Гидравлическое опробование скважины что это

Обновлено: 07.07.2024

Гидравлическое опробование скважины что это

ГОСТ Р ИСО 22475-1-2017

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Геотехнические исследования и испытания

МЕТОДЫ ОТБОРА ПРОБ И ИЗМЕРЕНИЯ ПОДЗЕМНЫХ ВОД

Технические принципы для выполнения

Geotechnical investigation and testing. Sampling methods and groundwater measurements. Part 1. Technical principles for execution

Дата введения 2020-01-01*
________________
* См. ярлык "Примечания".

Предисловие

1 ПОДГОТОВЛЕН Акционерным обществом "Научно-исследовательский центр "Строительство" (АО "НИЦ "Строительство") - Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений им.Н.М.Герсеванова" (НИИОСП им.Н.М.Герсеванова) на основе официального перевода на русский язык англоязычной версии указанного в пункте 4 международного стандарта, который выполнен Федеральным государственным унитарным предприятием "Российский научно-технический центр информации по стандартизации, метрологии и оценке соответствия" (ФГУП "СТАНДАРТИНФОРМ")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

4 Настоящий стандарт идентичен международному стандарту ИСО 22475-1:2006* "Геотехнические исследования и испытания. Методы отбора проб и измерения подземных вод. Часть 1. Технические принципы для выполнения" (ISO 22475-1:2006 "Geotechnical investigation and testing - Sampling methods and groundwater measurements - Part 1: Technical principles for execution", IDT).

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

Введение

Международный стандарт ИСО 22475-1 устанавливает технические принципы выполнения отбора проб и измерений подземных вод для геотехнических целей.

Качество этих услуг может быть доказано посредством следующего:

a) декларация соответствия, заявленная подрядчиком (контроль первой стороны);

b) декларация соответствия, заявленная заказчиком (контроль второй стороны);

c) декларация соответствия, заявленная органом оценки соответствия (контроль третьей стороны).

Каждое предприятие или физическое лицо вправе решать, будут ли они доказывать и каким именно образом все, что касается выполнения технически связанных критериев: контроль именно первой, второй или третьей стороной, так как ни в одном из стандартов серии ИСО 22475 нет обязательных требований к декларации.

Международный документ ИСО/ТС 22475-2 устанавливает квалификационные критерии для предприятий и персонала, которые выполняют отбор проб и проводят измерения подземных вод в соответствии с ИСО 22475-1.

Оценка соответствия путем контроля силами третьей стороны может быть выполнена согласно техническим принципам выполнения отбора проб и измерений подземных вод, которые установлены в ИСО 22475-1 и указаны в ИСО/ТС 22475-2, а также методике оценки соответствия, приведенной в ИСО/ТС 22475-3.

1 Область применения

Настоящий стандарт устанавливает технические принципы отбора проб грунта, скальной породы и подземной воды, а также измерений подземных вод в контексте геотехнического исследования и испытания, согласно ЕН 1997-1 и ЕН 1997-2.

Выделяют следующие цели таких инженерно-геологических изысканий:

a) отбор проб грунтов и скальных пород качества, достаточного для того, чтобы оценивать общее состояние рабочей площадки для геотехнических инженерных целей и устанавливать необходимые характеристики грунтов и скальных пород в лаборатории;

b) получение информации о последовательности, мощности и ориентации пластов, а также о системе трещин и разломов;

c) определение типа, состава и состояния пластов;

d) получение информации о режиме подземных вод и отбор проб воды для оценки взаимодействия подземных вод, грунта, скальной породы и строительного материала.

На качество пробы влияют геологические и гидрологические условия, отбор и выполнение бурения и/или метод взятия проб, обращение с пробами, их транспортирование и хранение.

Настоящий стандарт не устанавливает требования к отбору проб для целей сельскохозяйственного и экологического исследования почвы.

Примечание 1 - Об отборе проб грунта для этих целей см. ИСО 10381.

Настоящий стандарт не распространяется на отбор проб воды для контроля ее качества, качественной характеристики и идентификации источников загрязнения воды, включая донные отложения и ил.

Примечание 2 - Об отборе проб воды для этих целей см. ИСО 5667.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты*:

* Таблицу соответствия национальных стандартов международным см. по ссылке. - Примечание изготовителя базы данных.

EN 791*, Drill rigs - Safety (Установки буровые. Безопасность)

EN 996*, Piling equipment - Safety requirements (Оборудование для забивки свай. Требования безопасности)

EN 1997-1, Eurocode 7: Geotechnical design - Part 1: General rules (Еврокод 7. Геотехническое проектирование. Часть 1. Общие правила)

EN 1997-2, Eurocode 7: Geotechnical design - Part 2: Ground investigation and testing (Еврокод 7. Геотехническое проектирование. Часть 2. Исследования и испытания грунтов)

ISO 22476-3, Geotechnical investigation and testing - Field testing - Part 3: Standard penetration test (Геотехнические исследования и испытания. Полевые испытания. Часть 3. Стандартное определение плотности грунта)

ISO 14689-1, Geotechnical investigation and testing - Identification and classification of rock - Part 1: Identification and description (Геотехнические исследования и испытания. Идентификация и классификация скальной породы. Часть 1. Идентификация и описание)

ISO 3551-1, Rotary core diamond drilling equipment - System A - Part 1: Metric units (Оборудование для вращательного колонкового алмазного бурения. Система А. Часть 1. Метрические единицы измерения)

ISO 3552-1, Rotary core diamond drilling equipment - System В - Part 1: Metric units (Оборудование для вращательного колонкового алмазного бурения. Система В. Часть 1. Метрические единицы измерения)

GUM: Guide to the expression of uncertainty of measurements (BIPM/IEC/IFCC/ISO/IUPAC/IUPAP/OIML) [Руководство для выражения неопределенности в измерении (BIPM/IEC/IFCC/ISO/IUPAC/IUPAP/OIML)]

ISO 10097-1, Wireline diamond core drilling equipment - System A - Part 1: Metric units (Колонковый алмазный снаряд со сменным керноприемником, извлекаемым через бурильные трубы с помощью каната. Система А. Часть 1. Метрические единицы измерения)

3 Термины и определения

Примечание - Дополнительные термины и определения приведены в изданиях, перечисленных в библиографии.

3.1 Методы исследования на рабочей площадке

3.1.1 разведочный шурф (trial pit): Открытая выемка грунта, сделанная для того, чтобы изучить грунтовые условия на рабочей площадке, отобрать пробы или провести испытания в полевых условиях.

3.1.2 шахтный ствол (shaft): Открытая вертикальная или крутая наклонная горная выработка глубиной обычно более 5 м, сделанная для того, чтобы изучить грунтовые условия на рабочей площадке, отобрать пробы или провести испытания в полевых условиях.

3.1.3 штрек (heading) [штольня (adit)]: Небольшой тоннель, пройденный горизонтально или с легким наклоном от шахтного ствола или внутрь наклонного участка местности, чтобы изучить грунтовые условия на рабочей площадке, взять пробы и провести испытания в полевых условиях.

3.1.4 скважина (borehole): Отверстие любого, заранее определенного диаметра и длины, образованное путем бурения в любой геологической формации или искусственном материале.

Примечание - Цель исследований, проведенных в таком отверстии, - чтобы отобрать пробы скальной породы, грунта или воды на заданной глубине и провести испытания и измерения в условиях природного залегания.

3.1.5 бурение (drilling): Процесс, с помощью которого проходят ствол скважины в любой геологической формации методами вращательного, вращательно-ударного, ударного или нажимного действия и в любом заранее определенном направлении относительно бурильной установки.

3.1.6 бурение скважин небольшого диаметра (small diameter drilling): Бурение в грунте скважины диаметром больше 30 мм, но меньше 80 мм.

3.1.7 метод бурения (drilling method): Используемая технология бурения и стабилизации стенок скважины.

3.2 Буровые установки и оборудование

3.2.1 буровой инструмент (drilling tool): Устройство, прикрепленное к бурильной колонне или являющееся ее неотъемлемой частью, которое используется в качестве режущего инструмента для проникновения в геологическую формацию.

3.2.2 буровая коронка (drill bit): Устройство, прикрепленное к бурильной колонне или являющееся ее неотъемлемой частью, которое используется в качестве режущего инструмента, чтобы проникать через формацию посредством используемого метода бурения.

3.2.3 буровая установка (drill rig): Устройство, осуществляющее функцию бурения.

3.2.4 крепление обсадными трубами (casing): Трубы, временно или постоянно вставленные в ствол скважины.

Примечание - Крепление обсадными трубами используется, например, для укрепления ствола скважины, чтобы предотвратить утечку промывочной среды в окружающую формацию или не допустить установления гидравлической связи между горизонтами подземных вод.

3.2.5 промывочный раствор (flushing medium): Раствор или газообразная среда, используемая для транспортирования выбуренной породы и/или проб из ствола скважины, а также для смазки и охлаждения бурильного инструмента.

3.2.6 промывочная добавка (flushing additive): Вещество, добавленное в промывочную жидкость, чтобы повлиять или изменить его свойства в целях улучшения его функционирования.

3.2.7 кернорватель (core lifter): Разрезанное по образующей, щелевое или зубчатое коническое пружинное стальное кольцо, пазы, гибкие подпружиненные штыри, поворотные клинообразные штыри или поворотные створки, установленные на несущем кольце, чтобы удерживать образец керна в колонковой трубе при его подъеме из ствола скважины.

3.2.8 держатель пробы (sample retainer): Цилиндрический держатель, оснащенный кернорвателем с разрезным кольцом, который монтируется на нижнем конце трубы грунтоноса и используется для удержания образца в трубе при извлечении грунтоноса из земли.

3.3 Отбор проб

3.3.1 отбор проб бурением (sampling by drilling) [непрерывный отбор проб (continuous sampling)]: Процесс, с помощью которого пробы добываются бурильными инструментами по мере прохождения ствола скважины.

Примечание - Процесс бурения проводят для непрерывного отбора проб по длине скважины. Буровой инструмент используют в качестве средства отбора проб.

3.3.2 отбор проб путем использования устройства для получения пробы (sampling by using sampler): Процесс, с помощью которого пробы добывают специальным устройством из разведочных шурфов, штреков, шахтных стволов или со дна скважины на выбранных позициях.

3.3.3 отбор проб грунта бурением небольшого диаметра (soil sampling by small diameter drilling): Отбор проб путем бурения в грунтах буровым инструментом диаметром больше 30 мм, но меньше 80 мм.

Испытание разведочных скважин

Испытание скважин — это комплекс работ по отбору газа и пластовой жидкости, выявлению газонефтесодержание пласта, определению основных гидродинамических параметров пласта (коэффициент продуктивности, пластовое давление, гидропроводность и т.п.), а также вызову притока.

Испытания скважин проводятся для установления промышленной нефтегазоносности, получения информации для дальнейших подсчетов запасов полезного ископаемого и составления проектов разработки месторождения, а также для оценки продуктивности пластов.

Основными целями испытания скважин являются:

  1. Выбор наиболее оптимального режима и способа эксплуатации скважины и месторождения.
  2. Получения достоверных данных, использующихся для оценки коллекторских свойств продуктивных пластов месторождения.
  3. Определение степени загрязнения.
  4. Определение основных гидродинамических показателей.

Инструменты для проведения испытания скважин

Все инструменты, которые используются для проведения испытаний скважин можно разделить на:

  • Аппараты, которые спускаются в скважину на каротажном кабеле. Данные инструменты используются в тех случаях, которые требуются исследования пласта на отдельных уровнях, например для наблюдения за изменением проницаемости по мощности пласта и определения водонефтяного горизонта. Достоинствами данных инструментов являются минимальная степень загрязненности объекта, а также минимальные временные затраты на подъем и спуск аппарата и продолжительности отбора пробы. К недостаткам можно отнести небольшой объем получаемой информации.
  • Аппараты, спускаемые в скважину по насосно-компрессорным трубам или колонне бурильных труб. Главными недостатками данных инструментов являются: большой объем подготовительных работ, существенное загрязнение объекта, высокая стоимость работ и большие затраты на спуско-подъемные операции.
  • Аппараты, которые сбрасываются внутрь сразу после вскрытия при бурении намеченного интервала. Данные инструменты применяются для вызова притока сразу после вскрытия исследуемого объекта и отбора пробы пластовой жидкости. Достоинствами инструмента являются минимальные затраты времени на подготовительные и спускоподъемные работы, минимальная стоимость работ, а также возможность опробования объекта до его загрязнения. К недостаткам относятся: возможность применения только при роторном бурении, малый объем получаемой информации и небольшой объем отбираемой пробы.

Готовые работы на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость Определение 2

Каротажный кабель — это провод, который используется при каротаже скважин для спуска глубинных аппаратов и зонда.

Испытания в закрытом и открытом стволах

Испытание скважин может осуществляться в процессе бурения и после завершения бурения и цементирования эксплуатационной колонны. Испытания в процессе бурения проводятся в такой же последовательности, в которой осуществлялось разбуривание (сверху вниз).

Испытания после окончания бурения осуществляются в обсаженном стволе в последовательности снизу вверх, с учетом испытаний, проводившихся в открытом стволе. Они начинаются с нижнего объекта. В интервале испытания обсадную колонну перфорируют и вызывают приток. Затем отбирают пробы пластовой жидкости, а также проводятся все необходимые измерения. После окончания испытания нижнего объекта, чуть выше перфорированного участка устанавливают взрывной пакер или создают цементный мост. Затем процессу перфорации подвергается следующий интервал, и так испытываются все последующие объекты.

Испытания скважин по окончания процесса бурения имеют ряд недостатков, к которым относятся необходимость цементирования и спуска обсадной колонны (она используется для разобщения испытываемых объектов); загрязнение объектов испытания в процессе добуривания скважины, а также цементирования и спуска колонны; неточность и искажение результатов исследований; риск пропуска продуктивных горизонтов, обладающих низким пластовым давлением. Преимущества испытаний в процессе бурения следующие: относительно меньшие временные затраты, чем испытаниях в обсаженном стволе; так как призабойная зона еще не загрязнена цементными и буровыми растворами, то данные о гидродинамических характеристиках и свойствах более объективны.

Испытания скважин представляет собой важный технологический процесс, который осуществляют на нефтегазовых месторождениях. Качественное его проведение способствует достижению поставленных экономических и технологических целей. Например, благодаря качественным и своевременно проведенным испытаниям скважины становится возможным оперативно изменить какие-либо параметры технологических процессов предприятия, что может способствовать снижению затрат на ремонт используемого оборудования или его замену.

Сейсмоакустическое опробование грунтов

1. Оценку результатов производственной укрепительной цементации скальных оснований сооружений следует производить путем определения сейсмоакустических характеристик естественных и зацементированных грунтов, отражающих деформационные свойства грунтов.

2. Необходимым условием оценки эффекта цементации по результатам сейсмоакустического опробования грунтов должно быть:

предварительное определение сейсмоакустических характеристик грунтов до их цементации;

установление корреляционной связи между скоростями продольных упругих волн и деформационными характеристиками для конкретных условий объекта.

3. Основным технологическим приемом проведения сейсмоакустического опробования грунтов следует считать просвечивание массивов цементируемых грунтов между скважинами (или другими подземными выработками) или между скважиной и дневной поверхностью.

4. Сейсмоакустические скважины задаются по внешнему контуру просвечиваемого массива, а при большой его ширине (более 30-40 м) - по дополнительным внутренним сечениям массива; расстояние между скважинами должно быть в пределах 20-40 м.

В скважинах (и по поверхностным линиям) упругие колебания возбуждаются в точках, располагаемых на расстоянии 5-20 м.

В скважинах, регистрирующих колебания, приемники должны располагаться на расстоянии 1-2 м вдоль оси скважины.

Полученные значения скоростей продольных волн между всеми точками возбуждения и сейсмоприемниками должны быть обработаны статистически с определением средней скорости по просвечиваемому массиву и статистической характеристики однородности данных.

В случае значительной неоднородности данных по массиву осреднение должно выполняться отдельно по частям просвеченного массива.

5. На каждом этапе сейсмоакустического опробования грунтов должны использоваться одни и те же геофизические скважины, консервируемые на время производства цементационных работ путем их временной заливки глинистым раствором, а также единые методы измерения (базы измерения, регистрируемые длины волн).

Приложение 6
(справочное)

Определение удельного водопоглощения грунтов

1. По данным гидравлического опробования грунтов в зонах цементационных скважин должен определяться показатель проницаемости скальных грунтов - удельное водопоглощение.

2. Удельное водопоглощение следует определять при одном значении расхода воды, соответствующем достигнутому или наибольшему допустимому значению расхода для данных грунтов.


3. Удельное водопоглощение следует выражать в технических единицах: или в люжонах.


соответствует нагнетаемому расходу воды 1 л/мин, приходящемуся на 1 м длины опробуемой зоны и на напор воды, равный 1 м.

1 люжон соответствует нагнетаемому расходу воды 1 л/мин, приходящемуся на 1 м длины опробуемой зоны и на давление воды, равное 1 МПа.

Должны использоваться следующие соотношения между значениями удельного водопоглощения, выраженными в различных единицах:


люжон;


1 люжон = .

ПРИЛОЖЕНИЕ Г

ГИДРОДИНАМИЧЕСКИЕ ИССЛЕДОВАНИЯ НЕФТЯНЫХ РАЗВЕДОЧНЫХ СКВАЖИН И ИХ ОСОБЕННОСТИ

С целью получения данных, необходимых для подсчета запасов, составления технологических схем разработки месторождения по каждой разведочной скважине проводится комплекс исследовательских работ по опробованию и испытанию всех вскрытых продуктивных (нефтегазоносных) пластов.

При опробовании вскрытых пластов устанавливают их нефтегазоносность в процессе бурения скважин с помощью опробователей на кабеле или испытателей пластов на трубах (ИПТ) путем отбора и анализа проб пластовых флюидов.

Под испытанием разведочных скважин понимается комплекс работ, проводимых в процессе бурения или в эксплуатационной колонне с целью установления основных промысловых параметров: дебит скважины, газовый фактор, забойные и пластовые давления, температура, коэффициент продуктивности скважины, проницаемость и гидропроводность пласта, состав и физико-химические свойства пластовых флюидов.

Продуктивность и геолого-физические характеристики пластов определяются путем выполнения в ходе испытания скважины гидродинамических исследований методами установившихся и неустановившихся отборов.

Под установившимися отборами (установившимся режимом работы) подразумевается работа скважины на штуцере с постоянными забойным и устьевыми давлениями, а также постоянным (установившимся) дебитом скважины.

Под неустановившимся режимом фильтрации подразумевается восстановление забойного давления до пластового (т.е. статического или динамического) при закрытой скважине.

Метод гидродинамического исследования с помощью ИПТ - экспресс-метод - основан на прослеживании восстановления давления в интервале испытания после кратковременного дренирования последнего. Он предназначен для испытания перспективных объектов в открытом стволе скважины в процессе бурения с помощью комплекта испытательных инструментов, спускаемых в скважину на бурильных трубах.

Спуск ИПТ производят после полного или частичного вскрытия объекта бурением и подъема долота. После испытания объекта поднимают ИПТ из скважины и продолжают бурение.

Цикл собственно испытания объекта ИПТ состоит из двух периодов (притока и восстановления давления).

Стандартным испытанием скважин ИПТ является испытание двухцикловое. Первый - вспомогательный, сравнительно непродолжительный цикл и второй - основной.

Снижение противодавления на пласт, изменение забойного давления на притоке, характер восстановления пластового давления фиксируются во времени глубинными регистрирующими манометрами, установленными под пакером и в трубах над ИПТ.

При гидродинамических исследованиях перспективного интервала методом ИПТ решаются следующие основные задачи [62]:

Обнаружение коллектора, имеющего продуктивность промышленного значения. Обнаружение в коллекторе нефтегазонасыщения. Оценка промышленной значимости нефтегазонасыщения коллектора в данной скважине. Определение гидродинамических характеристик продуктивного пласта.

При отрицательном результате по любой из предыдущих задач необходимость решения последующих задач отсутствует. В соответствии со статистикой решение первой задачи необходимо для всего объема испытаний; второй - только для половины. Третья задача решается для 20-30% испытаний; четвертая - только для 7-15% испытаний.

При проведении гидродинамических исследований разведочных скважин, обсаженных эксплуатационными колоннами, решают только одну, последнюю задачу - определяют гидродинамические характеристики продуктивного пласта и исходные данные для его разработки.

Продолжительность освоения, отработки и исследования продуктивных пластов в разведочной скважине гидродинамическими методами определяются величиной проницаемости коллекторов и эффективной мощности пласта.

Под отработкой скважины понимается работа флюидом через штуцер до стабилизации устьевых и забойных давлений и дебита.

Различают два основных типа объектов в разведочной скважине в зависимости от интенсивности притока и качества пластового флюида: нефтяные фонтанирующие и нефтяные не фонтанирующие.

Отработка скважины производится на 4-5 режимах прямым ходом и в одном оптимальном режиме - обратным ходом, с которого снимается кривая восстановления забойного давления (КВД). Необходимость отработки скважины на нескольких режимах обуславливается получением качественных индикаторной диаграммы и КВД.

Определяющим признаком отработки скважины (установившийся режим) является постоянство дебита и забойного давления. Замеры забойного давления производятся один-два раза в сутки, периодичность замеров устьевых давлений - 3 ч, дебитов - 1 сут. Замер дебита жидкости производится в течение не менее 4-х часов.

В процессе отработки скважины замеряются также загрязнение нефти, температура ее на устье, поверхностный газовый фактор, содержание воды в нефти и их плотности. На минимальном штуцере отбираются глубинные пробы нефти в (4÷5) пробоотборники (две пробы нефти пробные и три рабочие) и проба газа сепарации в контейнер.

Перед снятием КВД замеряют распределение давлений и температуры по стволу скважины (через 250 м).

Продолжительность непрерывной регистрации КВД составляет не менее 2÷4 ч. Для медленно восстанавливающихся забойных давлений интервалы между замерами увеличивают до 1 сут.

Для пульсирующих низкодебитных скважин производятся возможные замеры по стволу скважины и на забое только на одном режиме с последующим снятием кривой нарастания забойного давления. Перед пуском в эксплуатацию производят выдержку скважины с целью замера пластового давления в течение 24 ч.

При получении фонтанирующего притока нефти с водой скважину отрабатывают в сбросовый амбар до полной очистки забоя. После этого скважину переводят на оптимальный штуцер и отрабатывают через трапную установку до постоянства дебитов нефти и воды. При этом выполняется такой же комплекс работ, как и для нефтяных фонтанирующих объектов.

По результатам отработки решается вопрос о дальнейших работах по исследованию данного объекта: отработка на штуцерах других размеров, прекращение испытания, проведение изоляционных работ и т.д.

Отбор глубинных проб пластовых флюидов и замер пластового давления производятся в этом случае в обязательном порядке.

Испытание разведочной скважины считается законченным, если по всем интервалам (пластам), назначенным к испытанию, получены результаты, которые позволяют дать качественную характеристику содержимого пласта и определить основные его газодинамические характеристики, а отсутствие притока подтверждается комплексным изучением геолого-физического материала.

Для получения исходной информации о давлениях и температурах в последние годы успешно используются глубинные электронные термоманометры нового поколения (кварцевого, напряженного типов) ведущих зарубежных фирм («KUSTER», «GEOSERVICES» и др.) и отечественного производства («МИКОН», «БашНИПИнефть», УГНТУ и др.). Высокая точность и чувствительность глубинных приборов, возможность непрерывно фиксировать процессы в стволе и на забое скважины в течение 20-30 суток в условиях высоких давлений (до 100 МПа) и температур (до 150°С), хорошие эксплуатационные характеристики значительно расширяют возможности гидродинамических методов исследования объектов поисково-разведочного бурения.

Для обработки и интерпретации результатов ГДИС хорошо зарекомендовал себя пакет прикладных программ W.I.S.E. (Wellsit Interpretation Software and Equipment programs), разработанный французской фирмой GEOSERVICES.

Пакет программ многофункциональный и состоит из семи частей (пунктов меню). «Pressure Survey Report» - первый подготовительный пункт меню, позволяющий перенести данные (время, давление, температуру) из памяти электронного манометра в файл. Здесь же формируется и выдается выходная форма отчета.

Основной анализ производится в разделе «Interpretation» известными графоаналитическими методами: Хорнера, суперпозиции, M.D.H. и др. На дисплее автоматически рисуется преобразованный график КВД в координатах время/давление. Передвижением курсора определяется прямолинейный участок, по которому вычисляются параметры пласта: гидропроводность, проницаемость, показатель скин-фактора, начальное пластовое давление. Удобный сервис позволяет быстро и наглядно проводить анализ данных.

Посредством пункта меню «Unit Edit» предоставляется возможность пользования международной системой измерения.

6. Подготовительные работы к испытанию скважины

6.1.1. Буровая (скважина) должна иметь подъездные пути, обеспечивающие беспрепятственный подъезд к приемным мосткам лаборатории по испытанию пластов и спецтранспорта по доставке ИПТ. Рабочая площадка у устья скважины, приемные мостки и подходы к ним должны быть освобождены от посторонних предметов, очищены от бурового раствора, смазочных материалов, снега, льда. Сходни приемных мостков должны иметь ребристую поверхность или поперечные рейки, предотвращающие скольжение обслуживающего персонала.

6.1.2. В процессе последних долблений перед спуском ИПТ должны быть проверены и обеспечены исправность спуско-подъемного оборудования (вышки талевой системы, лебедки, гидромата, индикатора веса), системы гидравлической обвязки и противопожарного оборудования, освещения, дегазации притока, долива скважины и наличие регламентированного объема раствора и химреагентов. Обязательно проверить на соответствие и целостность резьбовые соединения, обеспечивающие при спуско-подъемных операциях герметичность бурильных (НК) труб.

6.1.3. Поверхностное оборудование скважины должно позволять проведение прямой и обратной циркуляции бурового раствора с противодавлением на устье (дросселированием) через устьевую головку и манифольд.

6.1.4. Перед спуском ИПТ необсаженная часть ствола скважины должна быть проработана со скоростью не более 25 м/ч до забоя долотом номинального диаметра и промыта в течение не менее 1,5 циклов буровым раствором с целью ликвидации уступов, резких переходов, сальников и предотвращения возможных посадок инструмента при спуске ИПТ.

6.1.5. При планировании испытания во избежание нефтегазопроявления скважины (после снятия пакера) необходимо рассчитать репрессию на пласт, исходя из условия полного замещения бурового раствора газом в интервале испытания (под пакером). При несоблюдении этого условия следует уменьшить длину интервала испытания и увеличить плотность бурового раствора.

6.1.6. Характеристики бурового раствора должны соответствовать указанным в геолого-технологическом наряде и обеспечивать безаварийное нахождение ИПТ на забое в процессе испытания скважины (не менее 3 ч 30 мин).

6.1.7. На буровой необходимо иметь запас раствора соответствующей плотности в объеме не менее двух объемов скважины, без учета объема раствора, находящегося в заполненной до устья скважине. Запас материалов и химических реагентов для регулирования плотности, водоотдачи, статического напряжения сдвига и липкости раствора должен соответствовать плану работ на испытание.

6.1.8. Минимальное превышение давления гидростатического столба бурового раствора (репрессия) над пластовым давлением должно быть для нефтеводонасыщенных пластов 1,5 МПа, для газонасыщенных (газоконденсатных) пластов - 2,0 МПа. При необходимости плотность бурового раствора должна быть увеличена для обеспечения противодавления на интервал испытания.

6.1.9. Перед испытанием в эксплуатационной скважине обсадная колонна должна быть очищена от парафина, промыта и прошаблонирована. Шаблон должен быть длиной не менее 2 м, диаметром на 4-5 мм больше диаметра пакера.

6.2. Подготовка подъемного оборудования инструмента

6.2.1. Буровое подъемное оборудование должно иметь достаточную приводную мощность для выполнения всех технологических операций: спуска, подъема, вращения и расхаживания инструмента в скважине.

6.2.2. Обвязка буровых насосов должна обеспечить перекачку бурового раствора из запасных емкостей в доливную емкость для заполнения труб и затрубного пространства скважины. Циркуляционная система должна позволять выполнять полную очистку и дегазацию раствора через вибросито и гидроциклоны.

6.2.3. Колонна бурильных труб должна быть рассчитана на прочность от смятия избыточным наружным давлением с коэффициентом К = 1,3 для стальных труб и К = 1,5 для труб из алюминиевого сплава (Д 16Т). Глубина спуска пустых бурильных труб рассчитывается с учетом диаметра, толщины стенок, марки и износа труб, а также плотности бурового раствора по формуле

- допустимая глубина спуска пустых труб, м; - наружное давление смятия труб, Па (Н/м2); - удельный вес бурового раствора, Н/м3; - коэффициент запаса прочности, К = 1,3 ÷ 1,5.

6.2.4. В глубокой скважине при заполнении труб технической водой (только в качестве буферной жидкости над ИП заливается буровой раствор) глубину спуска пустых бурильных труб рекомендуется рассчитывать из соотношения

- глубина скважины, м; - глубина уровня бурового раствора и технической воды в трубах, м; - удельный вес технической воды, Н/м3.

Величины сминающих давлений для бурильных труб представлены в приложении В.

С увеличением глубины скважины возрастает вес инструмента, что может привести к превышению предела текучести материала труб. Для испытания вскрытых бурением глубокозалегающих пластов применяют комбинированные колонны труб различного диаметра, соединяя их в секции, которые отличаются по прочности, диаметру и толщине стенки, а также по времени ввода труб в эксплуатацию.

6.2.5. Бурильные трубы перед сборкой в свечу тщательно шаблонируют. В компоновке инструмента с ИПТ утяжеленные трубы устанавливают в нижней части колонны; трубы, имеющие повышенную прочность, - в верхней, а трубы, имеющие пониженную прочность, - в средней.

В ходе эксплуатации трубы периодически должны спрессовываться непосредственно на буровых, подвергаться дефектоскопии. Срок дефектоскопии и опрессовок - через 800 ч работы.

6.2.6. Замковые соединения бурильных труб смазывают графитовой смазкой, уплотняют лентой ФУМ или пеньковым шнуром. Закрепление осуществляется автоматическим буровым ключом с моментомером в соответствии с паспортом на бурильные трубы.

При спуске компоновки ИПТ не допускать резких остановок торможения и удара элеватора с колонной труб о ротор буровой установки.

После испытания объекта в процессе подъема инструмента следует проверять упорные торцы замков и муфт. Трубы, у которых торцы и муфты промыты и имеют задиры или выбоины, должны быть удалены из комплекта.

6.2.7. На нефтепромысловых скважинах к основному оборудованию, с помощью которого проводят спуско-подъемные операции, относят подъемные агрегаты, смонтированные на автомобиле (КОРО-80, Азинмаш-37А, А-50У) или тракторе («Бакинец -3М»). Технические характеристики подъемных агрегатов представлены в таблице 6.2.1. Подъемные агрегаты предназначены для проведения операций при освоении, испытании и ремонте скважин, разбуривании цементного стакана, промывке скважин и других геолого-технических мероприятиях.

6.2.8. Подъемные агрегаты должны укомплектовываться автоматическими подвесными гидравлическими ключами типа КТГ, иметь ограничитель подъема крюкоблока, систему звуковой и световой сигнализации установки вышки, контрольно-измерительные приборы работы двигателя и пневмосистемы, а также другие системы блокировки, обеспечивающие безопасность проведения работ при установке агрегатов у устья скважины и спуско-подъемных операциях.

6.3. Оборудование устья скважины

6.3.1. Устьевое оборудование предназначено для обвязки колонны обсадных и бурильных труб с целью контроля за уровнем жидкости в затрубном пространстве и в трубах, предотвращения выбросов и фонтанирования пластовой жидкости в процессе испытания пласта.

Устьевое оборудование включает противовыбросовое оборудование бурящейся скважины и специальное устьевое оборудование для проведения работ с испытателем пластов.

Противовыбросовое оборудование состоит из превенторов различного типа (шишечных, универсальных, вращающихся) с механизмами дистанционного и ручного управления, системы трубопроводов обвязки с задвижками и кранами высокого давления.

6.3.2. Устьевое оборудование должно обеспечивать:

- быструю и надежную герметизацию устья скважины при спущенном в скважину бурильном инструменте и без него; - разрядку скважины при повышении давления путем стравливания флюида через выкидные трубопроводы при закрытых превенторах; - замену газированной пластовой жидкости в скважине прямой и обратной циркуляцией на промывочную жидкость с соответствующими параметрами; - контроль давления в скважине при закрытых превенторах; - отвод газа или пластовой жидкости на безопасное расстояние от устья скважины; - расхаживание и проворачивание инструмента при герметизированном устье.

6.3.3. Схема обвязки устья скважины (рисунок 6.3.1) и тип превентора должны соответствовать требованиям, предусмотренным в техническом проекте и геолого-техническом наряде на строительство скважины.

Выкидные трубопроводы от превенторов направляются по прямой линии в противоположные стороны, оборудуются резервной и рабочей задвижками высокого давления, а между ними устанавливается манометр с предельным давлением на 50% выше ожидаемого.

Рисунок 6.3.1. Схема обвязки устья скважины:
1 - плашечный превентор; 2 - задвижка с гидравлическим управлением; 3 - устьевая крестовина; 4 - манометр с запорным и разрядным устройствами и разделителем сред; 5 - кольцевой превентер; 6 - дроссель регулируемый с ручным управлением; 7 - задвижка с ручным управлением; 8 - гаситель потока; 9 - вспомогательный пульт; 10 - станция гидропривода; 11 - обратный клапан; 12 - ротор; 13 - бурильные трубы; 14 - элеватор; 15 - устьевая головка; 16 - кран высокого давления.

6.3.4. Специальное устьевое оборудование устанавливается на колонну бурильных труб, что обеспечивает контроль за притоком жидкости и газа и предотвращает выброс из труб пластовой газированной жидкости в процессе испытания пласта.

6.3.5. Устьевая головка неподвижного (или вертлюжного) типа или цементировочная головка свинчивается с верхней бурильной трубой. Головка с помощью гибких шарниров-угольников соединяется быстросъемными гайками с металлическим манифольдом, который должен быть жестко закреплен опорами с элементами буровой установки во избежание вибрации трубопровода в процессе испытания пласта. Диаметр выкидной линии (манифольда) должен соответствовать диаметру ствола устьевой головки и диаметру выкида превентора.

6.3.6. Дополнительный трубопровод от крестовины выводится из-под пола буровой и заканчивается быстросъемным соединением, которое закрыто заглушкой в процессе бурения скважины. Крестовина обвязана задвижками высокого давления, перекрывающими поток жидкости в дополнительный трубопровод для отвода поступающей жидкости из пласта в специальную емкость. Длина трубопровода для отвода жидкости в нефтяных скважинах должна быть не менее 30 м, для газовых и разведочных скважин - не менее 100 м.

6.3.7. В начале спуска ИПТ в скважину устьевая головка с манифольдом спрессовывается с помощью цементировочного агрегата на полуторакратное давление по сравнению с ожидаемым пластовым. После опрессовки гибкого манифольда задвижки на боковых отводах превентора должны быть закрыты, открывают кран на устьевой головке и на блоке задвижек для контроля за притоком жидкости из пласта по выходу воздуха из шланга, опущенного под уровень воды в емкость.

6.3.8. Допускается проводить испытание пласта с устьевой головкой, установленной по упрощенной схеме обвязки устья скважины на 4-5 м выше стола ротора (рисунок 6.3.2). До начала испытания нужно подготовить спецплощадку, лестницу для экстренного закрытия крана высокого давления на устьевой головке.

Рисунок 6.3.2 Упрощенная схема обвязки устья скважины:
1 - заглушка, 2 - устьевая головка; 3, 6 - краны высокого давления; 4 - шарнирный угольник; 5 - штуцерная камера; 7 - вентиль; 8 - разъединитель; 9 - манометр; 10 - крестовина.

6.3.9. На мостках должна находиться запасная труба с навернутым обратным клапаном, диаметр трубы должен соответствовать диаметру спущенных труб или иметь переводник для соединения с ними.

6.3.10. В процессе испытания перед закрытием запорно-поворотного клапана ИПТ для регистрации КВД на устьевой головке неподвижного типа должен быть закрыт кран и отсоединен манифольд.

6.3.11. Для обратной промывки и сброса жидкости притока из труб в емкость следует через боковой отвод трубопровода на крестовине превентора в затрубное пространство закачивать промывочную жидкость цементировочным агрегатом и отводить жидкость из труб через манифольд. Из кольцевого пространства промывочная жидкость через циркуляционный клапан ИПТ заполняет полость труб и вытесняет пластовую жидкость в специальную емкость (амбар).

6.3.12. Схема обвязки устья скважины при испытании ИПТ, ожидаемое давление в которой ниже давления опрессовки бурового шланга (< 15 МПа), может быть выполнена как указано на рисунке 6.3.3. На кондукторе (например, диаметром 245 мм) должно быть смонтировано противовыбросовое устройство (на схеме УП-245х140).

6.3.13. Применяемые схемы обвязки обязательно должны быть согласованы для конкретной площади с Окружным Управлением Госгортехнадзора, военизированной противопожарной службой МЧС и утверждены региональным Управлением Министерства природных ресурсов и производственным объединением нефтяных компаний.

6.3.14. Категорически запрещается проводить испытание пласта ИПТ с изливом жидкости из бурильных труб на устье скважины.

6.4. Подготовка ИПТ и скважинных манометров

6.4.1. Подготовка комплексов ИПТ проводится на базе производственного обслуживания Производителя работ с соблюдением требований, изложенных в технических описаниях и руководствах по эксплуатации ИПТ.

6.4.2. Погрузка, разгрузка, сборка и разборка ИПТ должны проводиться с применением исправных механизмов, приспособлений и инструментов.

6.4.3. Компоновка ИПТ должна обязательно включать циркуляционный клапан, обеспечивающий восстановление циркуляции бурового раствора в любой момент операции по испытанию скважины.

6.4.4. Компоновка ИПТ должна иметь составные части (узлы), обеспечивающие двойное перекрытие притока флюида из пласта (клапан ИПТ и запорный клапан).

6.4.5. При свинчивании и развинчивании труб и составных частей ИПТ запрещается находиться в радиусе действия машинных (буровых) ключей.

6.4.6. При сборке и креплении узлов ИПТ над ротором (правое вращение) необходимо следить, чтобы не было самопроизвольного отворота правых резьб узлов, расположенных выше бурового ключа. Для контроля на соединениях делают метки (вертикальные линии мелом) и следят за положением этих меток (при отвороте метки расходятся).

6.4.7. Скважинные манометры нужно подготовить к работе согласно руководству по эксплуатации приборов. Количество глубинных манометров и места их установки в компоновке ИПТ выбирают согласно принятой технологической схеме испытания объектов. В перспективе на ближайшие годы геликсные манометры должны быть заменены на электронные с долговременной памятью.

Рисунок 6.3.3. Схема обвязки устья скважины при испытании ИПТ:
1 - фильтр; 2 - пакер; 3 - бурильная труба; 4 - кондуктор; 5 - ротор; 6 - ведущая бурильная труба; 7 - вертлюг; 8 - буровой шланг; 9 - стояк; 10 - отвод стояка; 11 - быстросъемное соединение; 12 - запорный кран; 13 - задвижка; 14 - опора; 15 - гибкий безнапорный шланг; 16 - емкость с водой – 1 м 3 ; 17 - УП 245×140.

Читайте также: