Гидропескоструйная перфорация скважин как способ воздействия на пзп

Обновлено: 07.07.2024

Гидропескоструйная перфорация

При ГПП создаются каналы значительно боль­ших размеров диаметр отверстий, создаваемых в колонне, составляет 12—20 мм, а глубина каналов в несколько раз больше, чем при других видах перфорации (длина до 0,4 м, усредненный диаметр составляет примерно половину длины), не растрескивается цементный ка­мень, не уплотняется порода в зоне перфорации. Поэтому ГПП применяют в скважинах, только что вышедших из бу­рения, и уже эксплуатирующихся для значительного увеличения их произ­водительности, а также в скважинах, близко расположенных к нефтенос­ным пластам водоносных или газоносных прослоев или пластов. ГПП при­меняют также для выполнения следующих специальных работ в скважи­нах:

- создание щелей перед ГРП, обеспечивающих снижение давления раз­рыва и образование трещины в определенном направлении;

- срезание обсадных, бурильных и насосно-компрессорных труб.

ГПП в основном используют тогда, когда другие виды перфорации не дают ожидаемого результата.

Основное условие нормального осуществления процесса ГПП — отсут­ствие поглощения жидкости в скважине, т.е. наличие нормальной цирку­ляции жидкости для обеспечения выноса песка и шлама.

ГПП нецелесообразно применять в интервалах, уже подвергнутых кислотной обработкеи ГРП, а также всильнообводненных пластах.

Основными материалами для осуществления ГПП являются рабочая жидкость и песок.В качестве рабочих жидкостей используют дегазированную нефть (в добывающих скважинах) и техническую воду (в водонагнетательных сква­жинах), а также растворы соляной кислоты с ПАВ (в любых скважинах).В качестве абразивного (истирающего) материала применяют песок с размером зерен от 0,2 до 2,0 мм с содержанием кварца более 50%.

ГПП осуществляют с помощью специальных устройств – гидроперфо­раторов,содержащихнасадки (сопла) изочень твердого сплава ВК6.

Гидропескоструйный перфоратор АП-6М100 предназначен для создания точечных и щелевых каналов в колонне, цементе и породах пласта. АП-6М применяют для перфорации скважин, обсаженных колон­нами 141-219 мм; вырезки обсадных колонн тех же диаметров; расшире­ния забоев необсаженных скважин и т.д.

Пескоструйный перфо­ратор АП-6М100 (рис. 2.5) состоит из корпуса 3; узла насадки 5, в комплект которого входят насадка, держатель насадки и стопорное кольцо; хвостовика 1; центратора 2; заглушек 6; клапана перфоратора 4 и клапана опрессовки труб 7.


1 – хвостовик; 2 – центратор; 3 – корпус; 4 – клапан перфоратора; 5 – узел насадки; 6 – заглушка; 7 - клапан опрессовки труб

Рис. 2.5. Гидропескоструйный перфоратор АП-6М100

Симметричная конструкция корпуса перфоратора позво­ляет 2,5" резьбой подсоединяться с любой стороны к трубам или устанавливать хвостовик с центратором корпуса перфора­тора. За 2,5" резьбой расположена камера опрессовочного клапана 7, служащего для опрессовки колонны труб.

На корпусе перфоратора имеется 10 резьбовых отверстий, расположенных в трех горизонтальных плоскостях. В эти резьбовые отверстия монтируются узлы насадок. Для того чтобы сохранить габариты перфоратора, а также предупре­дить прихваты и удары узла насадок о стенки скважины при спускоподъемных операциях, узел насадки размещается за­подлицо с корпусом перфоратора.

Торец шестигранника держателя насадки предохраняет корпус перфоратора от разрушения отраженной струей жид­кости с песком. По мере износа шестигранника держатели заменяются. В держателях имеется конусное гнездо, в кото­рое запрессовывается насадка. Стопорное кольцо фиксирует насадку в держателе.

Насадки перфоратора изготавливаются из абразивостой­ких сплавов В К6 и ВК6М. Они имеют коноидальный вход иконусную проточную часть (конусность 0°20') с диаметрами на входе 3,0; 4,5; 6,0 мм.

Для промывки скважин перфоратор снабжен хвостовиком с пером. В комплект перфоратора входят сменные центрато­ры для 5 и 6-дюймовых обсадных труб, которые монтируют­ся на цилиндрической части хвостовика. Верхний торец хво­стовика служит седлом клапана перфоратора 4.




Перфоратор АП-6М80 (рис. 2.6) конструктивно отличается от перфоратора АП-6М100. В нем сокращено число насадок до 6; уменьшены — внутренний диаметр до 30 мм, а подсое­динительные резьбы до 2", причем узел насадки выполнен также, как и в перфораторе АП-6М100.


1 - хвостовик; 2 - центратор; 3 - корпус; 4 - клапан перфоратора; 5 - узел насадки;

Гидропескоструйная перфорация

Гидропескоструйную перфорацию (ГПП) применяют при вскрытии плотных коллекторов, как однородных, так и неоднородных по проницаемости перед гидроразрывом пласта для образования трещин в заданном интервале пласта, а также чтобы срезать трубу в скважине при ремонтных работах.

Технологии гидропескоструйного воздействия в нефтегазе стали использовать после разработку достаточно стойких материалов для применения во время проведения работ в нефтегазовых скважинах.

ГПП нефтегазовых скважин имеет ряд преимуществ по сравнению с традиционными методами прострелочно-взрывных работ (ПВР).

ГПП предполагает образование канала за счет гидромониторного эффекта высокоскоростной струи, содержащей абразивный песок.

Такой способ вскрытия практически исключается отрицательное воздействие взрывных нагрузок на пласт и на эксплуатационную колонну, а получаемые отверстия значительно больше, чем при использовании кумулятивных зарядов при аналогичных условиях.

Это предполагает отсутствие преждевременной остановки закачки при последующем проведении работ по ГРП, что повышает успешность работ.

Добавим существенно меньший срок освоения скважины при ГПП.
При ГПП отсутствуют манипуляции с пакером, его посадка осуществляется 1 раз выше самого верхнего пласта; нет ограничений по массе ГРП и фракциям проппанта.

При нескольких последовательных операций ГРП требуется меньше массы проппанта, в связи с зонным размещением.

Проведение работ по технологии ISOJET возможно практически в любых скважинах: большая кривизна скважины, наличие хвостовика (114 или 102 мм) или отсутствие усиленной эксплуатационной колонны (группа прочности Е) не являются препятствием для использования технологии ISOJET.

Хотя есть и ограничения.

Если пласт поглощает жидкость, то применение гидропескоструйной перфорации недопустимо.

Различают 2 варианта перфорации - точечную, когда канал образуют при неподвижном перфораторе, и щелевую, когда перфоратор неподвижен.

Для проведения СПП необходимы перфораторы, насосно-компрессорные трубы, насосные агрегаты, пескосмесители, емкости для жидкости, сальниковая катушка или превентор, а также жидкость - носитель и кварцевый песок.

В качестве жидкости - носителя используют дегизированную нефть, 5-6% раствор соляной кислоты, воду (можно соленую) с добавками ПАВ или промывочный раствор, не загрязняющий коллектор.

При работах в интервале непродуктивного пласта обычно используют пресную воду или промывочную жидкость.


Требования к материалам и жидкости описаны.

При прохождении смеси через смесительную емкость, насосный агрегат, линии обвязки, ГНКТ и затрубное пространство скважины параметры смеси должны соответственно различаться, но несущая жидкость должна обеспечить при различной температуре поддержание песка во взвешенном состоянии при прохождении всех участков на пути закачки и необходимом уровне трения, не превышающем 290 атм.

Так, смесь должна проходить через шланги низкого давления, где необходима более высокая вязкость жидкости для поддержания песка во взвешенном состоянии, затем - через ГНКТ, где требуется пониженная вязкость и снижение трения при высоких расходах закачки и ограничениях по циркуляционному давлению.

При проведении работ в горизонтальных скважинах, где смесь транспортируется в ГНКТ при низком циркуляционном давлении требуется еще более высокая вязкость жидкости.


В качестве абразивного песка можно использовать проппанты или кварцевый песок различного типоразмера.

Предпочтительней кварцевый песок типоразмера 35-40.

Концентрация песка в жидкости-носителе должна составлять 50-100 г/ литр.

Гидропескоструйный перфоратор представляет собой корпус из стального сплава с 3-я форсунками из твердых сплавов с фазировкой 120 о .

Форсунки также отстоят по оси друг от друга на определенном расстоянии.

При прокачке смеси через форсунки с определенным расходом достигается необходимая скорость струи при расчетном давлении.

Продолжительность процесса при точечном вскрытии составляет 15 мин, а при щелевом - не более 3 мин/1 см длины цели.

Перепад давления жидкости на насадке, без учета потерь на трение в насосно-компрессорных трубах составляет 10-12 МПа при диаметре 4,5 мм.

Процесс ГПП осуществляют при движении НКТ снизу вверх.

При непредвиденных продолжительных остановках скважину немедленно промывают при обратной циркуляции.

Компоновка низа ГНКТ представляет: переходник ГНКТ, двойные лепестковые обратные клапаны, механический разъединитель, гидравлический центратор, гидропескоструйный перфоратор, циркуляционную насадку.

После перфорации при обратной промывке вымывают шаровой клапан, промывают саму скважину до забоя, чтобы полностью удалить из нее песок, поднимают перфоратор и оборудуют скважину для освоения и эксплуатации.

Что такое гидропескоструйная перфорация скважин?

Гидропескоструйная перфорация применяется как один из основных способов пробивки отверстий в буровой колонне. Это необходимо в нефтедобывающей промышленности.

Процедура производится напротив нефтеносной области и помогает усилить, а также активизировать потоки углеводородного сырья. Это современной и эффективное оборудование отличается простотой в обслуживании и понятным принципом работы.

Gidropeskost perforac skvazhin0

Что из себя представляет

Это высокоэффективный способ, поскольку по сравнению с другими методами перфорации улучшаются показатели вскрытия пласта.

Основан способ на абразивном и гидромонтирном разрушении преград. Применяется при следующих видах работ:

  • вскрытие пластов;
  • испытание и опробование разведочных скважин;
  • вскрытие обсадных колонн;
  • разбуривание цементных мостов.

Также в список входит еще несколько операций для перфоратора, необходимых при капитальном ремонте скважин. Особенностью метода является активное использование воды для транспортировки абразивных частиц. Процесс, по сути, представляет собой нагнетание в скважину воды и песка под высоким давлением. После обработки остаются чистые и глубокие каналы.

Gidropeskost perforac skvazhin

Гидропескоструйная перфорация бывает двух типов:

  • точечная, при котором перфоратор имеет фиксированное положение, а необходимое воздействие на скважину – 15 минут;
  • щелевая, перфоратор в этом случае подвижен, а время воздействия по 3 мин на каждый см.

Основные преимущества такого метода обработки:

  • высокая продуктивность;
  • уменьшение сроков;
  • возможность использования в различных видах скважин, даже усилены по твердости материала;
  • щадящий характер работ не позволяет нанести ущерб нефтеносному пласту.

Все это не только ускоряет работу, но и позволяет проводить ее продуктивно и качественно, без отвлечения на кривизну канала, наличие хвостовика. Важно использовать исключительно современное оборудование, чтобы достичь желаемого результата.

Устройство перфоратора

Гидропескоструйный перфоратор состоит из корпуса, струйных сопел, шарового клапана и хвостовика с центральным отверстием. Хвостовик имеет коническую внутреннюю резьбу, посредством которой соединен с корпусом. При этом внешний диаметр хвостовика и внешний диаметр корпуса совпадают.

В корпусе расположены гидромоторные насадки. Непосредственно насадки выполнены из прочного абразивноустойчивого материала. При перфорации отверстия в породе создаются за счет придания песчано-жидкостной струе очень больших скоростей. По параметрам скорость достигает нескольких метров в секунду. Перепад давления в процессе составляет до 30 мПА.

Gidropeskost perforac skvazhin1

В итоге в породе образуется каверна грушеобразной формы. Узкий конус обращен к перфорационному отверстию в колонне. Размеры получаемого канала сначала растут быстро, а затем медленнее, в связи с падением скорости струи, а также поглощением энергии встречным потоком различных жидкостей.

Основные параметры, по которым проверяется струя:

  • определенная плотность, чтобы не возникло проявления фонтана;
  • вязкость, чтобы в системе не оседал песок;
  • фильтруемость, чтобы каверны не сильно поглощали рабочую жидкость.

Как происходит подготовка скважин к эксплуатации

Скважины с перфорированным забоем являются более предпочтительными в нефтедобывающей промышленности. Гидропескоструйная процедура перфорации относится к вариантам вторичного вскрытия, а также к эффективному способу искусственного воздействия на зонах при забое.

Гидропескоструйный перфоратор фиксируется снизу колонны, после чего опускается в скважину на заданную глубину. При этом сверху вне скважины остается определенное оборудование: пескосмесительные агрегаты, устьевая арматура, насосы. Под воздействием насосов жидкость накачивается под высоким давлением.

Gidropeskost-perforac-skvazhin2

Если перфоратор стационарен, в обсадной колонне и цементном камне образуются отверстия большого диаметра. Форма каверн в конце концов зависит не только от твердости горной породы, но и от параметров скорости жидкостно-песчаных струй.

После гидропескоструйной перфорации при процессе обратной промывки вымывают шаровой клапан, промывается скважина до забоя, пока песок из скважины не будет полностью удален. После этого можно вытаскивать перфоратор и заниматься оборудованием скважины для последующей эксплуатации. Кроме того, освоение скважин, вполне возможно и без подъема перфоратора.

Наиболее щадящий технологический процесс при воздействии на нефтяные пласты – гидропескоструйная перфорация. Этот метод отличается безопасностью и высокой результативностью при соблюдении всех нюансов технологического процесса. Главное, использовать самые современные технологии, а также соорудить резервуары для хранения жидкости.

Обработка призабойной зоны пласта (ОПЗ)

ОПЗП проводят на всех этапах разработки нефтяного месторождения (залежи) для восстановления и повышения фильтрационных характеристик ПЗП с целью увеличения производительности добывающих и приемистости нагнетательных скважин.

Обработка призабойной зоны пласта (ОПЗПП)

ОПЗП проводят на всех этапах разработки нефтяного месторождения (залежи) для восстановления и повышения фильтрационных характеристик ПЗП с целью увеличения производительности добывающих и приемистости нагнетательных скважин.

Выбор способа ОПЗП осуществляют на основе изучения причин низкой продуктивности скважин с учетом физико-химических свойств пород пласта-коллектора и насыщающих их флюидов, а также специальных гидродинамических и геофизических исследований по оценке фильтрационных характеристик ПЗП.

ОПЗП проводят только в технически исправных скважинах при условии герметичности эксплуатационной колонны и цементного кольца, подтвержденной исследованиями .

Технологию и периодичность проведения работ по воздействию на ПЗП обосновывают геологические и технологические службы нефтегазодобывающего предприятия в соответствии с проектом разработки месторождения, действующими инструкциями (РД) по отдельным видам ОПЗП с учетом технико-экономической оценки их эффективности.

1-кратное и многократное воздействие на ПЗП производят в следующих случаях:

- в однородных пластах, не разделенных перемычками, толщиной до 10 м; при коэффициенте охвата отбором (нагнетанием) свыше 0,5 производят однократное воздействие;

- в случаях, когда отбором (нагнетанием) охвачены не все пропластки и коэффициент охвата менее 0,5, осуществляют многократное (поинтервальное) воздействие с использованием временно блокирующих (изолирующих) материалов или оборудования.

Проведение подготовительных работ для всех видов ОПЗП обязательно и включает в своем составе

-обеспечение необходимым оборудованием и инструментом,

- подготовку ствола скважины, забоя и фильтра к обработке.

В скважинах, по которым подземное оборудование не обеспечивает проведения работ по ОПЗП, например, оборудованных глубинным насосом, производят подъем подземного оборудования и спуск колонны НКТ, а также другого необходимого оборудования.

После проведения ОПЗП исследуют скважины методами установившихся и неустановившихся отборов на режимах (при депрессиях), соответствующих режимам исследования скважин перед ОПЗП.

Для очистки фильтра скважины и призабойной зоны пласта от различных загрязнений в зависимости от причин и геолого-технических условий проводят следующие технологические операции:

-промывку пеной или раствором ПАВ;

- гидроимпульсное воздействие (метод переменных давлений);

- циклическое воздействие путем создания управляемых депрессий на пласт с использованием струйных насосов;

- многоцикловую очистку с применением пенных систем;

- воздействие на ПЗП с использованием гидроимпульсного насоса;

- ОПЗП с применением самогенерирующихся пенных систем (СГПС);

- воздействие на ПЗП с использованием растворителей (бутилбензольная фракция, стабильный керосин и др.).

Для обработки карбонатных коллекторов, состоящих, в основном, из кальцита, доломита и других солей угольной кислоты, а также терригенных коллекторов с повышенным содержанием карбонатов (свыше 10 %) используют соляную кислоту. Допускается применение сульфаминовой и уксусной кислот.

Карбонатные коллекторы, не содержащие в своем составе осадкообразующих включений (сульфатов, соединений железа и т.п.), обрабатывают 10-16 % водным раствором соляной кислоты.

Коллекторы, содержащие осадкообразующие включения, обрабатывают уксусной (10 % масс) или сульфаминовой (10 % масс) кислотами.

При обработке карбонатных коллекторов, содержащих соединения железа, при использовании соляной кислоты дополнительно вводят уксусную (3-5 % масс) или лимонную (2-3 % масс) кислоты для предупреждения осадкообразования в растворе.

В трещинных и трещинно-поровых коллекторах для глубокой (по простиранию) обработки используют замедленно взаимодействующие с карбонатами составы на основе соляной кислоты, дисперсные системы типа эмульсий и загущенных растворов:

- для приготовления кислотной пены и нефтекислотной эмульсии используют ПАВ (сульфонол, ОП-10 и др) и стабилизатор (КМЦ и др);

- для приготовления загущенной кислоты в раствор соляной кислоты (от 12 до 15 % масс) вводят КМЦ или сульфит-спиртовую барду (0,5-3,0 % масс).

Обработку карбонатных коллекторов в скважинах с температурой от 100 до 170 °С производят с использованием гидрофобной кислотной эмульсии со специальным эмульгатором (диаминдиолеат, первичные амины, алкиламиды) от 0,5 до 1 %-ной концентрации.

Объем кислотного раствора и время выдерживания его в пласте в зависимости от вида воздействия, рецептуры применяемого состава и геолого-технических условий (толщина, пористость, проницаемость, забойная температура, давление пласта) выбирают из табл. 5.

Для обработки терригенных коллекторов с карбонатностью менее 10 %, а также в случае загрязненной ПЗП используют глинокислотные растворы, приготавливаемые из соляной (от 10 до 12 % масс) и плавиковой (от 3 до 5 % масс) кислот.

Допустимо использование взамен плавиковой кислоты кристаллического бифторидфторида аммония. Объем раствора при глинокислотной обработке выбирают из условия предупреждения разрушения пластовых пород.

При первичной обработке используют 0,3 - 0,4 м 3 раствора на 1 м вскрытой перфорацией толщины пласта.

Для обработки коллекторов, представленных ангидритами, используют соляно-кислотные растворы с добавками от 6 до 10 % масс азотнокислого натрия.

Во всех случаях при проведении кислотных обработок в состав раствора вводят ингибитор коррозии.

Объем кислоты для ОПЗП в зависимости от проницаемости пласта-коллектора и количества обработок

Методы перфорации и торпедирования скважин

По окончании бурения нефтяной или газовой скважины стенки ее закрепляют обсадными трубами; в интервалах залегания продуктивных (нефтегазоносных) и водоносных пластов колонну цементируют.

Их спускают в скважину на каротажном кабеле.

Перфорацию применяют также для вскрытия заводняемых пластов в нагнетательных скважинах, для проведения изоляционных работ и после них: при переходе на другие горизонты т. д.
Существуют 4 способа перфорации:
- пулевая,
- торпедная,
- кумулятивная,
- пескоструйная.

Первые 3 способа осуществляются на промыслах геофизическими партиями с помощью оборудования, приборов и аппаратуры, имеющихся в их распоряжении.
Пескоструйная перфорация осуществляется техническими средствами и службами нефтяных промыслов.


Пулевая перфорация.

Перфоратор с горизонтальными стволами собирается из нескольких секций, вдоль которых просверлены 2 или 4 вертикальных канала, каморы с ВВ.
Стволы камор заряжены пулями и закрыты герметизирующими прокладками.
Верхняя секция имеет 2 запальных устройства.
При подаче по кабелю тока, срабатывает 1 е запальное устройство, и детонация распространяется по вертикальному каналу на все каморы, пересекаемые этим каналом.
В результате почти мгновенного сгорания ВВ давление газов в каморе достигает 2000 МПа, после чего пуля выбрасывается.
Происходит почти одновременный выстрел из половины всех стволов.
При необходимости удвоить число прострелов по 2 й жиле кабеля подается 2 й импульс.
В этом случае срабатывает вторая половина стволов от второго запального устройства.
В перфораторе масса заряда ВВ одной каморы незначительна (равна 4-5 г), поэтому пробивная способность его невелика.
Длина образующихся перфорационных каналов составляет 65-145 мм (в зависимости от свойств породы и типа перфоратора), диаметр канала- 12,5 мм.На рисунке показан пулевой перфоратор с вертикально-криволинейными стволами ПВН-90.
При вертикальном расположении стволов объем камор и длина стволов больше, чем при горизонтальном.
В каждой секции 2 ствола направлены вверх и это компенсирует реактивные силы, действующие на перфоратор в момент выстрела.
Одна камора отдает энергию взрыва сразу двум стволам.
Масса ВВ в одной каморе достигает 90 г.
Давление газов в каморах составляет 600-800 МПа.
Действие газов более продолжительное, чем при горизонтальном расположении стволов.
Это позволяет увеличить начальную скорость вылета пули и пробивную способность перфоратора.
Длина перфорационных каналов в породе получается 145-350 мм при диаметре около 20 мм.
В каждой секции перфоратора имеются 4 вертикальных ствола, на концах которых сделаны плавные желобки-отклонители.
Пули, изготовленные из легированной стали, для уменьшения трения в отклонителях покрываются медью или свинцом.
Выстрел из всех стволов происходит практически одновременно, так как все каморы с ВВ сообщаются огнепроводным каналом.

Торпедная перфорация

осуществляется аппаратами, спускаемыми на кабеле, и отличается от пулевой перфорации тем, что для выстрела используют разрывной снаряд, снабженный взрывателем замедленного действия. Масса внутреннего заряда ВВ одного снаряда равна 5 г. Аппарат состоит из секций, в каждой из которых имеется по два горизонтальных ствола. Снаряд снабжен детонатором накального типа. При остановке снаряда происходит взрыв внутреннего заряда, в результате чего происходит растрескивание окружающей породы. Масса ВВ одной камеры- 27 г. Глубина каналов по результатам испытаний составляет 100-160 мм, диаметр канала - 22 мм. На 1 м длины фильтра обычно пробивают не более четырех отверстий, так как при торпедной перфорации нередки случаи разрушения обсадных колонн.

Кумулятивная перфорация

Гидропескоструйная перфорация

основана на использовании абразивного и гидромониторного действия струи жидкости (воды, нефти) со взвешенным в ней песком, выходящим под высоким давлением из узкого отверстия (сопла).

Вытекая из сопел с большой скоростью, достигающей нескольких сот метров в секунду, жидкость с песком пробивает эксплуатационную колонну, цементное кольцо и внедряется в породу на глубину до 1 м.
В процессе перфорации под действием абразивной струи жидкости (вверх или вниз вдоль ствола скважины) может образоваться щелевой канал или (при круговом вращении струи) обрезаться колонна по кольцу, что необходимо, например, для извлечения части обсадной колонны.


Торпедирование в скважине - взрыв, производимый при помощи торпеды (заряда взрывчатого вещества).

Торпеда кроме заряда взрывчатого вещества содержит средства для взрыва:

  • взрыватель, состоящий из электрозапала и чувствительного к взрыву капсюля-детонатора,
  • шашку взрывчатого вещества, усиливающего начальный импульс детонации.

Иногда торпедирование применяют с целью удаления песчаных пробок, образовавшихся в стволе скважины, очистки призабойной зоны от глинистых осадков, очистки фильтра, пробивания окна в обсадной колонне для бурения нового ствола и т. д.

Гидропескоструйная перфорация

Наиболее эффективно вскрытие продуктивного пласта, обса­женного колонной и зацементированного гидропескоструйной пер­форацией. При этом образуются радиальные конусообразные поло­сти длиной до 1 м и диаметром до 60 мм.

При гидропескоструйной перфорации в скважину на колонне НКТ спускают гидропескоструйный перфоратор, по которому от насосного агрегата под давлением до 30 МПа подают водопесчаную смесь, приготавливаемую пескосмесительными агрегатами. Смесь вытекает из насадок перфоратора с большой скоростью и промывает в обсадной колонне, цементном кольце и породе пласта каналы (рис. IV. 16).

Гидропескоструйный перфоратор служит для создания каналов; в скважинах с 146, 168 и 219-мм эксплуатационными колоннами. С его помощью вырезают окна в обсадных колоннах, расширяют забои необсаженных скважин. Основное назначение перфорато­ра — создание перфорационных отверстий.

Перфоратор (рис. 111.17) состоит из корпуса 2, в верхней и нижней частях снабженного коническими резьбами. С помощью резьбы в верхней части корпуса он соединяется с колонной буриль­ных труб, на которой спускается в скважину, с помощью нижней — с хвостовиком 6, имеющим перо, на котором установлен центратор 5. На боковой поверхности корпуса имеется шесть гнезд с кониче­ской резьбой, в которые вворачиваются узлы насадок 3 или заг­лушки. Насадки снабжены держателями с небольшими закраина­ми, предохраняющими корпус перфоратора от разрушения отра­женной от стенки скважины струи жидкости. Насадки выполня­ются из прочного материала, устойчивого к воздействию водопес-чаного потока, текущего во время перфорации в отверстиях насадок.

В корпусе перфоратора размещены два шариковых клапана 1, 4 различного диаметра, обеспечивающих возможность опрессовки колонны бурильных труб после спуска перфоратора, а также про­мывки скважины от песка.

В зависимости от вида выполняемых работ применяют насад­ки с различными диаметрами: для вырезки прихваченных в сква­жине труб —3 мм; для перфорации обсадных колонн и других ра­бот, при которых расход жидкости ограничен,—4,5 мм; для полу­чения максимальной глубины каналов —6 мм.

Для повышения эффективности абразивного действия струи,, истекающей из насадок, за счет исключения ее столкновения со струей отработанной жидкости насадки устанавливают таким об- разом, чтобы угол наклона оси отверстия к горизонтальной плоскости составлял 2—3°.

При пескоструйной перфорации отсутствуют ударные волны,, которые наблюдаются при пулевой и торпедной перфорациях, а поэтому не нарушается изоляция отдельных пропластков. Эффек­тивность этого процесса не уменьшается с увеличением глубины залегания вскрываемого пласта.

Гидропескоструйная перфорация не дает высокого эффекта для пластов, ранее подвергавшихся солянокислотной обработке, гид­равлическому разрыву, а также уже вскрытых пластов с высоко­проницаемыми породами.

С помощью описанного комплекса оборудования, дополненно­го устройством для вертикального или кругового перемещения пер­форатора, можно:

создавать глубокие вертикальные или кольцевые щели; срезать обсадные, бурильные и насосно-компрессорные трубы в скважине;

разрушать металлические предметы, находящиеся в скважине, цементные стаканы или твердые песчаные пробки.

Последовательность операций при гидропескоструйной перфо­рации следующая.

1. У устья скважины устанавливают агрегат подземного ре­монта для спуско-подъемных операций, рядом со скважиной рас­полагают и обвязывают насосный и пескосмесительные агре­гаты.

2. На колонне насосно-компрессорных или бурильных труб спускают перфоратор с гидравлическим центратором, расположенным выше него. Расположение перфоратора относительно вскрываемо­
го пласта определяют либо с помощью радиоактивного каротажа, либо точным измерением длины труб, на которых спускают пер­форатор.

3. После спуска инструмента устье скважины обвязывают ар­матурой типа 2АУ-70, обеспечивающей возможность прямой и об­ратной промывки скважины.

4. Промывают скважину водой до забоя.

5. Спускают в скважину опрессовочный шаровой клапан и опрессовывают оборудование пробным давлением, превышающим рабочее в 1,5 раза.




6. Обратной промывкой поднимают опрессовочный (верхний) клапан на поверхность.

7. Опускают в трубы клапан перфоратора (нижний).

8. Проводят пробную закачку жидкости без песка и уточняют режим работы насосных установок.

9. Начинают проведение гидроперфорации. При этом двумя - тремя агрегатами закачивают песчаную смесь, содержащую 50—100 кг песка на 1 м 3 жидкости. Фракционный состав песка может изменяться от 0,2 до 1 мм. При вскрытии эксплуатационных сква­жин в качестве жидкости-песконосителя можно использовать де­газированную нефть, при проведении работ в нагнетательных сква­жинах, а также связанных с обрезкой колонн -— воду. Подачи на­сосов составляет 3—4 л/с, что обеспечивает скорость истечения из насадок перфоратора 200—260 м/с при перепаде давления на них 18—22 МПа. Водопесчаная смесь образует углубления в стенке скважины со скоростью 0,6—-0,9 мм/с. На обработку одного интер­вала пласта затрачивают 15—20 мин, после чего прокачку смеси прекращают и колонну труб вместе с перфоратором поднимают, устанавливая у следующего интервала. Процесс перфорации пов­торяют.

Одной из основных задач в процессе перфорирования является поддержание циркуляции жидкости- песконосителя. Потеря цирку­ляции, например, в результате поглощения жидкости высокопро­ницаемыми пластами может привести к появлению песчаных про­бок.

10. После обработки всех интервалов потоком жидкости при обратной промывке поднимают обратный клапан и промывают скважину до появления чистой воды.

11. Устье скважины освобождают от арматуры, перфоратор из­влекают из скважины и оборудуют ее для освоения и эксплуата­ции.

Для повышения эффективности гидравлической перфорации не­обходимо сократить непроизводительное время, на которое про­цесс перфорации прекращается для изменения глубины подвески перфоратора. Для этого применяют технологию непрерывного процесса.

В этом случае устье скважины оборудуют головкой с сальником, позволяющей агрегату подземного ремонта поднимать колонну НКТ, подвешенную на элеваторе. Жидкость подводят к колонне труб промывочным шлангом. При подобном оборудовании возмож­но проводить перфорацию колонны в интервале, соответствующем длине одной насосно-компрессорной трубы.

Гидропескоструйная перфорация , назначение и технология проведения.

Наиболее эффективно вскрытие продуктивного пласта, обсаженного колонной и зацементированного гидропескоструйной перфорацией. При этом образуются радиальные конусообразные полости длиной до 1 м и диаметром до 60 мм.

При гидропескоструйной перфорации в скважину на колонне НКТ спускают гидропескоструйный перфоратор, по которому от насосного агрегата под давлением до 30 МПа подают водопесчаную смесь, приготавливаемую пескосмесительными агрегатами. Смесь вытекает из насадок перфоратора с большой скоростью и промывает в обсадной колонне, цементном кольце и породе пласта каналы (рис. 1.).

Гидропескоструйный перфоратор служит для создания каналов; в скважинах с 146, 168 и 219-мм эксплуатационными колоннами. С его помощью вырезают окна в обсадных колоннах, расширяют забои необсаженных скважин. Основное назначение перфоратора — создание перфорационных отверстий.

Перфоратор (состоит из корпуса 2, в верхней и нижней частях снабженного коническими резьбами. С помощью резьбы в верхней части корпуса он соединяется с колонной бурильных труб, на которой спускается в скважину, с помощью нижней — -с хвостовиком 6, имеющим перо, на котором установлен центратор 5. На боковой поверхности корпуса имеется шесть гнезд с конической резьбой, в которые вворачиваются узлы насадок 3 или заглушки. Насадки снабжены держателями с небольшими закраинами, предохраняющими корпус перфоратора от разрушения отраженной от стенки скважины струи жидкости. Насадки выполняются из прочного материала, устойчивого к воздействию водопесчаного потока, текущего во время перфорации в отверстиях насадок.

Последовательность операций при гидропескоструйной перфорации следующая.

У устья скважины устанавливают агрегат, подземного ремонта для спуско-подъемных операций, рядом со скважиной располагают и обвязывают насосный и пескосмесительные агрегаты.

На колонне насосно-компрессорных или бурильных труб спускают перфоратор с гидравлическим центратором, расположенным выше него. Расположение перфоратора относительно вскрываемого пласта определяют либо с помощью радиоактивного каротажа, либо точным измерением длины труб, на которых спускают перфоратор.

После спуска инструмента устье скважины обвязывают арматурой типа 2АУ-70, обеспечивающей возможность прямой и обратной

Промывают скважину водой до забоя.

Спускают в скважину опрессовочный шаровой клапан и опрессовывают оборудование пробным давлением, превышающим рабочее в 1,5 раза.

Обратной промывкой поднимают опрессовочный (верхний) клапан на поверхность.

Опускают в трубы клапан перфоратора (нижний).

Проводят пробную закачку жидкости без песка и уточняют режим работы насосных установок.

Начинают проведение гидроперфорации. При этом двумя-тремя агрегатами закачивают песчаную смесь,

Выполнение гидропескоструйной перфорации на газодобывающих скважинах с аномально высоким пластовым давлением


В статье автор описывает опыт выполнения гидропескоструйной перфорации на газодобывающих скважинах с АВПД. Оценивает применимость технологии в осложненных условиях.

Ключевые слова: гидропескоструйная, ГПП, АВПД, газодобывающие скважины.

Гидропескоструйная перфорация (ГПП) является методом вторичного вскрытия продуктивных пластов, при котором разрушение стенок обсадной колонны, цементного камня и породы производится с помощью высокоскоростных гидромониторных струй жидкости, содержащих абразивные включения. обычно в качестве абразива используется крупный кварцевый песок, размером около 100меш или искусственный керамический песок мелких фракций 20/40–30/50меш

Данный метод относят к щадящим методам вторичного вскрытия, в связи с его низким отрицательным влиянием на ПЗП. В действительности формирование перфорационных каналов гидромониторной струей не приводит к уплотнению пород, напротив, данный метод способствует снятию напряжений в зоне перфорации и формирует каверны, образующие обширные площади фильтрации флюида. Единственным негативным фактором при выполнении операции может быть воздействие применяемой жидкости на фильтрационно-емкостные свойства пород, составляющих пласт. Этот эффект полностью зависит от применяемых растворов и поддается контролю, путем работы над составом перфорационной жидкости, обязательным включением в рецептуру ингибиторов набухания глин и деэмульгирующих добавок, для предотвращения образования устойчивых эмульсий в пласте. В случае высокой чувствительности пласта к воде возможен переход на жидкости на безводной основе, например РУО или иные безводные растворы, главным требованием к которым будет наличие песконесущей способности и сохранение приемлемой текучести жидкости. Также фактор воздействия перфорационной жидкости на пласт может быть устранен выполнением работ на депрессии, в таком режиме перфорационная жидкость не проникает в пласт.

Процесс гидропескоструйной перфорации, обеспечивается подачей нескольких гидромониторных струй перфорационной смеси, через специальные сопла, имеющие необходимый диаметр проходного отверстия (обычно от 1,5 до 5мм), для создания достаточной скорости потока струи необходимо поддерживать соответствующий объемный расход жидкости, подающейся с поверхности насосными агрегатами высокого давления. Выносимый из сопел абразивный наполнитель, обладая большой кинетической энергией ударяется о стенки эксплуатационной колонны на маленькой площади и разрушает их. Отверстия формируются благодаря совокупности абразивного воздействия и гидромониторного эффекта. После формирования отверстия в эксплуатационной колонне, струя перфорационной смеси разрушает цементное кольцо и породу в заколонном пространстве и теряя скорость начинает рассеиваться, производя таким образом намыв каверны вокруг первоначального направления движения потока. Напор жидкости поддерживается в течение времени, необходимого для формирования отверстий на заданную глубину и намыва заколонной каверны.

Результатом операции по ГПП является формирование перфорационных каналов, количество которых соответствует количеству специальных сопел, диаметр отверстий в колонне составляет от 6 до

20мм, глубина формируемых каналов в ПЗП может составлять от 0,3 до 1,5м вместе с формируемой каверной. Обычно, в процессе перфорации производится резка нескольких «станций» (станция — это один цикл резки с установкой прибора на определенной глубине), таким образом, чтобы суммарное количество перфорационных отверстий обеспечивало необходимую площадь вскрытия пласта.

Вскрытие пластов методом ГПП может производиться двумя способами, путем спуска гидропескоструйного перфоратора на компоновке насосно-компрессорных труб, или путем спуска на колонне гибких насосно-компрессорных труб. Принципиальная разница методов заключается в том, что гибкие трубы позволяют с легкостью выполнять работы на депрессии, а также позволяют достигать существенно больших глубин спуска в горизонтальных скважинах.

Работы по ГПП характеризуются довольно высокими значениями нагнетательного давления в трубах, а также наличием рисков прихвата КНК в случае не качественного выноса и удаления абразивного наполнителя из интервалов размещения инструмента. Данные факторы зачастую являются ограничивающими факторами для использования технологии ГПП. То есть, в случае наличия оснований предполагать, что во время производства работ давление нагнетания может превысить допустимые технические пределы, или есть объективный риск, того, что качественный вынос проппанта организовать не удастся, например ввиду частичной потери циркуляции в скважине из-за поглощения раствора, целесообразно рассмотреть другие способы выполнения перфорации.

Рассматривая применимость гидропескоструйной перфорации на газодобывающих скважинах, с аномально высоким пластовым давлением, необходимо оценить основные технологические факторы, оказывающие существенное влияние на характер внутрискважинных работ, на данной категории скважин, а именно:

− Чувствительность газовых коллекторов к воздействию воды

− Склонность к поглощению растворов.

− Высокие коэффициенты трения инструмента о стенки эксплуатационной колонны при СПО

− Сложные конструкции скважин (горизонтальные хвостовики с малыми диаметрами)

− Высокие коэффициенты аномальности пластов (K-1,6–1,9 для Ачимовских и Юрских отложений).

Рассматривая применимость технологии ГПП для такого рода скважин очевидна целесообразность проводить работы в режиме депрессии на пласт, чтобы снизить негативное влияние на ФЕС пласта, при этом, склонность к поглощению рабочего раствора и высокие значения давления в режиме работы на депрессии выступают существенным осложняющим фактором для производства ГПП и ставят под вопрос применимость технологии в таких условиях. Тем не менее, конструктивные особенности скважин могут создавать обстоятельства безальтернативности применения данного метода. Например, в случае необходимости выполнения перфорационных работ через лифт насосно-компрессорных труб в горизонтально направленных скважинах, где выполнение ГПП на ГНКТ является наиболее эффективным и безопасным методом перфорации, к тому же позволяющим произвести работы на депрессии, с последующим отбором флюида и запуском скважины.

Геолого-технологические характеристики

Рис. 1. Геолого-технологические характеристики

Так, в апреле 2020 года, при выполнении МГРП на скважине U7102 Самбургского ЛУ Уренгойского НГКМ произошел отказ при активации шаровой муфты ГРП. Для решения данного осложнения был предложен план приобщения зоны ГРП путем гидропескоструйной перфорации участка колонны, расположенного непосредственно над зоной установки муфты, без ее активации.

Изометрическое представление инклинометрии скважины

Рис. 2. Изометрическое представление инклинометрии скважины

Конструктивно, данная скважина представляла из себя наклонно-направленную скважину с горизонтальным окончанием. Заканчивание представлено не цементируемым хвостовиком МГРП ф114мм с шаровыми муфтами, общей длиной более полутора тысяч метров и горизонтальным участком не менее тысячи трехсот метров. Хвостовик подвешен в эксплуатационной колонне ф178мм с помощью подвесного стыковочного устройства, в подвесное устройство спущен лифт НКТ 89мм загерметизированный стингером. Планом освоения предполагалось проведение поэтапной стимуляции зон пласта, разделенных заколонными пакерами, методом ГРП через шаровые сдвижные муфты и последующий запуск скважины в эксплуатацию.

Необходимо отметить, что устьевое давление к моменту производства работ на ГНКТ составляло P-434 Атм (на скважинном флюиде), а минимальное проходное сечение выше места производства работ по ГПП составило всего 68 мм.

В целях сохранения ФЕС вскрываемой зоны, а также ранее приобщенных интервалов, выполнять работы было решено в режиме депрессии на пласт.

В процессе подготовки была составлена программа работ, учитывающая фактические скважинные условия. Произведен спуск компоновки ГПП, установка перфоратора на заданную глубину и последующая гидропескоструйная перфорация десяти станций по три отверстия каждое с интервалом в один метр между станциями, с применением перфорационной жидкости на основе солевого раствора CaCl плотностью 1,10г/см3 полимеризованного гуаровым гелеобразователем до вязкости 20–30 сПз.

В качестве абразивного наполнителя использовался керамический проппант фракции 30/50меш с концентрацией около 80–90кг/м3.

Работы выполнялись с одновременной отработкой скважины на факел.

Использовалась следующая компоновка низа колонны:

− Гидропескоструйный перфоратор Slimhole Sand Jet Perforating Tool

− Центратор гидравлический Hyd Centralizer

− Внутренний луночный коннектор

Компоновка низа колонны для ГПП на ГНКТ

Рис. 3. Компоновка низа колонны для ГПП на ГНКТ

Операция ГПП была выполнена при следующих гидродинамических параметрах:

Давление нагнетания (Давление в ГНКТ/Circulating pressure): — 446–350 Атм

Объемный расход подачи перфорационной смеси: — 250 л/мин

Концентрация абразивного наполнителя — 90–100 кг/м3

Время резки одной станции — 5 мин

Устьевое давление (затруб/wellhead) — 134–74 Атм

Режим работы скважины: динамический, скважина открыта на ГФУ, через штуцерную камеру.

Показания системы мониторинга установки ГНКТ во время производства ГПП

Рис. 4. Показания системы мониторинга установки ГНКТ во время производства ГПП

Читайте также: