Измерение угла наклона скважины

Обновлено: 02.07.2024

Зенитный угол: описание, правила расчета, общие закономерности

Многим интересно, что такое зенитный угол скважины. Скважина в математике — это путь траектории беспрерывного поступательного движения, разрушающего породу бура в пространстве, и трасса, как её дискрет-графическое отображение в виде ломаной кривой, определяется координатами положения и направления.

Описание зенитного угла скважины

Непрерывное определение точек траектории геологических разведочных скважин сегодня обычно не выполняется, а их приращения выявляются по отдельным дискретным точкам специальной съёмки в географических декартовых координатах (прямоугольник) трехмерного пространства.

Тут традиционно определяют:

  1. Х0, Y0, Z0 — изначальные координаты закладывания скважины.
  2. Хi, Yi, Zi- её текущие точки в i-й, например, Ai и Xk, Yk, Zk точки подсечения тела руды скважиной последнего забоя координаты Ki. Ось X п- это касательная к магнит-меридиану в направлении магнит-севера. Ось Y по перпендикуляру к оси X, идущая в сторону магнит-востока, ось Z идет в сторону воздействия вектора силы тяжести.
  3. В жизни расположение в пространстве или направление скважины выявляются по данным инклинометрии в полярной системе координат, так как большее количество съемок выявляют прямое измерение в вертикали и горизонтали главных полярных параметров: в вертикали зенита иi, или угла наклона д, в горизонтали азимута бi. Глубина измеряется также в каждой имеющейся i-й точке (к примеру, Ai).

Зенитом именуется угол между вертикальной (черта OZ в любой текущей координате) и осью скважины OAi (вектор скорости бура) или касательной к ней в имеющейся координате. Угол между осью углубления в породе или касательной к ней и горизонтальной в той же координате — это наклоненный угол д. Сумма зенита и угла наклона прямой: и+д = р/2. При повышении углов зенита идет «выполаживание», а при сокращении — «выкручивание» углубления в породе.

Как рассчитать азимутальный угол

Азимутальным углом, или азимутом бi горной выработки, именуется угол, высчитываемый по часам (в северном полушарии), пролегающий горизонтально и сформированный каким-либо ориентиром направления, принятым за изначальный отсчёт, к примеру, 0x и проекцией оси горной выработки по горизонтали (вектора скорости бура) в любой координате Ai.

В зависимости от выбора изначального направления отсчёт азимутального угла может быть:

  • Истинный;
  • Магнитный;
  • Условный.

В первой ситуации отсчёт проводится от географического, во второй — от магнит-меридиана, а в третьей — от направления на случайно взятый репер, географические точки которого специалист уже знает. При повышении азимута идет правое «+», а при сокращении левое «-» азимутальное искривление горной выработки круглого сечения.

Представляет собой интервал по стволу от устья 0 до забоя Ki или любой i координаты меры углов.

Глубины ствола замеряют по инструменту во время его поднятия из скважины и при финишных замерах, которые выполняются регулярно по мере углубления скважины. Замерять азимутальный угол следует перед установкой искусственного отклонителя в углублении, а также когда будут устранены аварийные ситуации и любые сложности.

Понятие апсидальной плоскости

Для того чтобы изобразить расположение горного углубления в пространстве, в координатах его точки высчитываются для определенных осей.

Так, к примеру, координата Аi дает проекцию на плоскость в горизонтали осей X, Y (координата А1 с точками С1, С1), на плоскость в вертикали осей X, Z (координата А2 с точками С1, С2) и вертикаль осей Y, Z (координата А3 с точками С2, С3). При постройке геологических разрезов ось ведут на 2 плоскости — вертикаль и горизонталь и именуют вертикальной ОА2-профиль и горизонтальной ОА1-план проекцией углубление в породе, а величины линий А1 С1 и Аi А1 показывают собой отведение или смещение забоя горной выработки круглого сечения от плоскостей (горизонталь и вертикаль). Вертикаль, которая проходит через ось углубления, и вертикаль в любой координате оси именуется апсидальной (зенитной) плоскостью, а двугранный угол отсчитывается по ходу часов между апсидальной плоскостью и углом.

Общие закономерности

При буре все углубления по разнообразным причинам в той или иной мере отходят от изначально заданного пути. Этот процесс именуется искривлением. Непреднамеренный процесс именуется естественным, а искривление углублений при помощи разного рода инновационных техприёмов – искусственным.

Вообще, искривление углублений в породе проходит с осложнениями, такими как:

  • Наиболее интенсивное изнашивание труб бура;
  • Увеличенное расходование мощности;
  • Трудности при осуществлении спуско-подъёмных мероприятий;
  • Обрушение стен скважины и др.

Но иногда искривление углублений в породе дает возможность в разы сократить траты средств и времени при разработке месторождений нефти и газа. Так, если искривление углубления нежелательно, то его стараются предотвратить, а если оно требуется, то его осуществляют. Этот процесс именуется направлением бура, которое определяется как бурение углублений с применением закономерностей естественного процесса и при помощи искусственных приемов для выведения углубления в точку, которая задана. При этом искривление обязательно контролируется и управляется.

В процессе бура направленного углубления нужно знать расположение каждой координаты в пространстве. Для этого надо определить точки её устья и параметры пути, в которые входит зенит Q, азимутный угол углубления и длина L. Анализ искривления углублений показывает, что оно подчиняется особым законам, но для различных месторождений они разные и могут значительно различаться.

Но можно выделить такие общие законы искривления:

  1. В большем количестве ситуаций углубления стремятся занять путь по перпендикуляру слоям горных пород. По ходу приближения к нему сила искривления сокращается.
  2. Сокращение зазора между стенами углубления и специнструментом ведет к сокращению искривления. Области монтажа центральных элементов и их диаметр оказывают влияние на направление и интенсивность зенита.
  3. Повышение жёсткости инструмента сокращает искривление углубления, поэтому скважины большего размера искривляются меньше, чем узкие.
  4. Повышение нагрузки оси ведет к увеличению интенсивности искривления, а более сильное развитие частоты работы труб бура – к её сокращению.
  5. Движение и сила азимут-искривления находятся в зависимости от геологических критериев.

Абсолютная апсидальная величина, наклонно направленная, зависит от интенсивности азимута искривления. С его повышением интенсивность азимут-наклона сокращается.

Зенитный угол: описание, правила расчета, общие закономерности

Зенитный угол: описание, правила расчета, общие закономерности

При бурении скважины важно высчитать зенитный угол

Описание зенитного угла скважины

Непрерывное определение точек траектории геологических разведочных скважин сегодня обычно не выполняется, а их приращения выявляются по отдельным дискретным точкам специальной съёмки в географических декартовых координатах (прямоугольник) трехмерного пространства.

Зенитный угол: описание, правила расчета, общие закономерности

Ознакомиться с описанием зенитного угла можно в специализированной литературе

Тут традиционно определяют:

Как рассчитать азимутальный угол

Азимутальным углом, или азимутом бi горной выработки, именуется угол, высчитываемый по часам (в северном полушарии), пролегающий горизонтально и сформированный каким-либо ориентиром направления, принятым за изначальный отсчёт, к примеру, 0x и проекцией оси горной выработки по горизонтали (вектора скорости бура) в любой координате Ai.

Зенитный угол: описание, правила расчета, общие закономерности

Для расчета азимутального угла лучше пользоваться вспомогательными материалами

В зависимости от выбора изначального направления отсчёт азимутального угла может быть:

  • Истинный;
  • Магнитный;
  • Условный.

Представляет собой интервал по стволу от устья 0 до забоя Ki или любой i координаты меры углов.

Глубины ствола замеряют по инструменту во время его поднятия из скважины и при финишных замерах, которые выполняются регулярно по мере углубления скважины. Замерять азимутальный угол следует перед установкой искусственного отклонителя в углублении, а также когда будут устранены аварийные ситуации и любые сложности.

Понятие апсидальной плоскости

Для того чтобы изобразить расположение горного углубления в пространстве, в координатах его точки высчитываются для определенных осей.

А именно:

Общие закономерности

При буре все углубления по разнообразным причинам в той или иной мере отходят от изначально заданного пути. Этот процесс именуется искривлением. Непреднамеренный процесс именуется естественным, а искривление углублений при помощи разного рода инновационных техприёмов – искусственным.

Вообще, искривление углублений в породе проходит с осложнениями, такими как:

  • Наиболее интенсивное изнашивание труб бура;
  • Увеличенное расходование мощности;
  • Трудности при осуществлении спуско-подъёмных мероприятий;
  • Обрушение стен скважины и др.

Но иногда искривление углублений в породе дает возможность в разы сократить траты средств и времени при разработке месторождений нефти и газа. Так, если искривление углубления нежелательно, то его стараются предотвратить, а если оно требуется, то его осуществляют. Этот процесс именуется направлением бура, которое определяется как бурение углублений с применением закономерностей естественного процесса и при помощи искусственных приемов для выведения углубления в точку, которая задана. При этом искривление обязательно контролируется и управляется.

Зенитный угол: описание, правила расчета, общие закономерности

При бурении скважины обязательно нужно вычислить точные координаты

В процессе бура направленного углубления нужно знать расположение каждой координаты в пространстве. Для этого надо определить точки её устья и параметры пути, в которые входит зенит Q, азимутный угол углубления и длина L. Анализ искривления углублений показывает, что оно подчиняется особым законам, но для различных месторождений они разные и могут значительно различаться.

Но можно выделить такие общие законы искривления:

  1. В большем количестве ситуаций углубления стремятся занять путь по перпендикуляру слоям горных пород. По ходу приближения к нему сила искривления сокращается.
  2. Сокращение зазора между стенами углубления и специнструментом ведет к сокращению искривления. Области монтажа центральных элементов и их диаметр оказывают влияние на направление и интенсивность зенита.
  3. Повышение жёсткости инструмента сокращает искривление углубления, поэтому скважины большего размера искривляются меньше, чем узкие.
  4. Повышение нагрузки оси ведет к увеличению интенсивности искривления, а более сильное развитие частоты работы труб бура – к её сокращению.
  5. Движение и сила азимут-искривления находятся в зависимости от геологических критериев.

Абсолютная апсидальная величина, наклонно направленная, зависит от интенсивности азимута искривления. С его повышением интенсивность азимут-наклона сокращается.

Научная электронная библиотека


1. Наклонно направленная скважина – скважина, для которой проектом предусмотрено отклонение в заданном направлении от вертикали, проходящей через ее устье, а ствол проводится по заранее заданной кривой.

2. Наклонная скважина характеризуется длиной ствола L, глубиной по вертикали Н, отклонением забоя от вертикали А, направлением (азимутом) отклонения забоя φ и конфигурацией оси (рис. 1).

3. Пространственное положение скважины определяется тремя текущими параметрами: глубиной L, зенитным углом α, азимутальным углом φ.

4. Глубина скважины L – расстояние от устья О до забоя или любой точки измерения углов. Измеряется по бурильной колонне с учетом ее длины в скважине и при инклинометрических замерах кривизны.

5. Ось скважины – пространственная кривая, состоящая из сопряженных между собой отрезков прямых и кривых линий. Каждая точка оси скважины определяется ее текущими координатами относительно устья, зенитным и азимутальным углами

6. Глубина скважины по вертикали – расстояние ОА от устья до горизонтальной плоскости, проходящей через забой скважины, либо до i-й точки ствола.

7. Зенитный угол α – угол между касательной к оси ствола в рассматриваемой точке и вертикалью, проходящей через данную точку.

8. Угол наклона δ – угол между осью скважины или касательной к ней в рассматриваемой точке и горизонтальной проекцией оси на плоскость, проходящую через данную точку.

9. Азимутальный угол φ – угол между апсидальной и меридиональной плоскостями. Апсидальной называется вертикальная плоскость, проходящая через касательную к оси ствола скважины.

Азимутальный угол исчисляется в горизонтальной плоскости от принятого начала отсчета до направления горизонтальной проекции к оси ствола скважины по ходу часовой стрелки.

В зависимости от принятого начала отсчета азимутальный угол может быть истинным (географический меридиан), магнитным (магнитный меридиан) или условным (реперным).

10. Профиль скважины – проекция оси скважины на вертикальную плоскость, проходящую через ее устье и забой.

11. План скважины – проекция оси ствола скважины на горизонтальную плоскость, проходящую через ее устье.

12. Отклонение забоя от вертикали – расстояние от забоя скважины до вертикали, проходящей через устье скважины.


Рис. 1. Параметры, определяющие положение оси скважины в пространстве:
1 – горизонтальная плоскость; 2 – апсидальная плоскость;
3 – магнитный меридиан; 4 – касательная к точке ствола;
5 – вертикаль через точку замера углов

13. Зенитное искривление ствола скважины – изменение зенитного угла между двумя точками замера (рис. 2).

14. Азимутальное искривление – изменение азимута скважины между двумя точками замера.

15. Интенсивность искривления i – степень одновременного изменения зенитного угла и азимута за интервал. Величина, характеризующая степень искривления ствола и равная отношению приращения угла искривления к расстоянию между точками замеров.


Рис. 2. Схема к измерению зенитного угла:
1, 2 – касательные к дуге в точках измерения углов

16. Радиус искривления ствола R – величина обратная интенсивности искривления:


(1)


(2)

Если ствол скважины искривляется с постоянной интенсивностью, то ее ось представляет собой дугу окружности радиусом R,


(3)

17. Плоскость искривления – плоскость, в которой располагается дуга окружности с радиусом кривизны в данной точке.

18. Отрезок оси скважины между двумя точками измерений, расположенными на расстоянии Δl друг от друга, характеризуется следующими параметрами:

средний зенитный угол, град,


(4)

изменение зенитного угла, град,

горизонтальная проекция ствола, град,

вертикальная проекция ствола, град,

изменение азимутального угла, град,

средний азимут, град,


, (9)

пространственный угол искривления (в плоскости искривления) угол между двумя касательными, проведенными к оси ствола в точках замеров, лежащих в плоскости искривления при допущении, что искривление – это бесконечно малое количество плоских кривых, повернутых относительно друг друга на некоторый угол:


(10)

Радиус искривления при этом, определяется по формуле:


(11)


где Δα, Δφ – соответственно, изменение зенитного угла и азимута на отрезке Δl (рад); – средний зенитный угол на участке L.


В случае отсутствия изменений азимута при бурении на определенном интервале радиус кривизны определяется
по формуле


(12)

19. Угол установки отклонителя – угол между плоскостью действия отклонителя и апсидальной плоскостью в месте его установки.

20. Коэффициент фрезерующей способности долота f – отношение скорости фрезерования стенки скважины к скорости разрушения забоя долотом при действии одинаковых нагрузок.

21. Кривизна ствола k – приращение угла искривления на определенном криволинейном участке,


(13)

Радиан – угол, под которым видна из центра окружности ее дуга, равная радиусу:


22. Под КНБК принято понимать: типоразмер долота, забойный двигатель (ЗД), УБТ, диаметр бурильных труб и материал, из которого они изготовлены, тип и диаметр опорно-центрирующих элементов (ОЦЭ), элементы оснастки (амортизаторы, калибраторы и др.). В действительности это низ бурильного инструмента.

Направляющий участок КНБК – участок от долота до первой точки касания УБТ или ЗД со стенкой скважины под нагрузкой.

Для КНБК с ОЦЭ направляющим участком является участок от долота до первого центратора, для КНБК с отклонителем – участок от долота до вершины угла перекоса отклонителя, для КНБК без центрирующих приспособлений – участок от долота до первой точки касания забойным двигателем или трубами стенки скважины.

23. Угол несоосности КНБК в стволе скважины β – угол между хордами, стягивающими ось скважины и ось КНБК на направляющем участке.

24. Угол поворота плоскости изгиба КНБК под действием реактивного момента ЗД – угол между плоскостью изгиба КНБК и апсидальной.

25. Индекс анизотропии пород по буримости h есть число, дополняющее до 1 отношение буримости пород вдоль напластования и буримости ее в перпендикулярном напластованию направлении.

26. НДС – направление (азимут) движения бурового станка на кустовой площадке.

27. Направление (азимут) оснований под буровую установку выбирается в соответствии с первоначальным движением буровой установки и должно определяться с учетом проектных траекторий стволов скважин, согласно принципу исключения вероятности пересечения стволов и природных возможностей размещения оснований в данном направлении.

28. Куст скважины – группа из трех и более скважин, расположенных на специальных площадках и отстоящих одна от другой или от отдельных скважин на расстоянии не менее 50 м.

29. Под площадкой куста понимается определенный проектом участок территории, на котором расположены скважины, технологическое оборудование и установки, а так же бытовые и другие помещения, необходимые для производства работ.

Расстояние между скважинами должно обеспечивать механизированную добычу нефти с применением станков-качалок и составляет не менее 5 м.

Групповое расположение скважин – ряд скважин с числом от трех до восьми; для групп из четырех скважин расстояние между ними составляет 15 м, из восьми скважин – 50 м.

Суммарное количество газовых скважин в кусте, как правило, не превышает 24.

Минимальное расстояние между устьями соседних скважин в кустах на газоконденсатных месторождениях, имеющих в разрезе ММП, должно в 1,2 раза превышать диаметр ореола протаивания, но быть не менее 20 м по нормам противопожарной безопасности.

При размещении устьев скважин в кустах с «шагом» от 20 до 30 м скважины размещаются прямо на одной прямой линии, побатарейно не более четырех в том числе и нагнетательных газовых скважин, с расстоянием между батареями не менее 60 м. Суммарный рабочий дебит одной батареи нефтяных скважин должен быть не более
800 т/сут (8000 кН/сут).

Суммарный рабочий дебит одной батареи газоконденсатных скважин или одной батареи газовых скважин не должен превышать 4000 тыс. м3/сут.

Нефтяные скважины со свободным фонтанным дебитом более 400 т/сут (или с газовым фактором более 200 м3/м3), а также все газовые и газоконденсатные скважины должны быть оборудованы забойными клапанами-отсекателями с проверкой их на срабатывание в соответствии с инструкцией по эксплуатации.

При размещении устьев скважин в кустах с «шагом» 40 м скважины следует размещать на одной прямой линии, побатарейно с числом эксплуатационных скважин в батарее не более восьми, с расстоянием между батареями не менее 60 м.

Суммарный рабочий дебит одной батареи нефтяных скважин не должен быть более 1600 т/сут.

Суммарный рабочий дебит одной батареи газоконденсатных скважин или одной батареи газовых скважин не должен превышать 6000 тыс. м3/сут.

В отдельных случаях, обусловленных сложным ландшафтными, гидрологическими и геокриологическими условиями, разрешается размещать устья скважин на одной кустовой площадке в два ряда. При этом расстояние между рядами скважин должно быть не менее 70 м, суммарное количество скважин в двух рядах не более 24 скважин.

Кустование скважин должно проводиться с обеспечением попадания их забоев в зону допуска с координатами, регламентированными проектом разработки месторождения.

Общие положения и рекомендации

1. Бурение искусственно искривленных скважин позволяет решить две большие задачи: эффективно использовать капитальные вложения на строительство скважин и в большей степени сохранить естественную среду на дневной поверхности. В связи с этим объемы бурения таких скважин продолжают расти во всех нефтегазодобывающих районах. В решении первой задачи значительную роль играет квалификация инженера-технолога как проектирующего проводку целенаправленно искривленной скважины, так и осуществляющего проводку такой скважины.

2. Проектирование профиля включает выбор и обоснование типа профиля, расчет всех его элементов и графические построения. При этом почти всегда требуется выбрать тип отклоняющего устройства, обосновать его параметры и компоновку низа бурильного инструмента.

Запроектированный профиль не должен вызывать технологических отклонений при проводке скважины, поэтому бывает необходимо провести расчет усилий на буровом крюке, возникающих при движении в скважине бурильного инструмента, обсадных колонн, НКТ и т.д.

3. В настоящее время наиболее распространена методика проектирования профиля, искривленного в одной плоскости, основанная на аналитическом методе расчета с последующим графическим построением его элементов.

При ориентировочных расчетах применяется графический метод. Для некоторых типов профилей скважины – номографированием [3, 6].

4. Общую методику проектирования наклонно направленных скважин [4, 5] бывает целесообразно видоизменить, вводя закономерности изменения траектории оси скважины в конкретных геологических и географических условиях. Примером является методика СибНИИНП [3, 6].

5. Перед проектированием профиля требуется выполнить следующие работы:

5.1. Тщательно изучить данные по ранее пробуренным скважинам, установить закономерности естественного изменения зенитного и азимутального углов и влияние на них параметров режима бурения и КНБК.

5.2. Определить интенсивность набора и снижения α на 10 м проходки (Δα10) при работе с отклоняющими устройствами (ОУ) и без них.

5.3. По структурной карте (рис. 3) и геологическому разрезу определить смещение забоя от вертикали (А), проходящей через устье скважины, глубину скважины по вертикали (H) и проектный азимут (φпр).

5.4. Далее в соответствии с существующими рекомендациями и условиями проводки скважины выбирается тип профиля скважины и проводится расчет.

6. Необходимо учитывать, что аналитический метод проектирования можно осуществить в двух вариантах.

6.1. Первый вариант предусматривает выбор и обоснование допустимых радиусов и искривления оси скважины на соответствующем участке. После выбора R и расчета необходимой величины α определяется требуемое значение Δα10 тр по формуле:


(14)

где Ri max – максимальный из всех допустимых Rmax.


Рис. 3. Структурная карта

6.2. Минимально допустимый радиус искривления в работе [8] предлагается рассчитывать из условия проходимости в искривленном участке скважины наиболее жесткой части системы: «долото – забойный двигатель» (рис. 5) по формуле:


(15)

длина забойного двигателя с долотом, м;

диаметры, соответственно, долота и забойного двигателя, м;

зазор между стенками скважины и забойным двигателем, м.

В мягких породах k = 0, в твердых k = 3–6 мм [8].

6.3. При уменьшении диаметра и увеличении длины забойного двигателя рекомендуется учитывать влияние его прогиба [4]:


(16)

где f – стрела прогиба забойного двигателя, м;


(17)

вес одного метра забойного двигателя, Н/м;

длина забойного двигателя, м;

модуль упругости, E = 2,1⋅1011 Н/м2;

момент инерции поперечного сечения забойного двигателя, м4;


(18)

6.4. Расчет минимально допустимого радиуса искривления из условия нормальной эксплуатации бурильных труб.

6.5. Для верхней части скважины Rmin 3 определяется в точке сопряжения вертикального участка с участком набора зенитного угла, так как в этом сечении напряжения от изгиба дополняются растягивающими нагрузками [8]:


(19)

наружный диаметр трубы, м;

предел текучести, Н/м2;

напряжение растяжения, Н/м2;


(20)

максимальная растягивающая нагрузка в рассматриваемом сечении, Н;

площадь поперечного сечения трубы, м2.

6.6. Для нижних интервалов ствола, например, 4-й участок для профиля на рис. 4, г, д, Rmin 4 определяется с учетом возможной концентрации местных напряжений в мелкой резьбе по формуле [8]:


(21)

коэффициент концентрации местных напряжений; для сталей групп прочности Д и Е αк равен, соответственно 1,84 и 1,99 [8].


Рис. 4. Типы профилей наклонно направленных скважин:
1 – вертикальный участок; 2 – участок набора α;
3 – прямолинейно-наклонный участок (для профилей а, г, д);
3 – участок уменьшения α (рис. б, е); 4 – участок уменьшения α (рис. г, д);
4, 5 – вертикальный участок (рис. д, е)

6.7. Замки бурильной колонны не должны создавать чрезмерного давления на стенки скважины во избежание их интенсивного износа, желобообразования и т.п. при спуско-подъемных операциях. В этом случае Rmin вычисляется по формуле (при длине свечи 25 м) [4, 8]:


(22)

осевое усилие, Н;

допустимое усилие взаимодействий замка со стенкой скважин, Н;

принимается равной 20–30 кН для разрезов, сложенных мягкими породами, и 40–50 кН – крепкими и твердыми [4].


Рис. 5. Схема вписываемости забойного
двигателя в искривленном участке скважины

6.8. Определение минимально, допустимого радиуса искривления для спущенных в скважину обсадных труб.

Спущенная в скважину колонна обсадных труб изгибается примерно так же, как и ось скважины. Величина изгибающих
напряжений в обсадных трубах при этом не должна превысить допустимой величины. Для выполнения этого условия Rmin определяется как:


(23)

допустимое напряжение изгиба (для стали группы прочности Д [σиз] ≈ 200 МПа).

6.9. Расчет Rmin из условий нормальной эксплуатации глубинных насосов, пропуска приборов в скважину.

Указанные приборы должны вписываться в искривленные участки скважины без деформации. Из этого условия Rmin 7 определяется по формуле [4]:


(24)

длина спускаемого прибора или насоса, м;

внутренний диаметр эксплуатационной колонны, м;

наружный диаметр прибора, м;

зазор между стенкой обсадных труб и корпусом прибора или насоса (обычно k1 = 1,5–3 мм [4]), м.

7. Проверка условий свободного пропуска компоновки низа бурильного инструмента через кондуктор.

Такая проверка необходима, если планируется работа с отклоняющими устройствами (ОУ) после спуска кондуктора или, когда возможны исправительные работы.

При жесткой компоновке с короткими плечами l1, l2 (рис. 6) и большими диаметрами проходимость определяется из условия [4]:

внутренний диаметр кондуктора, м;

диаметр турбобура, м.


(26)

угол перекоса оси резьб переводника, град;

угол несоосности КНБК, град,


(27)


Рис. 6. Компоновка низа бурильной колонны
при увеличении зенитного угла:
1 – долото; 2 – турбобур; 3 – отклонитель; 4 –УБТ; 5 – кондуктор

С уменьшением жесткости компоновки проходимость ее через кондуктор рассчитывается с учетом упругой деформации по формуле [4]:

Dкв ≥ dт + c – f, (28)

прогиб плеча компоновки в пределах упругих деформаций, м.


(29)

допустимое напряжение в опасном сечении, МПа;

короткое плечо компоновки, м;

диаметр турбобура, м.

При курсовом и дипломном проектировании предварительно следует решить вопрос о том, какие Rmin необходимо рассчитывать, а какие нет. В расчете всех радиусов не всегда есть необходимость.

8. При втором варианте расчета элементов профиля выбирается эффективное (в конкретных условиях) ОУ при известных величинах Δα10 на соответствующем интервале бурения при определенных допустимых α. Затем по формуле (13) находят R и продолжают расчеты.

Инклинометрия

Инклинометрия — это определение пространственного положения ствола буровой скважины путем непрерывного измерения инклинометрами.

По данным замеров угла и азимута скважины, а также глубины ствола в точке замера строится план (инклинограмма) — проекция оси скважины на горизонтальную плоскость и профиль — вертикальная проекция на плоскости магнитного меридиана, геологического разреза по месторождению, проходящего через исследуемую скважину.

Наличие фактических координат бурящихся скважин дает основание судить о качестве проводки скважины и точно определять точки пересечения скважиной различных участков геологического разреза, т.е. установить правильность бурения в заданном направлении, что позволяет правильно оценивать запасы месторождений по данным буровой разведки и выбирать рациональную систему их разработки.

Наклонно-направленное бурение

Наклонно-направленное бурение - бурение скважин c отклонением от вертикали по заранее заданному направлению.

  • более 2º при колонковом бурении,
  • более 6º - при глубоком бурении скважин.
  • естественное - обусловливается рядом причин (геологических, технических, технологических), зная которые, можно управлять положением скважины в пространстве,
  • искусственное - любое принудительное их искривление.
Наклонные скважины, направление которых в процессе бурения строго контролируется, называют наклонно-направленными.
Наклонно-направленное бурение (ННБ) эффективно применяется при бурении скважин на нефть и природный газ:
  • при разработке месторождений:
    • в акваториях,
    • в болотистых или сильно пересеченных местностях,
    • когда строительство буровых установок (БУ) может нарушить условия охраны окружающей среды.
    • профили скважин могут изменяться,
    • при этом верхний интервал ствола наклонной скважины должен быть вертикальным, c последующим отклонением в запроектированном азимуте.
    • прерывистый процесс проводки скважин c использованием роторного бурения:
      • с забояскважины долотом меньшего диаметра, чем Ø ствола скважин, забуривается углубление под углом к оси скважины на длину бурильной трубы c помощью съемного или несъемного клинового либо шарнирного устройства,
      • направление углубляется и расширяется,
      • дальнейшее бурение ведется долотом нормального Ø c сохранением направления c помощью компоновки низа бурильной колонны, оснащенной стабилизаторами.
      • непрерывный процесс проводки скважины с использованием турбобура (или другого забойного двигателя):
      • для набора искривления используется такая компоновка низа бурильной колонны, при которой на долото в процессе бурения действует сила, перпендикулярная его оси (отклоняющая сила),
      • техпроцесс ННБ сводится к управлению отклоняющей силой в нужном азимуте с использованием над турбобуром переводника c перекошенными резьбами, либо искривленную бурильную трубу.
      При геолого-разведочных работах (ГРР) на твердые полезные ископаемые ННБ осуществляется шпиндельными буровыми станками c земной поверхности или из подземных горных выработок.

      Бурение таких скважин отличается тем, что вначале они имеют прямолинейное направление, заданное шпинделем бурового станка, a затем в силу анизотропии разбуриваемых пород отклоняются от прямолинейного направления.

      Рост объемов ННБ скважин с углами отклонения ствола скважин от вертикали более 50° обусловили ограничения по применению традиционных методов исследований с помощью аппаратуры, спускаемой в скважину на кабеле, и вызвали необходимость разработки специальных технологий доставки скважинных приборов в интервал исследований.

      Решение этой проблемы возможно с помощью бескабельных измерительных систем, доставляемых на забой с помощью бурового инструмента.

      Горизонтально направленное бурение является частным случаем наклонного бурения.

      Наклонно направленные скважины подразделяют на одно- и многозабойные.
      При многозабойном бурении из основного, вертикального или наклонного ствола проходится дополнительно один или несколько стволов.

      Искусственное отклонение скважин широко применяется при бурении скважин на нефть и газ.

      Искусственное отклонение скважин делится на:

      • наклонное, горизонтальное бурение,
      • многозабойное (разветвленно-наклонное, разветвленно-горизонтальное)
      • многоствольное (кустовое) бурение.
      • ускоряет освоение новых нефтяных и газовых месторождений, у
      • величивает нефтегазоотдачу пластов,
      • снижает капиталовложения,
      • уменьшает затраты дорогостоящих материалов.

      Искусственное отклонение вплоть до горизонтального применяется в следующих случаях:

      1) при вскрытии нефтяных и газовых пластов, залегающих под пологим сбросом или между 2 я параллельными сбросами;

      2) при отклонении ствола от сбросовой зоны (зоны разрыва) в направлении продуктивного горизонта;

      3) при проходке стволов на нефтеносные горизонты, залегающие под соляными куполами, в связи с трудностью бурения через них;

      4) при необходимости обхода зон обвалов и катастрофических поглощений промывочной жидкости;

      5) горизонтальное бурение незаменимо при вскрытии продуктивных пластов, залегающих под дном океанов, морей, рек, озер, каналов и болот, под жилыми или промышленными застройками, в пределах территории населенных пунктов

      6) при проходке нескольких скважин на продуктивные пласты с отдельных буровых оснований и эстакад, расположенных в море или озере;

      7) при проходке скважин на продуктивные пласты, расположенные под участками земли с сильно пересеченным рельефом местности (овраги, холмы, горы);

      8) при необходимости ухода в сторону новым стволом, если невозможно ликвидировать аварию в скважине;

      9) при забуривании 2 го ствола для взятия керна из продуктивного горизонта;

      10) при необходимости бурения стволов в процессе тушения горящих фонтанов и ликвидации открытых выбросов;

      11) при необходимости перебуривания нижней части ствола в эксплуатационной скважине;

      12) при необходимости вскрытия продуктивного пласта под определенным углом для увеличения поверхности дренажа, а также в процессе многозабойного вскрытия пластов;

      13) при кустовом бурении на равнинных площадях с целью снижения капитальных затрат на обустройство промысла и уменьшения сроков разбуривания месторождения;

      14) при бурении с целью дегазификации строго по угольному пласту, с целью подземного выщелачивания, например, калийных солей и др.

      Искусственное отклонение скважин в нефтяном бурении в основном осуществляют забойными двигателями (турбобуром, винтовым двигателем и реже электробуром) и при роторном бурении.

      Основные способы искусственного отклонения скважин.

      -Использование закономерностей естественного искривления на данном месторождении (способ типовых трасс).

      В этом случае бурение проектируют и осуществляют на основе типовых трасс (профилей), построенных по фактическим данным естественного искривления уже пробуренных скважин.

      Способ типовых трасс применим только на хорошо изученных месторождениях, при этом кривизной скважин не управляют, а лишь приспосабливаются к их естественному искривлению.

      Недостаток указанного способа - удорожание стоимости скважин вследствие увеличения объема бурения.

      Необходимо также для каждого месторождения по ранее пробуренным скважинам определять зоны повышенной интенсивности искривления и учитывать это при составлении проектного профиля.

      - Управление отклонением скважин посредством применения различных компоновок бурильного инструмента.

      В этом случае, изменяя режим бурения и применяя различные компоновки бурильного инструмента, можно, с известным приближением, управлять направлением ствола скважины.

      Этот способ позволяет проходить скважины в заданном направлении, не прибегая к специальным отклонителям, но в то же время значительно ограничивает возможности форсированных режимов бурения.

      - Направленное отклонение скважин, основанное на применении искусственных отклонителей: кривых переводников, эксцентричных ниппелей, отклоняющих клиньев и специальных устройств.

      Перечисленные отклоняющие приспособления используются в зависимости от конкретных условий месторождения и технико-технологических условий.

      К наклонным скважинам при турбинном и роторном бурении на нефть и газ относятся в основном скважины, забуриваемые с поверхности вертикально с последующим отклонением в требуемом направлении, вплоть до горизонтального, т.е. под углом в 90 градусов.

      Получив широкое распространение, одноствольное наклонное бурение не исчерпало своих резервов.

      Возможность горизонтального смещения забоя относительно вертикали (проекции устья скважины на пласт) позволила создать вначале кустовой, а затем многозабойные методы бурения.

      Техническое усовершенствование наклонного бурения явилось базой для расширения многозабойного и кустового бурения.

      Под кустовым бурением понимается способ, при котором устья скважин группируются на общей площадке, а конечные забои находятся в точках, соответствующих проектам разработки месторождения.

      Горизонтальное и разветвленное горизонтальное бурение применяются для увеличения нефте- и газоотдачи продуктивных горизонтов при первичном освоении месторождений с плохими коллекторами и при восстановлении малодебитного и бездействующего фонда скважин.

      Если при бурении наклонной скважины главным является достижение заданной области продуктивного пласта и его поперечное пересечение под углом, величина которого, как правило, жестко не устанавливается, то основная цель бурения горизонтальной скважины - пересечение продуктивного пласта в продольном направлении.

      При этом протяженность завершающего участка скважины, расположенного в продуктивном пласте (горизонтального участка), может превышать 1000 м.

      К разновидностям кустового бурения можно отнести 2-ствольное последовательное, 2-ствольное параллельное и 3-ствольное бурение.

      Кусты скважин приближенно можно представить в виде конуса или пирамиды, вершинами которых являются кустовые площадки, а основаниями - окружность или многоугольник, размеры которых определяются величиной сетки разработки и возможностью смещения забоев от вертикали при бурении наклонных скважин.


      Двуствольное бурение - технология кустового бурения, при котором одновременно (иногда поочередно) бурятся 2 наклонные скважины, устья которых расположены рядом, около 1 5 м друг от друга, а конечные забои запроектированы на существенном расстоянии - в интервале 100 - 400 м и более.

      Преимущества параллельного 2-ствольного бурения скважин:

      - возможность совмещения отдельных операций: подъем бурильного инструмента из одной скважины со спуском его в другую;

      - промывка, выравнивание раствора и механическое бурение в одной скважине с геофизическим исследованием в другой.

      - с одним комплектом бурильных труб и с одного подвышечного постамента осуществляют одновременную проходку 2 х наклонных или 1 й вертикальной и 2 й наклонной скважин.

      При этом вместо обычного ротора применяют спаренные роторы типа РМБ-560, перемещающийся крон-блок типа К.

      Один из прогрессивных методов повышения технико-экономической эффективности проходки скважин - многозабойное бурение. Сущность этого способа бурения состоит в том, что из основного ствола скважины с некоторой глубины проводят один или несколько стволов, т.е. основной ствол используется многократно. Полезная же протяженность скважин в продуктивном пласте и, следовательно, зона дренирования (поверхность фильтрации) возрастают, поэтому значительно сокращается объем бурения по верхним непродуктивным горизонтам.

      Координаты пространственного положения и направления скважины

      Скважина как математическое понятие траектории непрерывного поступательного движения бурового породоразрушающего инструмента в пространстве и трасса как ее дискретное графическое отображение в форме ломаной линии характеризуются координатами положения и направления , показанными на рис. 9.1 .

      Рис. 9.1. Схема определения координат (и их приращений) пространственного положения скважины.

      Непрерывное определение координат траектории геологоразведочных скважин в настоящее время, как правило, не производится, а их координаты (или приращения) определяются по отдельным дискретным точкам инклинометрической съемки в географических прямоугольных декартовых координатах трехмерного пространства, где обычно выделяют: Х 0 , Y 0 , Z 0 - начальные координаты заложения скважины; Х i , Y i , Z i - ее текущие координаты в i -й точке, например A i и X k , Y k , Z k координаты подсечения рудного тела скважиной конечного забоя точки K i . (Ось X представляет собой касательную к магнитному меридиану в направлении магнитного (географического) севера; ось Y , перпендикулярная к оси X , направленная в сторону магнитного востока, ось Z направлена в сторону действия вектора силы тяжести).

      Глубина L скважины представляет собой расстояние по ее стволу от устья 0 до забоя K i или любой i точки замера углов. Глубины (длины) ствола измеряют по буровому снаряду в процессе его подъема из скважины и при контрольных замерах, которые проводятся периодически по мере углубки скважины. Замеры следует также осуществлять перед постановкой искусственного отклонителя в скважине, а также после ликвидации аварий и осложнений.

      Для изображения положения скважины в пространстве в координатной системе ее точки рассчитываются для осей X, Y, Z , например, точка А i проектируется на горизонтальную плоскость осей X, Y (точка А 1 с координатами С 1 , С 1 ), на вертикальную плоскость осей X, Z (точка А 2 с координатами С 1 , С 2 )и вертикальную плоскость осей Y, Z (точка А 3 с координатами С 2 , С 3 ).

      При построении геологических разрезов ее ось проектируют на две плоскости: вертикальную и горизонтальную и называют вертикальной ОА 2 ( профиль ) и горизонтальной ОА 1 ( план ) проекцией скважины, а величины отрезков А 1 С 1 и А i А 1 определяют собой отход или смещение забоя скважины от вертикальной и горизонтальной плоскостей.

      Вертикальная плоскость, проходящая через ось скважины, и вертикаль в любой точке оси называется апсидальной (зенитной) плоскостью , а двугранный угол, отсчитываемый по ходу часовой стрелки между апсидальной плоскостью и плоскостью искривления, апсидальным углом.

      Читайте также: