Как дистанционно включить насос в колодце

Обновлено: 19.05.2024

Автоматизация насосов водоснабжения

Вопросы автоматизации бытовых погружных и поверхностных насосов водоснабжения.

В данной статье рассмотрим методы автоматизации бытовых однофазных насосов водоснабжения и ответим на вопросы, которые периодически задают наши покупатели.

Массовое распространение средств автоматизации для насосов водоснабжения, позволило значительно увеличить спектр применения насосного оборудования в быту и повысить комфорт водопотребления.
Владельцы загородной недвижимости с автономным водоснабжением, не только не обделены, но и имеют более высокий уровень комфорта, в сравнении с городским.
При этом прогресс средств автоматизации, продолжает активно двигаться вперед.
В т.ч. появляется большое разнообразие однотипных устройств автоматизации, что, к сожалению, привело к тому, что большая часть этих устройств имеет низкое качество и зачастую "вредный" функционал.

Давайте рассмотрим, что такое автоматика для насоса водоснабжения и чем отличаются средства автоматизации.

Для начала обозначим, что представляет из себя насос для водоснабжения: это погружной (колодезный или скважинный) насос или поверхностный самовсасывающий, или нормально-всасывающий насос. Обязательным условием является достаточный создаваемый напор воды для нормальной эксплуатации в системе водоснабжения. Обычно это насосы с максимальным давлением начиная от 25 метров водяного столба. Это минимум. Все, что меньше - не является насосом для водоснабжения. В реальности под эти параметры подходят почти все бытовые насосы кроме дренажных. Даже вибрационный насос подходит для применения в автоматизации водоснабжения. На практике насосы водоснабжения создают максимальное давление 40-150 метров.

Насос без автоматики приходится вручную включать, а после пользования водой, так же вручную отключать. Конечно, это крайне неудобно. Поэтому основной функцией насосной автоматики является автоматическое включение насоса при открытии крана водоразборной точки, и отключение при закрытии кранов. При этом, водоразборных точек может быть бесконечно много и при открытии крана любой из них, насос должен включиться, а выключиться при всех закрытых кранах.

По сути, данная функция и является автоматизацией насоса водоснабжения, превращая просто насос в насосную станцию. Остальные функции являются сервисным дополнением. Из таких дополнительных функций, наиболее важной является защита насоса от работы без воды. Если автоматика не поддерживает эту функцию - ее необходимо установить дополнительно в обязательном порядке. Любой насос при работе без воды выйдет из строя из-за перегрева двигателя и гидравлической части. И никто не застрахован от возникновения подобной ситуации. Точнее, по тем или иным причинам, рано или поздно - ситуация возникает почти всегда. И простейшая защита поможет застраховаться от дорогостоящей замены насоса.

Это, так скажем, программа минимум, требований к автоматике насоса водоснабжения.

Реализованы эти функции могут быть по разному. Рассмотрим разновидности и сравним эти способы реализации.

1) Гидропневматическая автоматика.

Самый простой, но и самый популярный вид автоматики. Отличается высокой надежностью и универсальностью. Подходит для любых систем водоснабжения.
Основными элементами являются: электромеханическое реле давления и мембранный бак - гидроаккумулятор.
Реле давления - устройство управляющее подачей напряжения на насос в зависимости от давления в системе водоснабжения. Имеет регулировки, с помощью которых можно установить давление, при котором насос отключается и давление включения насоса, при котором он будет включаться.
Когда мы закрываем все краны - давление растет, и по достижении давления выключения реле выключает насос. При открытии крана - давление падает и насос включается.
Но, реле способно выполнять этот алгоритм только при наличии в системе гидроаккумулятора. Гидроаккумулятор представляет из себя металлический бак в котором с одной стороны находится резиновая груша, с другой стороны под давлением закачан воздух.
Гидроаккумулятор выполняет следующие функции: роль демпфера, сглаживающего скачки давления в системе и нормализующего работу реле давления; гаситель гидроударов; некий запас воды в случае отключения электричества и позволяющий реже включаться насосу, т.к. частое включение и отключение быстро выведет его из строя.
С гидроаккумулятором алгоритм работы меняется: при закрытии всех кранов, вода начинает поступать в гидроаккумулятор. Когда давление воды в груше бака выравнивается с давлением подкачанного воздуха, наполнение прекращается и рост давления в системе заставляет реле давления выключить насос. При открытии крана - вода поступает сначала из гидроаккумулятора, затем давление в системе падает и реле давления включает насос. Чем больше будет объем гидроаккумулятора, тем реже будет включаться насос и тем дольше он будет служить. При учете объема гидроаккумулятора в качестве резервного запаса воды, следует учитывать, что полезный объем будет равняться 20-30% от номинального объема бака.
Очень важно правильно настроить бак путем подкачки воздуха. Давление воздуха настраивается в системе без давления, после настройки реле. Давление воздуха в гидроаккумуляторе выставляется так, чтобы оно составляло 90% от давления включения насоса, установленном на реле давления. В этом случае обеспечивается необходимый комфортный баланс между полезным объемом бака и бесперебойной подачей воды потребителям.
Слабых мест в гидропневматической автоматике два: мембрана гидроаккумулятора и контакты реле давления.
Рано или поздно, мембрана гидроаккумулятора выйдет из строя. Это лечится только заменой мембраны или бака целиком. Срок службы зависит от производителя, качества воды, давления в системе.
Контакты реле давления имеют свойство постепенно выгорать. Это неизбежно, т.к. реле приходится коммутировать достаточно большие нагрузки, а ведь пусковой ток электродвигателя в пять раз больше номинального. Поэтому лучшим решением будет коммутировать напряжение на насос не напрямую через реле давления, а через электромагнитный контактор, а катушкой контактора управлять через реле давления. Таким образом существенно повышается ресурс автоматики и ее работоспособность, т.к. каждый элемент будет заниматься своим делом - реле управлять, а контактор коммутировать.
Обращу внимание, что высококачественные реле давления сразу разработаны для применения с контактором и не допускают прямой коммутации насоса.

Устройство реле давления:


Защита от работы без воды может быть выполнена по разному. Если вероятность срабатывания защиты высока, то обычно устанавливается контроллер с кондуктометрическими погружными датчиками уровня. Такая автоматика надежно защищает насос и обеспечивает настройку уровней включения и отключения защиты, что существенно сокращает количество включений насоса. Система с такой защитой является полностью автономной, т.е. насос выключается при отсутствии воды и сам включается при ее появлении.

Вот пример такой автоматизации:


Описание: коммутация насоса производится посредством контактора. Защиту от работы без воды осуществляет контроллер с погружными электродами.
Нижний электрод - общий. Когда вода опускается но среднего электрода, насос отключается и включится только тогда, когда вода достигнет верхнего электрода.
Это обеспечивает наполнение источника воды и более редкий запуск насоса.
Данная автоматика имеет большую популярность в скважинах с низким дебитом.

Если вероятность возникновений данной ситуации невелика, то можно обойтись более простым решением - вместе с реле давления установить реле защиты LP 3 или аналогичное.
Работает реле следующим образом: при наличии давления в системе >0,3 бар контакты реле замкнуты, при падении, контакты размыкаются и питание насоса прерывается.
Основным недостатком данного типа автоматики является то, что при срабатывании, перезапуск системы производится только вручную, путем удержания кнопки на блоке защиты до появления давления в системе. Кроме того, защита срабатывает при неправильной настройке гидроаккумулятора и в ситуации, когда временно отключили электроэнергию и имеется попытка водоразбора.

Пример типовой схемы гидропневматической автоматики подключенной через контактор:


Еще один пример более продвинутой схемы, имеющей массу преимуществ.
В данной схеме в качестве реле защиты от работы без воды используется манометр с электроконтактной приставкой. Это позволяет намного гибче управлять системой.
Так, предложенный вариант не боится кратковременных срабатываний защиты, например из-за неправильных настроек, т.к. отключается не сразу.
Кроме того, система сама будет перезапускаться при срабатывании защиты связанного с отключением электричества.
Для удобства, управление можно вынести в доступное место, например в дом, откуда можно дистанционно вручную перезапускать насос в случае срабатывания защиты. Все это сопровождается световой индикацией.
За задержку отключения и автоперезапуск отвечает реле времени CRM-91H. При желании его можно заменить на реле времени CRM-2H. Тогда, в случае срабатывания защиты по сухому ходу, автоматический перезапуск будет происходить циклически по заданному пользователем времени. Иногда это может быть удобно при частых срабатываниях защиты в случаях с низким дебитом.



Контактор

Как итог обзора, можно сказать, что гидропневматическая система автоматизации является наиболее универсальной и гибкой.

2) Электронная автоматика (гидроконтроллер).

Появились гидроконтроллеры сравнительно недавно, но быстро набрали популярность в бытовой автоматизации насосов.
Вот визуальные примеры таких блоков автоматики:


Гидроконтроллер имеет входной и выходной патрубки. Врезается в разрыв трубопровода в любой точке между насосом и водоразборными точками. Иногда можно встретить контроллеры с одной точкой подключения, но лучше избегать их приобретения, т.к. логика их работы несколько некорректна.
Преимущество гидроконтроллров заключается в компактности и простоте подключения. Это устройство является полноценной автоматикой включения/отключения насоса с защитой от работы без воды.
Принцип работы следующий: когда давление системы падает ниже установленного в настройках гидроконтроллера - насос включается и принудительно подается питание примерно в течении 10 секунд. Далее электроника гидроконтроллера проверяет имеется ли проток воды (в гидроконтроллере установлен датчик протока). Если проток есть, то подача питания на насос продолжается непрерывно пока поток не прекратится. Если проток не появился, то автоматика останавливает работу по ошибке с ручным перезапуском или, в некоторых моделях, автоматическим циклическим перезапуском.
Как только проток прекратится, автоматика вновь создает 10 секундную принудительную задержку отключения для нагнетания давления в системе. Если давление не удалось создать, то насос отключается по ошибке.
Принцип простой и работоспособный. Среди недостатков можно отметить то, что гидроконтроллер не имеет резервного запаса воды и включается при каждом кратковременном открытии крана. Кроме того электронная начинка очень чувствительна к перепадам напряжения в электросети, а электромеханическая часть не любит воду с высоким содержанием железа.
Т.е. по статистике, ресурс такой автоматики ниже, чем у гидропневматической. С другой стороны, она очень хорошо себя показала в применении с насосами имеющих слабый напор, т.к. позволяет более полно реализовать их напорный ресурс. С мощными же насосами, такую автоматику лучше не применять, т.к. автоматика не ограничивает давление выдаваемое насосом в систему. Поэтому при закрытых кранах насос с гидроконтроллером создает максимальное давление, на которое способен насос. Если насос имеет максимальное давление больше 60 метров, то применять гидроконтроллер в качестве автоматики не следует. Это приведет к быстрому выходу из строя системы водоснабжения.
К большому сожалению на рынке появилось множество гидроконтроллеров азиатского происхождения очень низкого качества. Зачастую они живут всего несколько месяцев.
Увеличить срок службы гидроконтроллера можно путем подключения его, опять же, через контактор. Это позволит продлить срок службы реле блока автоматики. Особенно это актуально при подключении достаточно мощных насосов.

Вот принципиальная схема подключения:


3) Электронная автоматика с частотным регулированием.

Данный тип автоматизации является самым современным, технологичным и перспективным.
В конечном итоге, производители насосного оборудования планируют перевести на частотнорегулируемую схему большую часть насосов.
Ограничивает это только пока еще высокая цена. Тем не менее, частотная автоматизация прочно укрепляется в бытовой сфере, когда еще недавно, это было привилегией только промышленной гаммы насосного оборудования.
С точки зрения структуры построения системы, частотнорегулируемые блоки автоматики аналогичны гидроконтроллерам и даже внешне они похожи. Принцип автоматизации и начинка отличаются принципиально. В основе автоматики лежит принцип динамического управляемого изменения частоты переменного тока, который подается на электродвигатель насоса. При изменении частоты тока, изменяется частота вращения вала двигателя и количество потребляемой электроэнергии.
Так, мы задаем в блоке автоматики требуемое давление на выходе из насоса, а дальше насос самостоятельно, анализируя текущий расход, изменяет частоту вращения вала двигателя таким образом, чтобы независимо от расхода всегда поддерживалось постоянное давление.
Это обеспечивает наиболее комфортное пользование водой, т.к. у насоса с автоматикой другого типа выходное давление изменяется в зависимости от текущего расхода воды, это некомфортно. Кроме того, гидравлическая часть не испытывает экстремальных нагрузок, т.к. благодаря плавному пуску и остановке двигателя отсутствуют гидравлические удары, а давление остановки лишь немного превышает номинальное рабочее давление.
Т.к. мы не всегда используем полный ресурс насоса, то применение частотноуправляемой автоматики позволяет существенно экономить на электроэнергии, ведь при неполном потреблении насос и расходовать будет меньше электроэнергии.
Пример: насос мощность 1500 Вт при автоматизации гидроконтроллером или гидропневматической автоматикой независимо от того, сколько кранов мы открыли одновременно, всегда будет потреблять свои 1500 Вт. Если же автоматизировать этот же насос частотной автоматикой, то при неполной загрузке, например открыли один кран, насос будет потреблять всего около 300 Вт.
При подборе насоса мы стараемся выбрать оптимальную по характеристикам модель, без излишнего запаса по мощности, в противном случае пользователю всегда придется переплачивать за лишнюю электроэнергию. С частотной автоматикой этой проблемы нет, т.к. потребление электроэнергии и его напорные характеристики будут всегда строго соответствовать текущему потреблению.
Некоторые производители насосов с частотной автоматикой намеренно сокращают линейку производимых насосов, т.к. автоматика позволяет адаптировать насосы к текущему потреблению.



4) Другие виды автоматизации.

  • Автоматическая подача воды из источника в накопительную емкость
  • Автоматическая подача из накопительной емкости потребителю

Вот классический пример такой автоматизации:


В этом примере с помощью электродов регулируются пороги включения погружного насоса в зависимости от наличия воды в источнике и пороги включения/отключения в зависимости от уровня в накопительном баке.
Подробнее об управлении по уровню можно посмотреть здесь.


Популярны варианты с запорным поплавковым клапаном (как в унитазе) на заполнение накопительной емкости. В этом случае между насосом и емкостью устанавливается гидропневматическая автоматика или гидроконтроллер, т.к. запорный клапан является для автоматики обычным краном.
Из емкости вода подается насосной станцией с любым типом автоматики.
Не забудьте защиту от работы без воды для каждого насоса.
Рекомендуем рассмотреть готовое решение: накопительную емкость E.sytank с полной обвязкой на наполнение, перелив и пр. и насосную станцию с частотной автоматикой e.sybox. Это готовая система с самым технологичным насосом.

АВТОМАТИЗАЦИЯ: Система управления погружными насосами в дренажном колодце

Система управления погружными насосами, установленными в дренажном колодце, является частью общей автоматизированной системы отвода дренажного и поверхностного стока. Управление насосами производится в зависимости от уровня сточных вод в колодце, контролируемого датчиками уровня.

В зависимости от величины уровня, по определенным «уставкам», выдается сигнал на включение/выключение одного, двух или трех насосов. Кроме того, обеспечивается сигнализации об угрозе переполнения колодца и защита насосов от «сухого хода».

Эти сигналы подводятся к шкафу управления насосами.

2. Датчики и вторичные приборы

2.1. Датчики

Набор датчиков для контроля уровня сточных вод

Ультразвуковой уровнемер
EasyTrek SPA-380-4
с выходом 4…20мА + HART для измерения рабочего уровня

Поплавковый сигнализатор уровня
NIVOFLOAT NWP-110
для сигнализации о переполнении колодца

Кондуктивный сигнализатор уровня 2шт.
NIVOCONT K-201
для защиты насосов от «сухого хода»

2.2. Измерение рабочего уровня и формирование сигналов управления по заданным «уставкам»

Для измерения рабочего уровня предлагается Ультразвуковой уровнемер EasyTrek SPA-380-4. Данный уровнемер является двухпроводным с выходом 4…20мА + HART. Диапазон измерения 0,25…6м. Заводская настройка: 0,25м – 4мА; 6м – 20мА. С помощью персонального компьютера, через HART-модем допускается пользовательская настройка уровнемера. Так, например, значения 4 и 20мА могут быть присвоены границам реально измеряемого диапазона (масштабирование).

Для преобразования токового сигнала 4. 20мА с выхода уровнемера в дискретный сигнал (реле) предлагается использовать реле контроля тока UNICONT PKK-312.

Прибор представляет собой интеллектуальное реле для задач контроля уровня и управления насосом. С помощью функции «обучения» (Teach-In) возможно «запомнить» два значения уровня в токовом диапазоне 4…20мА, а также, назначить один из запрограммированных режимов для управления выходным релейным контактом. Для включения и выключения насоса по двухуровневой логике предусмотрен режим Switching Difference.

Для формирования дискретных сигналов для управления 3-мя насосами потребуется 3 реле контроля тока UNICONT PKK-312. Схема подключения уровнемера (датчика) и реле тока приведена на Рис. 1.

Рисунок 1. Схема подключения датчика 4. 20мА и трех реле тока

Рисунок 2. Диаграмма работы схемы (Рис. 1) по заданным уставкам

2.3. Сигнализация о переполнении колодца

Для сигнализации о переполнении колодца предлагается использовать поплавковый сигнализатор уровня NIVOFLOAT NWP-110. Сигнализатор оборудован переключающим «сухим контактом». Переключение происходит при всплытии поплавка на максимальной верхней отметке уровня сточных вод. Т.к. переполнение соответствует ситуации «авария», рекомендуется использовать размыкающий контакт.

2.4. Защита насосов от «сухого хода»

Цепь защиты от «сухого хода» строится с помощью следующих приборов:

  • Двух погружных кондуктивных зондов NIVOCONT KSK -201;
  • Реле контроля уровня NICOCONT KRK -512 (Uпит = 24…240В AC/DC).

Погружной зонд
NIVOCONT KSK-201

Реле контроля уровня
NICOCONT KRK-512

К каждому зонду присоединяется водостойкий однопроводный кабель, на котором зонды погружаются в дренажный колодец на контролируемый уровень (чуть выше точки всаса).

Рисунок 3. Схема подключения

Один из зондов связан с входом С. Реле уровня контролирует наличие проводимости между зондом, подключенным к входам Е1 и Е2 и входом С. После погружения зондов и подачи напряжения питания на реле, необходимо настроить чувствительность с помощью потенциометра на корпусе, тем самым позволить реле реагировать на проводимость среды. Измерение проводимости производится с помощью периодического низковольтного электрического сигнала.

При отсутствии проводимости, что означает снижение уровня ниже минимальной отметки, прибор переключает контакты выходного реле (клеммы 15, 16, 18).

Удаленное управление насосом

Использование терминала GSM для удаленного управления насосом

RTU (Remote Terminal Unit) – удаленный терминал, устройство на базе микроконтроллера, предназначенное для удаленного управления оборудованием. Терминалы GSM RTU обеспечивают беспроводное взаимодействие человека или систем управления и удаленного оборудования через сеть сотовой связи GSM.

Благодаря простоте монтажа и эксплуатации, надежности, возможности беспроводного обмена данными по протоколу GPRS или с использованием простых SMS-команд, контроллеры и терминалы GSM находят применение в различных удаленных задачах.

1. Пример задачи

Имеется комплекс водоснабжения (поселка, фермы и т.п.), включающий накопительный резервуар для чистой воды и одну или несколько скважин, соединенных с резервуаром системой трубопроводов. Скважина оборудована погружным насосом и пультом управления. К пульту управления подведено напряжение питания. Пульт управления включает электромагнитный пускатель и кнопки для пуска/останова насоса. Вода из скважины подается в накопительный резервуар по трубопроводу. Пуск насоса производится вручную на основании визуального контроля уровня воды в резервуаре. Удаление скважины от резервуара на расстояние более 1км обусловливает потребность в дистанционном управлении насосом. Особенностью комплекса является подвод электрического питания к скважине от стороннего источника, также удаленного от места расположения накопительного резервуара. В силу данной особенности не представляется возможным осуществлять управление скважинным насосом по линии напряжения питания, прокладка же проводов управления требует существенных временных, материальных и трудовых затрат. В связи с этим рассматриваются беспроводные системы связи для управления удаленным насосом, в т.ч. GSM. Для применения GSM необходимо удостовериться в том, что районы расположения скважин, резервуара и точек контроля имеют устойчивое покрытие сетью GSM.

Использование терминала GSM для удаленного управления насосом

При устойчивости сигнала GSM в зоне комплекса водоснабжения могут быть реализованы следующие возможности:

  • Пуск и останов скважинных насосов может производиться дистанционно, через сеть GSM, с мобильного телефона оператора (как минимум), контроллера главного пульта управления или персонального компьютера.
  • Возможно применение контроллера, который будет производить измерение (контроль) уровня в резервуаре с помощью соответствующих средств (датчиков, сигнализаторов) и посылать команды для включения или выключения насосов через сеть GSM.

Итак, в имеющийся пульт управления скважинным насосом может быть внедрен контроллер для дистанционного управления GSM RTU, при этом необходимо предусмотреть следующее:

  • Защиту насоса от «сухого хода».
  • Контроль тепловой перегрузки электромагнитного пускателя.

2. Решение и оборудование. GSM пульт управления скважинным насосом

Пульт управления включает:

  1. Шкаф управления с достаточной степенью герметизации;
  2. Электромагнитный пускатель;
  3. Кондуктивный погружной зонд KSK-201;
  4. Реле контроля уровня KRK-512-5;
  5. Контроллер GSM CWT5005B;
  6. Блок питания 220В AC – 24В DC.

Главным органом пульта управления насосом является контроллер GSM CWT5005B.

Для подключения к сети GSM перед началом работы в контроллер необходимо установить SIM-карту предпочтительного оператора сотовой связи.

Настройка контроллера производится с помощью программы конфигурирования через порт RS-232.

Для управления насосом входы и выходы контроллера распределены следующим образом:

Схема подключения:

Схема подключения GSM-контроллера CWT5005B GSM RTU для удаленного управления насосом

Логика работы схемы начинается с контроля уровня в скважине. Минимальный уровень для защиты насоса от «сухого хода» контролируется кондуктивным зондом, погруженным на требуемую глубину. Вопреки схеме, может быть использован один погружной зонд (на рисунке – два), если имеется надежное заземление пульта управления, в этом случае клемма «С» реле KRK-512 должна быть подключена к заземлению. Зонд подключается к клеммам Е1, Е2 реле KRK-512. Для подключения зонда используется кабель длиной, соответствующей глубине погружения. Если уровень воды покрывает зонд, реле замыкает контакт (клеммы 15 и 18). Контакт включен в цепь управления катушкой пускателя (ЭМКП). В эту же цепь включен НО контакт с выхода контроллера GSM. Таким образом, вся цепь будет замкнута при следующих условиях: допустимый уровень воды + поступление команды на включение насоса.

Информация о включении или не включении насоса поступает на вход 2 контроллера GSM со вспомогательного контакта (ВК) электромагнитного пускателя (ЭМП).

В случае перегрузки насоса срабатывает реле тепловой защиты (ЭМП). Контакт реле (ТЗ) связан со входом 1 контроллера GSM.

Блок питания (БП) 24В обеспечивает питание контроллера GSM.

Данная схема оптимально использует входные и выходные возможности контроллера GSM и позволяет:

Кондуктивный зонд KSK-201 и реле контроля уровня KRK-512-5

Погружной зонд
NIVOCONT KSK-201

Реле контроля уровня
NIVOCONT KRK-512

К зонду присоединяется водостойкий однопроводный кабель, на котором он погружается в скважину.

Реле уровня контролирует наличие проводимости между зондом, подключенным к входам Е1 и Е2 и заземленным входом С. После погружения зонда и подачи напряжения питания на реле необходимо настроить чувствительность с помощью потенциометра на корпусе, тем самым позволить реле реагировать на проводимость воды. Измерение проводимости производится с помощью периодического низковольтного электрического сигнала.

При отсутствии проводимости, что означает снижение воды ниже минимального уровня, прибор переключает контакты выходного реле (клеммы 15, 16, 18).

Зонд погружается на глубину чуть выше корпуса глубинного насоса или чуть выше точки забора воды для консольного насоса.

Пульт управления скважинным насосом на базе контроллера GSM RTU

3. Автоматизация системы. Главный пульт управления

Когда задача «минимум» решена, можно рассмотреть автоматизацию системы с внедрением главного пульта управления, который позволит управлять скважинным насосом в автоматическом режиме на основании показаний уровня воды в накопительном резервуаре. Если имеется несколько скважин и насосов, главный пульт управления может решить такие задачи как:

  1. Равномерное распределение моторесурса скважинных насосов;
  2. Возможность переключения и одновременного включения от одного до четырех насосов;
  3. Ведение регистрационного журнала по состоянию уровня и циклам включения/выключения насосов;
  4. Возможность задания и изменения уставок в пределах шкалы измерения уровня;
  5. Возможность установки скорости наполнения резервуара;
  6. Анализ потребления воды, ведение регистрационного журнала.

Вариант главного пульта управления

Пульт управления группой из 4 скважинных насосов с управлением по каналу GSM (SMS).

Пульт управления включает:

  • Шкаф управления с достаточной степенью герметизации;
  • Свободно программируемый контроллер Schneider M168 (ПЛК) со встроенным программным обеспечением и жидкокристаллическим экраном для управления насосами;
  • Контроллер GSM CWT5010;
  • Блок питания для контроллера 220В AC – 24В DC;
  • Аналоговый датчик уровня 4-20мА;
  • Поплавковый сигнализатор предельного уровня.

Логика работы схемы начинается с контроля уровня воды в емкости.

Емкость не заполнена:

Контроль уровня воды в емкости с помощью GSM. Емкость не заполнена.

Контроль уровня воды в емкости с помощью GSM. Емкость заполнена.

Контроль уровня производится аналоговым датчиком уровня и поплавковым сигнализатором верхнего уровня (СВУ). В качестве датчика уровня используется аналоговый (4…20мА) датчик давления, с тем что давление в емкости прямо пропорционально высоте водяного столба. Поплавковый сигнализатор верхнего уровня предназначен для дублирования верхней уставки аналогового датчика уровня с целью избегания перелива.

Аналоговый датчик уровня подключается к входу AI 1 ПЛК. На экране ПЛК отображается текущий уровень воды в резервуаре.

С помощью встроенного меню оператор может задать 2 уставки уровня, по которым будут включаться – выключаться насосы.

Дискретные выходы подключаются к дискретным входам GSM контроллера.

Дискретные выходы GSM контроллера подключаются к дискретным входам ПЛК.

Для подключения к сети GSM перед началом работы в контроллер необходимо установить SIM-карту предпочтительного оператора сотовой связи.

Настройка контроллера производится с помощью программы конфигурирования через порт RS-232.

Схема автоматизированного управления скважинными насосами через сеть GSM:

Удаленное управление скважинным насосом

Скважины и насосы, обеспечивающие водоснабжение, могут находиться на значительном расстоянии до нескольких километров от поста управления. При удаленном пуске, будь то глубинный или консольный насос, необходимо обеспечить защиту от «сухого хода». Обычно для этого применяется гидростатический датчик уровня , но погружной датчик уровня не самое дешевое решение.

РусАвтоматизация предлагает недорогое, простое, но надежное решение на базе компонентов NIVELCO, позволяющее:

  • Контролировать минимальный уровень воды в скважине;
  • Защитить насос от «сухого хода»;
  • Включить насос;
  • Подать сигнал о ситуации на пост управления (обрыв, низкий уровень воды, насос включен) по имеющимся проводам питания насоса.
Управление скважинным насосом Управление скважинным насосом

Минимальное подключение производится с помощью следующих приборов:
1. Двух погружных кондуктивных зондов NIVOCONT KSK-201 ;
2. Реле контроля уровня NIVOCONT KRK-512 (Uпит DC 24…240В AC/DC).

К каждому зонду присоединяется водостойкий однопроводный кабель, на котором зонды погружаются в скважину.

Один из зондов связан с входом С. Реле уровня контролирует наличие проводимости между зондом, подключенным к входам Е1 и Е2 и входом С. После погружения зондов и подачи напряжения питания на реле необходимо настроить чувствительность с помощью потенциометра на корпусе, тем самым позволить реле реагировать на проводимость воды. Измерение проводимости производится с помощью периодического низковольтного электрического сигнала.
При отсутствии проводимости, что означает снижение воды ниже минимального уровня, прибор переключает контакты выходного реле (клеммы 15, 16, 18).
Зонды погружаются на глубину чуть выше корпуса глубинного насоса или чуть выше точки забора воды для консольного насоса.

Защиту от «сухого хода» для однофазного насоса 220В AC до 1.5кВт можно построить по следующей схеме:

Реле подключается к линии N-L, предназначенной для подачи напряжение питания 220В на насос.
После подачи напряжения с поста управления включается реле уровня:

  • если зонды находятся в воде, реле коммутирует линию L на насос и позволяет подачу 220В;
  • если уровень воды ниже зондов (или одного из зондов), выходное реле не переключается, линии L и N шунтированы резистором R.

Резистор R допускает увеличение минимального тока в цепи управления насосом в случае его блокирования из-за низкого уровня воды в скважине.
Благодаря предложенной схеме возможно, пользуясь дополнительными приборами, произвести диагностику линии на посту управления.
С помощью индикатора и/или реле тока, размещенных на посту управления, могут быть детектированы следующие события:

  • рабочий ток насоса – нормальное включение;
  • минимальный ток – низкий уровень воды, насос не включен;
  • «нулевой» ток – обрыв в линии.

Сопротивление резистора мощностью 2Вт должно быть не менее 30кОм, минимальный ток составит не более 8мА + собственный ток потребления реле.

Трехфазное подключение с устройством плавного пуска ( УПП ):

Собственный ток потребления устройства плавного пуска позволяет детектировать состояние, когда насос не включен при не поступлении входной команды «СТАРТ».
Команду «СТАРТ» формирует реле уровня, если уровень воды является позволительным.

Данная статья является обзорной и носит рекомендательный характер. Решения, приведённые в статье, являются типовыми. Существует огромное количество уникальных процессов, для которых требуется более тщательный подбор оборудования и консультации специалистов.

Если у вас стоит задача настроить удалённое управление скважинным насосом, обратитесь за консультацией к нашим инженерам .

4.3. Дистанционное управление электронасосом (насосной станцией)

Дистанционное электронное управление исполнительными устройствами – перспективное направление в радиотехнике, и, кроме того, оно становится все более доступным.

Рассмотрим реальную практическую ситуацию, когда требуется автоматизировать подачу воды в дачный дом (баню, хлев и прочие строения приусадебного участка) с помощью дистанционного управления. Условия задачи, которая будет эффективно решена: дом находится на расстоянии 120–150 м от источника воды (деревенского колодца).

Включение и отключение погружного водяного насоса, установленного в колодце, осуществляется по радиоканалу.

В основе устройства – приобретенный в магазине стройтоваров (в Санкт-Петербурге) беспроводной радиозвонок с символической стоимостью 192 руб. Непосредственно замечу, что готовое устройство управления насосной станцией (без проводов) можно приобрести в Москве по цене более 3000 руб. Выводы делайте сами.

ДЛЯ СПРАВКИ

Насосная станция отличается от погружного насоса автоматическим контролем давления в водяном контуре, резервным накопительным баком и подачей воды в контур, когда это давление уменьшается (открывают кран в доме), а также – некоторые модели – и подогревом воды.

Беспроводной звонок промышленного изготовления может иметь различный внешний вид (рис. 4.6), но в его составе обязательными элементами являются передатчик и приемник радиосигнала.


Рис. 4.6. Внешний вид различных моделей беспроводных звонков

Как правило, такие беспроводные звонки (например, с указанием на корпусе фирмы-производителя Paget Trading Ltd) работают на частоте 433 МГц, что не привносит помех в радиоэфир из-за малой дальности действия передатчика (его ограниченной мощности).

Заявленная в паспортных данных дальность действия данного радиозвонка составляет 50 м, однако на практике и эти сведения не являются верными. Если заявленная производителем дальность, например, 80 м, ее реальная дистанция будет около 30.

Хотя с увеличением заявленной дальности радиозвонков пропорционально возрастает их розничная цена, например, беспроводной звонок с радиусом работы 100 м (в реалии 35 м) стоит уже более 1 100 руб.

По сути все равно, какой звонок усовершенствовать, развивая его дальность, поэтому рассмотрим самые «бюджетные» и простые варианты.

Первым делом после приобретения нужно вскрыть корпус радиопередатчика, потому что увеличивать дальность будем именно на нем.

Антенну приемника трогать не будем, поскольку на частоте радиосигнала 433 МГц увеличение ее длины не приводит к увеличению дистанции работы связки передатчик-приемник.

На рис. 4.7 представлены (две разные по внешнему виду модели, но одинаковые по схемотехнике) приемники радиосигналов со снятой крышкой.


Рис. 4.7. Приемники радиосигналов со снятой корпусной крышкой

Как видно из рис. 4.7, схема одна, а ее исполнение на печатной плате разное, в частности на рисунке слева представлен вариант, собранный из дискретных элементов, а на рис. справа – на элементах в SMD-корпусах для поверхностного монтажа.

На рис. 4.8 представлена электрическая схема приемника беспроводного звонка.


Рис. 4.8. Электрическая схема приемника радиозвонка

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

5. Управление шлюпкой на веслах

5. Управление шлюпкой на веслах Когда шлюпка стоит у трапа, то на нее с корабля подается трос, который крепится шлюпочным узлом за загребную банку. Носовой фалинь крепится серьгой за поданный с корабля трос. При отходе шлюпки по команде «Отдать фалинь!» баковый дальнего от

6. Управление шлюпкой под парусами

6. Управление шлюпкой под парусами Постановку рангоута следует производить в отдалении от берега, корабля или отмели, чтобы за это время шлюпку не снесло на них ветром. Если перед постановкой рангоута шлюпка на веслах, то ее разворачивают носом на ветер и подают команду

Управление автомобилем в сложных условиях

Управление автомобилем в сложных условиях Управление автомобилем в условиях ограниченной обзорности и видимости При ограниченной обзорности и видимости почти невозможно различить дорогу, транспортные средства, пешеходов, дорожные знаки и объекты, которые необходимо

Управление автомобилем в тумане

Управление автомобилем в тумане Движение в тумане требует особой осторожности и внимательности. Туман влияет на психику автомобилистки, так как темнота и неопределенность вызывают сильное нервное напряжение. Внезапное появление на дороге другого транспортного

Управление автомобилем в снегопад и гололед

Управление автомобилем в снегопад и гололед Зима – трудный период для поездок на автомобиле: холодно, плохо заводится двигатель, дороги скользкие или неровные, рано темнеет, ночи долгие, плохая видимость. Однако и зимой можно ездить успешно, если отработаны способы,

Управление автомобилем в опасных и критических ситуациях

Управление автомобилем в опасных и критических ситуациях Управляя автомобилем, женщина по многим причинам может оказаться в опасных и критических ситуациях, грозящих ДТП. Несмотря на то что техника управления автомобилем с точки зрения обеспечения безопасности едина в

Управление автомобилем при технических неисправностях

Управление автомобилем при технических неисправностях Типичные технические неисправности, вызывающие ДТП: внезапный разрыв шины, поломка узлов рулевого привода, подвески, отказы тормозной системы.Если лопнула шина, крепко держите рулевое колесо, не давая ему

Рулевое управление автомобиля

Рулевое управление автомобиля Рулевое управление необходимо для придания движущемуся автомобилю нужного направления. Попросту говоря, куда водитель повернет руль (рис. 3.14) — туда машина и поедет. Рулевое управление включает в себя два элемента: рулевой механизм и

2. Рулевое управление

2. Рулевое управление 2.1. Суммарный люфт в рулевом управлении превышает следующие значения:? легковые автомобили и созданные на их базе грузовые автомобили и автобусы — суммарный люфт не более 10;? автобусы — суммарный люфт не более 20;? грузовые автомобили — суммарный люфт

УПРАВЛЕНИЕ ПОТОКОМ СОБЫТИЙ

УПРАВЛЕНИЕ ПОТОКОМ СОБЫТИЙ Поток событий является одной из составляющих пространственно-временного континуума. Умение управлять им, как вы понимаете, сильно облегчает любое путешествие.УПРАВЛЕНИЕ ПОГОДОЙМастер управления погоды применяет свои умения в самом

2. Автоматическое управление стрелочными переводами и сигналами

2. Автоматическое управление стрелочными переводами и сигналами Автоматическое управление стрелочными переводами и сигналами на макетах железной дороги осуществляется при помощи электромагнитных реле соленоидного типа. Зарубежные предприятия, изготавливающие

3.1.3. Включение и управление ИБП

3.1.3. Включение и управление ИБП Управлять ИБП несложно. Для включения ИБП нажмите кнопку «вкл/выкл» на передней панели устройства и удерживайте ее в течении 2 сек., до окончания звучания сигнала. Для отключения звука в автономном режиме работы от батарей коротко нажмите

Как сделать автоматизацию скважинного насоса

Вам пробурили скважину, теперь нужно установить скважинный насос и автоматизировать его работу, чтобы насос сам мог включаться и выключаться при определенных условиях, например, при открытии водопроводного крана.

Регулировку работы насоса делают либо по протоку, либо по давлению. Для этого в систему водоснабжения ставится соответствующее реле, протока или давления.

Бывают комбинированные устройства - блоки управления насосами. В их конструкции предусмотрены:

  • датчик потока
  • датчик минимального давления

В этом устройстве установлен микроконтроллер, который управляет насосом, и защищает его от "сухого хода". Скажу сразу, что это рабочий вариант управления скважинным насосом.

Моим скважинным насосом управляет этот блок Моим скважинным насосом управляет этот блок

У меня скважинным насосом управляет блок АКВАРОБОТ ТУРБИ-М. Его стоимость около двух тысяч рублей. Один раз на нем сгорела плата, по неизвестной мне причине.

Я заехал в магазин и купил две платы блока управления про запас. Цена одной платы около 700 рублей.

Так выглядят плата блока управления насосом Так выглядят плата блока управления насосом

Мне не встречались блоки управления насосами, которые могли бы управлять насосом, мощность которого выше 1,5 кВт. Поэтому, если у вас насос большей мощности, то придется искать другое решение.

Например, управлять насосом с помощью реле давления, смотрите, чтобы оно соответствовало мощности насоса.

Когда прокачивается скважина, всегда устанавливайте реле минимального давления, оно не даст сгореть вашему насосу, если вода в скважине кончится Когда прокачивается скважина, всегда устанавливайте реле минимального давления, оно не даст сгореть вашему насосу, если вода в скважине кончится

Если установили реле протока, то насос будет включаться при протоке воды через реле, если движение воды в трубе прекратится, то реле выключит скважинный насос.

Если установили реле давления, то скважинный насос будет включаться при определенном давлении в системе водоснабжения, и отключаться при достижении нужного давления.

Эти два способа самые дешевые и простые. Реле давления можно купить за 400 рублей. Реле протока стоят дороже, их стоимость начинается от 1 200 руб.

Главный минус этих обоих способов автоматизации - резкое включение и отключение скважинного насоса. Вода практически не сжимается, поэтому при резком включении насоса происходит гидравлический удар, на профессиональном сленге говорят: гидроудар .

Чтобы компенсировать гидроудары в систему водоснабжения устанавливают гидроаккумулятор. Он состоит из железной бочки, внутри которой установлена резиновая груша. Между стенкой бочки и резиновой грушей закачивается воздух под давлением. Вода попадает внутрь резиновой груши, снаружи на грушу давит воздух, таким образом сглаживаются гидроудары.

Мой скважинный колодец, в нем установлен гидроаккумулятор и блок управления насосом Мой скважинный колодец, в нем установлен гидроаккумулятор и блок управления насосом

Как и куда нужно устанавливать гидроаккумулятор, чтобы все работало правильно, я расскажу в другой раз.

Про то, как автоматизировать работу скважинного насоса с применением частотного преобразователя я уже рассказывал и показывал.

Читайте также: