручку, клапан опускается до определенного уровня, затем медленно двигается в исходное направление за счет встроенной пружины. Такие смесители могут быть оснащены терморегулятором или работать для подачи только холодной воды.

Моно-смесители по суть являются кранами, так как не смешивают воду. Они выполняют роль запорной арматуры.

Подбирайте смеситель под ваши условия проживания и уровень комфорта, и он прослужит долгие годы.

Подписывайтесь на наш канал , и вы будете знать все о мире сантехники!

Квадратурный смеситель

Квадратурный смеситель в ряде практических случаев конструирования радиоаппаратуры требуются преобразователи частоты, обеспечивающие на выходе два квадратурных сигнала. Они находят широкое применение в формирователях однополосного сигнала для средств связи, в устройствах синхронного прима (приемниках прямого преобразования), в аппаратуре цифровой обработки. Автор Поляков В. в данной публикации предлагает еще один способ простого построения квадратурный смеситель.

Квадратурный смеситель

Для полного описания радиосигнала надо задавать два его параметра: текущую амплитуду А и текущую фазу ψ. На комплексной плоскости сигнал изображается вектором А, повернутым на угол ψ (рис. 1). Однако практическое представление столь разнородных параметров в виде электрических величин крайне неудобно. Гораздо лучше использовать проекции вектора сигнала на вещественную ось I = A cosψ и на мнимую ось Q = А sinψ. Эти параметры однородны и отображаются напряжениями постоянного (но изменяющегося при модуляции) тока при преобразовании на нулевую частоту, или напряжениями переменного тока, когда ψ= ωt + ϕ. По известным I и Q всегда можно найти А и ψ: А2 = I2 + Q2, ψ= arctg(Q/l). Обозначения сигналов, принятые в зарубежной литературе: I — in phase и Q — quadrature. Традиционная техника построения квадратурных преобразователей предусматривает использование высокочастотного (ВЧ) фазовращателя, установленного в цепи подачи гетеродинного напряжения на смесители (рис. 2, а). На выходах смесителей образуются сигналы разностной частоты, а поскольку фазы сигналов преобразуются точно так же, как и частоты, эти сигналы будут иметь относительный фазовый сдвиг π/2. Иногда, например, в обратимых однополосных преобразователях, с целью сохранения выделяемой боковой полосы высокочастотный преобразователь устанавливают в цепи сигнала (рис. 2,6).

Высокочастотные фазовращатели по рис. 2,а удобно выполнять на цифровых микросхемах одновременно с делением частоты гетеродина на 4, но частотный диапазон цифровых фазовращателей ограничен десятками мегагерц. Ненамного шире и диапазон фазовращателей, выполненных на дискретных LCR-элементах, поскольку на высоких частотах начинает сильно сказываться влияние паразитных индуктивностей и емкостей монтажа и других элементов схемы. Во всяком случае, без элементов подстройки фазовращатель на дискретных элементах выполнить не удается.

Схема квадратурный смеситель

Через разделительные емкости СЗ и С8 ВЧ сигналы подаются на концы линии с подключенными к ним смесителями на диодах VD1 —VD4. Сама линия, по причине не слишком высокой частоты, выполнена в виде П-образного звена фильтра нижних частот на сосредоточенных элементах L2C9C10. Частота среза звена лежит намного выше частоты сигнала, поэтому оно вносит лишь фазовый сдвиг, а не затухание ВЧ сигналов. Выходные емкости истоковых повторителей и входные емкости смесителей учитываются при настройке соответствующей корректировкой емкостей звена подстроечными конденсаторами С9 и С10. Конденсаторы С11 и С12 отфильтровывают высокочастотные компоненты на выходах смесителя и ограничивают полосу пропускания звуковыми частотами.

Катушка L1 содержит 7 витков провода ПЭЛ 0,5 и выполнена на каркасе диаметром 5 мм с магнетитовым подстроечником, катушка линии L2 намотана на высокочастотном кольце с внешним диаметром 9 мм (щечка магнитопровода СБ-9) и содержит 8 витков провода ПЭЛ 0,25. Дроссель L3 нужен лишь для замыкания цепи смесителя по постоянному току, его индуктивность не критична. Налаживание квадратурный смеситель сводится к настройке входного контура и установке уровня гетеродинного напряжения по максимуму сигнала на выходе и к регулировке фазового сдвига в каналах. С этой целью сигналы I и Q подаются, после соответствующего усиления (автор использовал сдвоенный ОУ К157УД2), на входы X и Y осциллографа. Установив одинаковое усиление по каналам, регулировкой конденсаторов С9 и С10 добиваются получения на экране правильной окружности.

Описанный квадратурный смеситель обеспечил чувствительность, ограниченную шумами, нескольких микровольт (задача получения максимальной чувствительности не ставилась) и точность фазового сдвига сигналов на выходах лучше нескольких градусов, во всяком случае, форма фигуры на экране осциллографа была неотличима от окружности во всем диапазоне частот биений от постоянного тока до нескольких килогерц.

Простой цифровой радиоприемник. Часть 2.

Предыдущая статья вызвала некоторой интерес к теме цифрового радио, что меня порадовало. Поэтому я решил разразиться второй частью темы.
Итак, вы уже собрали и проверили работу гетеродинного приемника, о котором я рассказывал в предыдущей статье? Будем надеяться, что да: о). И все почитали соответствующую литературу о том, как он работает, и какие недостатки у него есть. Можно конечно еще многое усовершенствовать в гетеродинном приемнике, и даже заставить его принимать FM модуляцию, ввести АРУ и всякие свистелки переделки. Однако все это был так сказать детский сад и стоит, думаю перейти к более серьезным вещам. Эта часть статьи будет теоретической. Я постараюсь объяснить все как можно проще, так сказать на пальцах.
Чтобы двигаться дальше, нам надо в первую очередь усовершенствовать наш смеситель. Но за нас уже давно все придумали, и это усовершенствование называется — квадратурный смеситель.

Квадратурный смеситель
Выглядит он как-то так.


По сути, это два смесителя о котором я рассказывал в предыдущей части. На первые входы обоих смесителей подается сигнал с нашего АЦП, а на вторые сигналы с гетеродина. Однако, сигналы гетеродина в этом смесителе должны быть сдвинуты на 90 градусов. Т.е. поток данных с АЦП умножается в первом смесителе на синус, а во втором на косинус, формируемый нашим гетеродином. Очевидно, что гетеродин теперь должен иметь два выхода сдвинутых на 90 градусов, т.е. sin, cos. Гетеродин у нас стал квадратурным гетеродином.

Что делает такой смеситель:

Пусть входной сигнал у нас будет X, выходные сигналы обозначим как, I – та часть, которая умножена на косинус, Q – та часть, которая умножена на синус. w = 2пf. Откуда появятся такие уравнения:

I(t) = X(t) * cos (w)
Q(t) = X(t) * sin (w)

Такие чудо сигналы, имеют место на выходе нашего смесителя. Это так называемый квадратурный сигнал, а именно: I – синфазный, Q – квадратурный сигнал. Это вам ничего не напоминает? Да, да, это очень похоже на действительную и мнимую часть сигнала. Или комплексную огибающую.

И уже из этого квадратурного сигнала можно демодулировать все что угодно. Вопрос остается только в сложности и реализуемости конкретного вида демодуляции.

Программная реализация

В принципе если вы читали предыдущую статью, не должно возникнуть никаких особых затруднений. Просто нужно все, что было в гетеродинном приемнике скопипастить еще один раз. И усовершенствовать наш гетеродин, переделав его в квадратурный.

Модернизация DDS колебатора:


Все изменения сводятся к установке квадратурного выхода DDS генератора. Теперь вы можете проделать путь к фазофильтровому или любому другому приемнику.
Подробнее о квадратурном демодуляторе можно почитать, например в [1], [2].

Дециматор – CIC фильтр

Прошлый раз меня просили рассказать о выборе частоты после дециматора. Немного расскажу, как рекомендуется работать при децимации сигнала. Во-первых, децимацию рекомендуется делать ступенями. Т.е. разбивать большой коэффициент децимации на несколько маленьких. Это повышает подавление нежелательных составляющих неминуемо образующихся при децимации. Т.е. алиазинга.
Кроме того, рекомендуется на каждой ступени, увеличивать разрядность, это способствует увеличению динамического диапазона приемника. Конкретные рекомендации, типа: сколько ступеней использовать при таком то коэффициенте децимации дать трудно. Но обычно используют от 2 до 6, в зависимости от коэффициента децимации. Чем больше коэффициент, тем больше ступеней. Например, для гетеродинного приемника с коэффициентом децимации 1024 можно было бы разбить всю децимацию на 4 ступени, с коэффициентами децимации 8, 8, 8, 2. Т.е. 8*8*8*2 = 1024. В реальности эффект от такого разбивания можно увидеть только сделав БПФ и наблюдая за спектром.

Однако все это повышает ресурсоемкость структуры децимации. Так – что тут как говорится, каждый умирает сам.: о)

Выбор коэффициента децимации в первую очередь зависит от применяемого ЦАП, или необходимости синхронизироваться со стандартами частоты дискретизации звука. А так же от желаемой полосы обзора спектра, если в системе есть БПФ. Ну и критерий Найквиста никто не отменял. Кое какую информацию о децимации можно почерпнуть в [3]

Это сладкое слово CORDIC

Собсно, это так называемый appendix, как любят в забугорной лит-ре писать: о). В принципе я вам уже рассказал выше все, что хотел в этой части статьи. А далее я расскажу о том как делают крутые дяди, жаль что тети в этой теме встречаются редко: о).

Дело в том, что такую реализацию квадратурного смесителя, о которой я вам рассказал, сейчас стараются не делать. А вместо двух умножителей с DDS генератором, используют CORDIC алгоритм с аккумулятором фазы. Минус DDS+умножитель заключается в том, что у DDS генератора кроме аккумулятора фазы есть таблица синуса, и эта таблица имеет некоторую точность. И еще, зачастую фазу и таблицу синуса усекают, иначе она бы занимала очень много памяти. Не буду вдаваться в подробности работы DDS генератора, я думаю, это вы найдете в интернете без проблем. А вот бяка заключается в том, что якобы усечение фазы и как следствие погрешность установки отсчетов синуса нехорошо сказывается на SFDR (динамический диапазон свободный от гармоник), и SNR (отношение сигнал шум) приемника.

А вот CORDIC не использует никаких таблиц, а производит чистое умножение на синус и косинус угла, т.е. осуществляет поворот вектора. Я не производил качественных и тем более количественных измерений смесителей, реализованных на умножитель+DDS и на CORDIC алгоритме, поэтому точно сказать не могу что лучше, знаю только что на слух вы там ничего не услышите это точно: о).

Однако, крутые дяди занимающиеся этой темой, чай не дубы, и наверное знают о чем говорят. Поэтому, можно с утверждением сказать, что CORDIC в качестве квадратурного смесителя лучше.

Как это работает

Нас как обычно, спасает логическое ядро CORDIC алгоритма от Xilinx. Там за нас уже все придумано, нам надо его только правильно настроить.

CORDIC от Xilinx в режиме поворота вектора, а это нам как раз и надо, вычисляет следующие уравнения:

X’ = cos (ф) * X – sin (ф) * Y
Y’ = cos (ф) * Y + sin (ф) * X

Но это нам не совсем подходит, нам нужны только косинус и синус. Поэтому на один из входов нам необходимо подать постоянно 0, тогда наши уравнения примут вид:

X’ = cos (ф) * X
Y’ = sin (ф) * X

Можно 0 подавать и на X, на выходе в этом случае будет минус синус. Если забегать вперед, обычно так и делается. Разницы тут конечно особой нет, просто минус синус позволяет согласовываться с БПФ если оно будет в системе, там в этом случае несколько получается попроще, но это уже другая история….
Что такое ф? Очевидно что это угол, на рисунке он обозначен как P, типа фаза – это одно и тоже. Диапазон изменения угла от –Пи до Пи. В реальности это не очень удобно, и при настройке ядра лучше использовать опцию нормализованного угла от -1.0 до 1.0.

Ну вот… Остается понять, что за аккумулятор фазы еще там приклеен. Аккумулятор фазы как раз и есть та штука, которая гонит в наш CORDIC угол ф. Точно так же как раньше DDS гнал отсчеты синуса или косинуса в умножитель, тут аккумулятор фазы гонит угол в CORDIC.

Дак что же это за аккумулятор такой?

Это обычный счетчик с индексом М. А индекс М – это наше слово частоты, меняя это слово, мы меняем скорость приращения фазы и как следствие перестраиваемся по частоте. Короче говоря, это точно такой же узел, который есть в DDS генераторе, или иными словами это тот же DDS генератор только без таблицы синуса.
Аккумулятор фазы, можно родить как самому, благо счетчик осилит каждый, так и использовать уже известное нам логическое ядро DDS генератора в режиме генератора фазы. С этим я думаю, вы разберетесь и сами, не забываем только о том, что у CORDIC алгоритма формат входных и выходных данных дробный. 1QN формат для входных и выходных данных и 2QN для угла. Подробнее, курим даташит…

Пару слов о настройке CORDIC ядра:
Режим: вращение вектора (Rotate)
Структура: Конвейерный режим – иначе CORDIC не будет успевать считать семплы.
Формат фазы: Нормализованные радианы.
Обязательно поставить галку Corse Rotation – это включает модуль грубого поворота угла, иначе CORDIC будет считать только до Пи/4. А так же включить компенсацию масштаба, это повышает точность.

Выглядеть это может как то так:






А вот реализацию этого в реальном мире, я оставлю вам на домашнее задание.: о). Кто осилит, пишите: о)
Кстатии, есть даже DDS генераторы не на основе таблицы синуса, а на основе CORDIC алгоритма: о). Ресурсов это требует больше, но зато чистый спектр. Так, чета вспомнилось… к слову: о).
В принципе для радиолюбительских целей CORDIC можно и не юзать, все вполне работает и на связке умножитель+DDS.

Эти крутые дяди – такие крутые…

На последок еще пару слов как делают, и делать в принципе надо. Правда реализация такого в ПЛИС пока довольно сложна, лично я пока не осилил… Но есть к чему стремиться. Это обычно делают там, где попроще — в компьютерной программе.
Представим, что наш квадратурный сигнал мы взяли и подали на БПФ. Что это нам даст? Это нам даст спектр участка диапазона в реальном времени.

Нарисовано схематически и не в масштабе, чисто чтобы понять смысл. На этом спектре (верхний график) видно, что есть какой-то сигнал, и мы его хотим послушать. Как нам это сделать? Полоса пропускания приемника, всего 3Кгц, а сигнал на спектре находится в районе, к примеру на частоте 50 Кгц, т.е. частота гетеродина + 50 Кгц. Самый простой метод сместить частоту гетеродина на 50 Кгц вверх, чтобы этот сигнал оказался в полосе пропускания НЧ фильтра. Но это как бы не особо… и известно еще со времен Попова…
Но есть другой метод, не трогая частоту гетеродина, тупо взять и скопировать этот участок спектра прямо в полосу пропускания приемника. Сделать ОБПФ и радоваться…

Т.е. мы можем просматривать диапазон в реальном времени и слушать разные его участки, не трогая настройку приемника. Профит? Ага…: о). Это чисто на пальцах, там есть куча всяких подводных камней, но это уже совсем другая история… и выходит далеко за рамки простого цифрового приемника.

Ну вот, собственно и все на этот раз… Удачных экспериментов и дальнего приема: о). Надеюсь было интересно тем кому интересно: о).

Квадратурный смеситель принцип работы

-->
Другие известные форумы и сайты по электронике

все что посвящено электронике и общению специалистов. реклама других ресурсов.

  • Магазины
  • Форумы и конференции
  • Производители
  • Информационные ресурсы
  • Поисковики
  • FTP-серверы
-->
В помощь начинающему

вопросы начального уровня

Модераторы раздела VAI aosp SergM vetal KRS Alexandr des00 Uladzimir Rst7 iosifk ViKo Herz l1l1l1 Tanya Сергей Борщ Omen_13 fill Vasily_ Егоров Walrus
  • ARM, 32bit
  • MCS51, AVR, PIC, STM8, 8bit
  • Программирование
  • Схемотехника
  • Интерфейсы
-->
International Forum

This is a special forum for English spoken people, read it first.

-->
Образование в области электроники

все что касается образования, процесса обучения, студентам, преподавателям.

-->
Обучающие видео-материалы и обмен опытом


Модераторы раздела iosifk

Cистемный уровень проектирования

-->
Вопросы системного уровня проектирования

Применение MATLAB, Simulink, CoCentric, SPW, SystemC ESL, SoC


Модераторы раздела Rst7 -->
Математика и Физика


Модераторы раздела Rst7 -->
Операционные системы

Linux, Win, DOS, QNX, uCOS, eCOS, RTEMS и другие


Модераторы раздела Rst7 -->
Документация

оформление документации и все что с ней связано


Модераторы раздела Rst7 -->
Системы CAD/CAM/CAE/PLM

обсуждение САПР AutoCAD, Компас, SolidWorks и др.

-->
Разработка цифровых, аналоговых, аналого-цифровых ИС


Модераторы раздела Rst7 -->
Электробезопасность и ЭМС


Модераторы раздела Rst7 -->
Управление проектами

Управление жизненным циклом проектов, системы контроля версий и т.п.


Модераторы раздела Rst7 -->
Нейронные сети и машинное обучение (NN/ML)

Форум для обсуждения вопросов машинного обучения и нейронных сетей


Модераторы раздела Rst7

Программируемая логика ПЛИС (FPGA,CPLD, PLD)

-->
Среды разработки - обсуждаем САПРы

Quartus, MAX, Foundation, ISE, DXP, ActiveHDL и прочие.
возможности, удобства.

Модераторы раздела vetal des00 -->
Работаем с ПЛИС, области применения, выбор

на чем сделать? почему не работает? кто подскажет?

Модераторы раздела vetal des00 -->
Языки проектирования на ПЛИС (FPGA)

Verilog, VHDL, AHDL, SystemC, SystemVerilog и др.

Модераторы раздела aosp vetal des00 -->
Системы на ПЛИС - System on a Programmable Chip (SoPC)

разработка встраиваемых процессоров и периферии для ПЛИС

Модераторы раздела vetal des00 Omen_13

Цифровая обработка сигналов - ЦОС (DSP)

-->
Сигнальные процессоры и их программирование - DSP
-->
Алгоритмы ЦОС (DSP)

Микроконтроллеры (MCs)

-->
Cредства разработки для МК

FAQ, How-to, тонкости работы со средствами разработки

  • IAR
  • Keil
  • GNU/OpenSource средства разработки
-->
  • STM
  • NXP
  • Microchip (Atmel)
  • TI, Allwinner, Nordic Semiconductor, Espressif Systems и другие
--> -->
MSP430


Модераторы раздела VAI -->
Все остальные микроконтроллеры

и все что с ними связано

-->
Отладочные платы

Вопросы, связанные с отладочными платами на базе МК: заказ, сборка, запуск

Печатные платы (PCB)

-->
Разрабатываем ПП в САПР - PCB development

FAQ, вопросы проектирования в ORCAD, PCAD, Protel, Allegro, Spectra, DXP, SDD, WG и др.

Модераторы раздела SergM fill
  • Библиотеки компонентов
  • Altium Designer, DXP, Protel
  • P-CAD 200x howto
  • Эремекс, Delta Design
  • Cadence
  • Примеры
  • Zuken CADSTAR
  • Mentor Xpedition Enterprise, PADS
  • Бесплатные САПР: KiCAD, EasyEDA, EAGLE и др.
-->
Работаем с трассировкой

тонкости PCB дизайна, от Spectra и далее.


Модераторы раздела fill -->
Изготовление ПП - PCB manufacturing

Фирмы, занимающиеся изготовлением, качество, цены, сроки


Модераторы раздела fill
  • ПСБ Технолоджи
  • ТеПро
  • PS-Electro
  • Резонит
  • PCB Professional
  • Абрис
  • ОАО "НИЦЭВТ"
  • ООО "М-Плата"
  • в домашних условиях

Сборка РЭУ

-->
Пайка и монтаж

вопросы сборки ПП, готовых изделий, а также устранения производственных дефектов

-->
Корпуса

обсуждаем какие есть копруса, где делать и прочее

-->
Вопросы надежности и испытаний

расчеты, методики, подбор компонентов

Аналоговая и цифровая техника, прикладная электроника

-->
Вопросы аналоговой техники

разработка аналоговых схем, моделирование схем в SPICE, расчёты и анализ, выбор элементной базы

Модераторы раздела Alexandr ViKo Tanya Егоров -->
Цифровые схемы, высокоскоростные ЦС

High Speed Digital Design

-->
Rf & Microwave Design

wireless технологии и не только


Модераторы раздела l1l1l1 -->
Метрология, датчики, измерительная техника

Все что связано с измерениями: измерительные приборы (осциллографы, анализаторы спектра и пр.), датчики, обработка результатов измерений, калибровка, технологии измерений и др.

Модераторы раздела ViKo Tanya -->
АВТО электроника

особенности электроники любых транспортных средств: автомашин и мотоциклов, поездов, судов и самолетов, космических кораблей и летающих тарелок.


Модераторы раздела Vasily_ -->
Умный дом
-->
3D печать

3D принтеры, наборы, аксессуары, ПО

-->
Робототехника

Модели, классификация, решения, научные исследования, варианты применения

-->
Ремонт и отладка

обсуждение вопросов ремонта и отладки различных устройств и готовых изделий


Модераторы раздела Herz

Силовая Электроника - Power Electronics

-->
Силовая Преобразовательная Техника

Источники питания электронной аппаратуры, импульсные и линейные регуляторы. Топологии AC-DC, DC-DC преобразователей (Forward, Flyback, Buck, Boost, Push-Pull, SEPIC, Cuk, Full-Bridge, Half-Bridge). Драйвера ключевых элементов, динамика, алгоритмы управления, защита. Синхронное выпрямление, коррекция коэффициента мощности (PFC)

Модераторы раздела Herz Егоров -->
Обратная Связь, Стабилизация, Регулирование, Компенсация

Организация обратных связей в цепях регулирования, выбор топологии, обеспечение стабильности, схемотехника, расчёт

Модераторы раздела Herz Егоров -->
Первичные и Вторичные Химические Источники Питания

Li-ion, Li-pol, литиевые, Ni-MH, Ni-Cd, свинцово-кислотные аккумуляторы. Солевые, щелочные (алкалиновые), литиевые первичные элементы. Применение, зарядные устройства, методы и алгоритмы заряда, условия эксплуатации. Системы бесперебойного и резервного питания

Модераторы раздела Herz Егоров -->
Высоковольтные Устройства - High-Voltage

Высоковольтные выпрямители, умножители напряжения, делители напряжения, высоковольтная развязка, изоляция, электрическая прочность. Высоковольтная наносекундная импульсная техника


Модераторы раздела Herz -->
Электрические машины, Электропривод и Управление

Электропривод постоянного тока, асинхронный электропривод, шаговый электропривод, сервопривод. Синхронные, асинхронные, вентильные электродвигатели, генераторы


Модераторы раздела Herz -->
Индукционный Нагрев - Induction Heating

Технологии, теория и практика индукционного нагрева


Модераторы раздела Herz -->
Системы Охлаждения, Тепловой Расчет – Cooling Systems

Охлаждение компонентов, систем, корпусов, расчёт параметров охладителей


Модераторы раздела Herz -->
Моделирование и Анализ Силовых Устройств – Power Supply Simulation

Моделирование силовых устройств в популярных САПР, самостоятельных симуляторах и специализированных программах. Анализ устойчивости источников питания, непрерывные модели устройств, модели компонентов

Модераторы раздела Herz Егоров -->
Компоненты Силовой Электроники - Parts for Power Supply Design

Силовые полупроводниковые приборы (MOSFET, BJT, IGBT, SCR, GTO, диоды). Силовые трансформаторы, дроссели, фильтры (проектирование, экранирование, изготовление), конденсаторы, разъемы, электромеханические изделия, датчики, микросхемы для ИП. Электротехнические и изоляционные материалы.

Модераторы раздела Herz Егоров

Интерфейсы

-->
Форумы по интерфейсам

все интерфейсы здесь

  • ISDN/G.703/E1
  • ISA/PCI/PCI-X/PCI Express
  • Wireless/Optic
  • RS232/LPT/USB/PCMCIA/FireWire
  • Fast Ethernet/Gigabit Ethernet/FibreChannel
  • Интерфейсы для "интеллектуального дома"
  • от ТТЛ до LVDS здесь
  • IDE/ATA/SATA/SAS/SCSI/CF
  • Аудио/Видео интерфейсы
  • Сотовая связь и ее приложения
  • FAQ по XPort/WiPort
  • Controller Area Network (CAN)

Поставщики компонентов для электроники

-->
Поставщики всего остального

от транзисторов до проводов

-->
Компоненты

Закачка тех. документации, обмен опытом, прочие вопросы.

Майнеры криптовалют и их разработка, BitCoin, LightCoin, Dash, Zcash, Эфир

-->

наблюдается очень большой спрос на данные устройства.

Дополнительные разделы - Additional sections

-->
Встречи и поздравления

Предложения встретиться, поздравления участников форума и обсуждение мест и поводов для встреч.

Модераторы раздела VAI aosp SergM vetal KRS Alexandr des00 Uladzimir Rst7 iosifk ViKo Herz l1l1l1 Tanya Сергей Борщ Omen_13 Vasily_ Егоров Walrus -->
Ищу работу

ищу работу, выполню заказ, нужны клиенты - все это сюда

Модераторы раздела VAI aosp SergM vetal KRS Alexandr des00 Uladzimir Rst7 iosifk ViKo Herz l1l1l1 Tanya Сергей Борщ Omen_13 Vasily_ Егоров Walrus -->
Предлагаю работу

нужен постоянный работник, разовое предложение, совместные проекты, кто возьмется за работу, нужно сделать.

Модераторы раздела VAI aosp SergM vetal KRS Alexandr des00 Uladzimir Rst7 iosifk ViKo Herz l1l1l1 Tanya Сергей Борщ Omen_13 Vasily_ Егоров Walrus -->
Куплю

микросхему; устройство; то, что предложишь ты :)

Модераторы раздела VAI aosp SergM vetal KRS Alexandr des00 Uladzimir Rst7 iosifk ViKo Herz l1l1l1 Tanya Сергей Борщ Omen_13 Vasily_ Егоров Walrus -->
Продам

есть что продать за деньги, пиво, даром ?
Реклама товаров и сайтов также здесь.

Модераторы раздела VAI aosp SergM vetal KRS Alexandr des00 Uladzimir Rst7 iosifk ViKo Herz l1l1l1 Tanya Сергей Борщ Omen_13 Vasily_ Егоров Walrus -->
Объявления пользователей

Тренинги, семинары, анонсы и прочие события

Модераторы раздела VAI aosp SergM vetal KRS Alexandr des00 Uladzimir Rst7 iosifk ViKo Herz l1l1l1 Tanya Сергей Борщ Omen_13 Vasily_ Егоров Walrus -->
Общение заказчиков и потребителей электронных разработок
Модераторы раздела VAI aosp SergM vetal KRS Alexandr des00 Uladzimir Rst7 iosifk ViKo Herz l1l1l1 Tanya Сергей Борщ Omen_13 Vasily_ Егоров Walrus

Лекция 2. Элементы архитектура интегральных радиоприемных трактов

Развитие монолитных интегральных схем, предназначенных для использования в радиоприемных трактах, идет по пути кардинального сокращения числа дополнительных внешних элементов.

Первые монолитные РЧ ИС представляли собой набор активных элементов объединенных в заготовки усилительных каскадов, смесителей и т.д. Пассивные элементы, которые определяют частотные, усилительные и селективные свойства тракта (катушки индуктивности, емкости, пъезокерамические фильтры и т.д.) являлись внешними.

Внешние дискретные пассивные элементы имеют, как правило, лучшие параметры, по сравнению с интегральными. Это прежде всего касается индуктивных элементов, которые имеют значительно более высокие значения добротности по сравнению с интегральными. Использование внешних элементов позволяет строить на основе ИМС радиоприемные тракты различных архитектур с высокими техническими характеристиками.

Супергетеродин является наиболее популярной архитектурой в трактах с использованием внешних компонентов. Структурная схема супергетеродина с одним преобразованием частоты обсуждалась в материале лекции 1. Однако в сверхвысокочастотных диапазонах, которые наиболее широко используются в современных радиотелекоммуникационных системах, супергетеродины с одним преобразованием частоты имеют существенный недостаток. Он связан с необходимостью компромисса между степенью подавления зеркального канала (паразитного канала приема, симметричного к основному относительно частоты гетеродина) и селективностью по соседнему каналу. Увеличение промежуточной частоты облегчает подавление зеркального канала, однако требует использования все более высокодобротных фильтров для получения достаточной селективности по соседнему каналу.

Проблему решает использование супергетеродинов с двумя и более преобразованиями частоты. Соответственно, в системе имеется несколько промежуточных частот. Первая промежуточная частота выбирается относительно высокой для обеспечения необходимого подавления зеркального канала, а вторая – низкой, для обеспечения селективности по соседнему каналу. Структурная схема с двойным преобразованием частоты показана на рис.1.

dsd11-12 / dsd-11=ТКС / Kulakov

3. Основные преобразования сигнала в радиоприемном тракте.

4. Архитектура супергетеродинного радиоприемного тракта (с одним и двумя преобразованиями частоты).

5. Архитектура супергетеродинного радиоприемного тракта с низкой промежуточной частотой. Квадратурный смеситель.

6. Архитектура радиоприемного тракта с нулевой промежуточной частотой (прямого преобразования).

7. Коэффициент шума. Отношение сигнал/шум.

8. Коэффициент шума. Выражение для коэффициента шума в многокаскадных системах.

9. Нелинейные искажения. Меры линейности радиоприемного тракта (IP2, IP3).

10. Динамический диапазон радиоприемного тракта.

11. Оптимизация динамического диапазона радиоприемного тракта.

12. Интегральные элементы для построения радиотракта в КМОП технологии. Резисторы. Конденсаторы.

13. Интегральные элементы для построения радиотракта в КМОП технологии.

14. Широкополосные усилительные каскады. Принцип построения усилительных каскадов на основе потенциального зеркала.

15. Широкополосные усилительные каскады. Каскады на основе потенциального зеркала (базовое звено и схемы на его основе).

16. Метод оценки верхней граничной частоты усилительных каскадов (OCTs).

17. Малошумящий усилитель. Классическая теория шумящего четырехполюсника.

18. Методы согласования широкополосных малошумящих усилителей.

19. Метод согласования узкополосных малошумящих усилителей.

20. Назначение смесителей. Типы смесителей.

21. Коммутационные смесители. Эквивалентная схема пассивного коммутационного смесителя.

22. Коэффициент преобразования пассивного коммутационного смесителя.

23. Порядок расчета малошумящих узкополосных РЧ КМОП усилителей.

24. Возможности программы Spectre RF.

Краткая история возникновения радио. Основные преобразования сигнала в радиоприемном тракте.

Краткая история возникновения радио.

Свою историю радио начинает с экспериментов Герца по проверке уравнений Максвелла. Передатчик Герца состоял из катушки индуктивности, искрового разрядника и простейшей антенны. В качестве приемника использовался резонансный контур с антенной и разрядником. О наличии передачи можно было судить по видимому искровому разряду в приемнике. Нет нужды говорить, что дальность этой системы вследствие крайне низкой чувствительности приемника была мала (реально в пределах комнаты).

Далее опыты продолжил Маркони. Он использовал тот же передатчик, что и Герц, однако в приемнике он применил когерер (соhеrеr) изобретенный в 1890 г. Брэнли (Вrаnly). Когерер представлял собой стеклянную трубку, наполненную слегка окисленным металлическим порошком. Сопротивление когерера резко изменялось при воздействии высокочастотного переменного тока. Этот приемный тракт (рис.1.1) позволял осуществлять прием телеграфных сигналов. На основе когерера в 1895 году А.С. Попов продемонстрировал первое в мире практически значимое радиоприемное устройство.

Работы над совершенствованием когерера (несовершенными контактами) привели к изобретению полупроводниковых диодов на точечных контактах (1901-1904, Воsе). Вследствие своей широкополосности эти системы принимали большое количество помех, что крайне затрудняло их практическое использование. Введение резонансного контура позволило улучшить качество связи. Однако отсутствие достаточного усиления в приемном тракте вынуждало увеличивать мощность передатчиков вплоть до мегаватт (к концу первой мировой войны).

Этот недостаток заставлял непрерывно работать инженерную мысль над совершенствованием приемных трактов. К 1906 году широкое применение нашли приемники на основе диодов с точечным контактом (рис.1.2). Этим же временем датируется первая в мире аудио радиотрансляция. В 1907 году был запатентован первый в мире электронный прибор, способный усиливать сигналы (электронная лампа - триод). Схема простейшего приемника на основе триода приведена на рис.1.3.

В 1912 Э. Армстронг построил регенеративный приемник с использованием триода. За счет использования положительной обратной связи ему удалось существенно повысить чувствительность и селективность приемного тракта.

Рис.1.1 Приемник на основе когерера

Рис.1.2 Приемник на основе полупроводникового диода

Рис.1.3 Приемник на основе триода Однако на высоких частотах было трудно получить достаточное усиление. Э. Армстронг

использовал известный к тому времени гетеродинный принцип (использовавшийся до этого в основном для "озвучивания" телеграфных сигналов) для преобразования высокой частоты в более низкую промежуточную. Он назвал свою систему супергетеродинном (1917), который доминировал в качестве базовой архитектуры в течении всего прошлого столетия (рис.1.4). В то же время, были изобретены нейтродин, рефлексный приемник, сверхрегенеративный приемник, которые при минимальном числе деталей позволяли получать впечатляющие результаты по чувствительности приемного тракта.

Назначение радиоприемного тракта

• выделения полезного сигнала из смеси его с помехами;

• выделения модулирующей функции;

• выделения передаваемой информации из модулирующей функции, и ее преобразование к удобному для дальнейшего использования виду.

Изучение вопросов выделения передаваемой информации из модулирующей функции выходит за рамки данного курса, так как она обычно решается методами низкочастотной аналоговой интегральной схемотехники, а в настоящее время все чаще с помощью цифровых сигнальных процессоров.

Решение перечисленных задач в радиоприемном тракте осуществляется с помощью следующих функций:

1. избирательности – выделения полезного сигнала из смеси “сигнал+помеха”, в соответствии с некоторым различием их физических свойств;

2. демодуляции – выделения модулирующего колебания из колебания радиосигнала высокой частоты;

3. усиления полезного сигнала;

4. частотного преобразования радиосигнала в область частот, оптимальную для его обработки;

5. адаптации к изменяющейся электромагнитной обстановке.

Основные преобразования сигнала в радиоприемном тракте.

Совокупность колебаний, действующих в тракте радиочастоты, образует сложный процесс, который называется групповым сигналом . В общем случае групповой сигнал содержит полезное принимаемое колебание, а также все остальные колебания, являющиеся помехам радиоприему.

Групповой сигнал, снимаемый с антенны 1 (рис.1.4) содержит в своем составе помехи, которые могут многократно превосходить полезный сигнал. Для того, чтобы избежать перегрузки входных цепей и подавить нежелательные каналы приема входной сигнал проходит через цепи предварительной селекции (преселектор 2).

Рис.1.4 Упрощенная структурная схема радиоприемного тракта (супергетеродин).

Преселектор является пассивным фильтром, выполненным с использованием индуктивных элементов, емкостей и полосковых линий. Как правило, преселектор является широкополосным по сравнению с шириной канала, и его селективности не достаточно для выделения желаемого канала приема. После прохождения преселектора оказываются в значительной степени подавлены внеполосные помехи.

Уровенъ полезного сигнала может оказаться сравнимым с уровнем шумов каскадов радиотракта. Для того, чтобы снизить влияние собственных шумов радиоприемного тракта, его входным каскадом как правило является малошумящий усилитель 3 (МШУ (LNA)) радиочастоты. Уровень собственных шумов МШУ в основном определяет чувствтельность тракта. Коэффициент усиления МШУ выбирается относительно небольшим (5-10 раз). Этому есть несколько причин.

Первая заключается в том, что при большом коэффициенте усиления помеха (которая нередко значительно превосходит по уровню полезный сигнал) может вывести МШУ из линейного режима работы. Это приводит к нежелательному взаимодействию составляющих группового сигнала.

Вторая причина – энергетическая, усиление на высоких частотах требует больших затрат мощности.

Если МШУ выполняется по схеме с резонансной нагрузкой, то усиливаются только те составляющие группового сигнала, которые принадлежат основной полосе приема.

Усиленный МШУ сигнал подается на смеситель 4. Смеситель переносит спектр группового сигнала в ( промежуточную ) область частот, в которой удобно и энергетически эффективно проводить его дальнейшую обработку. Промежуточная частота определяется частотами входного сигнала и гетеродина 6.

Как правило, промежуточная частота (ПЧ (IF)) лежит гораздо ниже частот основной полосы приема (радиочастоты (RF)). Исключение составляют радиоприемные тракты инфрадинного типа. В зависимости от конкретной архитектуры тракта таких преобразований (и, соответственно, промежуточных частот) может быть несколько. В области промежуточной частоты происходит выделение желаемого канала приема с помощью фильтров основной селекции (ФОС) 5. После ФОС, групповой сигнал содержит главным образом полезный сигнал, а также шумы, лежащие в полосе полезного сигнала, и, возможно, продукты нелинейного взаимодействия составляющих группового сигнала до ФОС.

Основное усиление полезного сигнала достигается в усилителе промежуточной частоты 7. Полезный сигнал усиливается до уровня, достаточного для нормальной работы демодулятора 8, в котором происходит восстановление модулирующей функции.

Общее усиление радиотракта обычно составляет 120-140 дБ. В ряде случаев используется система автоматической регулировки усиления (АРУ(AGC)) для повышения динамического диапазона тракта и оптимизации потребляемой мощности.

Особенности построения интегральных радиоприемных трактов.

Развитие монолитных интегральных схем, предназначенных для использования в радиоприемных трактах, идет по пути кардинального сокращения числа дополнительных внешних элементов.

Первые монолитные РЧ ИС представляли собой набор активных элементов объединенных в заготовки усилительных каскадов, смесителей и т.д. Пассивные элементы, которые определяют частотные, усилительные и селективные свойства тракта (катушки индуктивности, емкости, пъезокерамические фильтры и т.д.) являлись внешними.

Внешние дискретные пассивные элементы имеют, как правило, лучшие параметры, по сравнению с интегральными. Это прежде всего касается индуктивных элементов, которые имеют значительно более высокие значения добротности по сравнению с интегральными. Использование внешних элементов позволяет строить на основе ИМС радиоприемные тракты различных архитектур с высокими техническими характеристиками.

Супергетеродин является наиболее популярной архитектурой в трактах с использованием внешних компонентов. Структурная схема супергетеродина с одним преобразованием частоты обсуждалась в материале лекции 1. Однако в сверхвысокочастотных диапазонах, которые наиболее широко используются в современных радиотелекоммуникационных системах, супергетеродины с одним преобразованием частоты имеют существенный недостаток. Он связан с необходимостью компромисса между степенью подавления зеркального канала (паразитного канала приема, симметричного к основному относительно частоты гетеродина) и селективностью по соседнему каналу. Увеличение промежуточной частоты облегчает подавление зеркального канала, однако требует использования все более высокодобротных фильтров для получения достаточной селективности по соседнему каналу.

Проблему решает использование супергетеродинов с двумя и более преобразованиями частоты. Соответственно, в системе имеется несколько промежуточных частот. Первая промежуточная частота выбирается относительно высокой для обеспечения необходимого подавления зеркального канала, а вторая – низкой, для обеспечения селективности по соседнему каналу. Структурная схема с двойным преобразованием частоты показана на рис.1.

Читайте также: