Что такое горное давление в скважине

Обновлено: 07.07.2024

Горное давление

ГОРНОЕ ДАВЛЕНИЕ (а. rock pressure; н. Gebirgsdruck; ф. pression des terrains; и. presion del terreno) — напряжения, возникающие в массиве горных пород, вблизи стенок выработок, скважин, в целиках, на поверхностях контакта порода — крепь в результате действия главным образом гравитационных сил, а также тектонических сил и изменения температуры верхних слоев земной коры.

Наиболее общей формой проявления горного давления является деформирование горных пород, которое приводит к потере ими устойчивости, формированию нагрузки на крепь, динамическим явлениям (горным ударам, внезапным выбросам). Поэтому при проведении горных выработок предварительно рассчитывают горное давление для определения прочности несущих элементов подземных сооружений (стенок выработок, целиков и крепей) и выбора способов управления горным давлением.

Первые методы расчёта горного давления основывались на гипотезе, согласно которой горное давление вызвано весом определённого объёма пород, приуроченного к данному несущему элементу. Одной из наиболее распространённых была гипотеза Турнера (Франция, 1884), на основе которой горное давление в целиках при камерно-столбовой системе разработки определяется весом столба пород (от уровня залежи до поверхности), ограниченного в плане осями симметрии прилегающих к целику камер или просеков. На этой гипотезе основан метод расчёта Л. Д. Шевякова.

Аналогичные гипотезы о горном давлении на крепь подготовительных выработок исходили из предположения о действии на крепь веса столба пород от выработки до поверхности с основанием, равным пролёту выработки. Однако оно приводило даже для небольших глубин к нагрузкам, которые не могла бы выдержать крепь. Поэтому были выдвинуты гипотезы о действии на крепь веса пород в пределах треугольного или сводчатого объёма с основанием, по-прежнему равным пролёту выработки. Наибольшую известность получила гипотеза русского учёного М. М. Протодьяконова (1907), в которой указанный объём представляет собой параболический свод. Его высота (b) связана с полупролётом выработки (а) соотношением: b=а/f, где f — тангенс угла внутреннего трения для сыпучих пород или коэффициент крепости для связных. Расчёты по этой формуле для глубин до 200-300 м (при отсутствии тектонических напряжений) дают практически приемлемые результаты.

Реклама

Применительно к лавам угольных пластов гипотеза о весе пород свода трансформировалась в гипотезу о сводчатой форме распределения горного давления на крепь, параметры которого определяются по результатам натурных замеров и по качественным оценкам. Наряду с упомянутыми гипотезами развивалось направление, сводившее изучение горного давления к задаче изучения напряжённо-деформированного состояния массива, не потерявшего сплошности. Здесь широкое применение нашли методы механики деформируемых сред, в частности теории упругости, пластичности, ползучести и др. Упругое напряжённо-деформированное состояние в окрестности горизонтальной круглой подготовительной выработки теоретически изучено А. Леоном (Германия, 1908); им же совместно с Ф. Вильхаймом (Германия, 1910) поставлены опыты по разрушению стенок такой выработки на моделях из мрамора. Для вертикального ствола упругая задача решена советский учёным А. Н. Динником в 1926, попутно им дан вывод одной из наиболее распространённых формул для определения коэффициента бокового распора.

Более детальное решение для незакреплённого ствола получено советским учёным С. Г. Лехницким (1937). Упругопластичность, напряжённо-деформированное состояние в окрестности горизонтальной и вертикальной круглой выработки рассмотрел Р. Феннер (Чили, 1938). В его решении горное давление на крепь определяется минимальным значением, при котором окружающая выработку пластинная зона будет находиться в равновесии.

Принципиальной для развития теории горного давления явилась работа советского учёного Г. Н. Савина (1947), в которой использовано условие совместности перемещений контактирующих друг с другом точек поверхности выработки и крепи. Это позволило теоретически объяснить влияние податливости крепи на величину горного давления. А. Лабас (Бельгия, 1949) предложил рассматривать поведение пород в разрушенных областях вокруг выработок как поведение сыпучей среды, характеризующейся внутренним трением и сцеплением.

В 1954 советский учёный Г. Н. Кузнецов впервые сформулировал фундаментальные понятия о двух крайних режимах работы крепи: заданной нагрузки и заданной деформации; дальнейшее развитие эти понятия получили в работах советского учёного Г. А. Крупенникова и его школы. Г. Н. Кузнецовым сформулирована также концепция шарнирно-блочных систем, образующихся в кровле очистных выработок. Советский учёный К. В. Руппенейт на основе предложений Г. Н. Савина и А. Лабаса построил универсальную расчётную схему, позволяющую связать горное давление на крепь подготовительной выработки с упругими и прочностными свойствами пород. Ю. М. Либерман, модифицировав схему К. В. Руппенейта, разработал метод, позволяющий определить оптимальная жёсткость крепи. В конце 70-х гг. вновь возродился интерес к определению горного давления на крепь как веса некоторого объёма сыпучей породы; достижения в этой области связаны с работами советского учёного Е. И. Шемякина и др.

Систематическое изучение тектонических сил в массиве горных пород начато в СССР работами М. В. Гзовского в 1954 и продолжено И. А. Турчаниновым, Г. А. Марковым, за рубежом — Н. Хастом (Швеция, 1958) и другими исследователями. Основные методы исследования горного давления — аналитический, моделирование (оптическое и эквивалентными материалами) и натурные наблюдения.

Горное давление в ненарушенном (нетронутом) массиве. Если рассматривать массив, в котором ещё нет горных выработок, как однородный и изотропный с горизонтальной поверхностью и учитывать лишь гравитационные силы, то в нём будут действовать начальные нормальные напряжения:

где Н — глубина от поверхности;

g — объёмный вес;

х — коэффициент бокового распора.

Начальные касательные напряжения txy, txz, tyz равны нулю; поэтому начальные напряжения представляют собой главные нормальные напряжения, а оси z, х, у — главные оси (рис. 1).

В реальных природных средах действует большое число факторов, иногда сильно влияющих на изменение значения горного давления (например, направленность тектонических сил, как правило, вызывает неравенство горизонтальных составляющих).

Горное давление в капитальных и подготовительных выработках. При проведении горизонтальных капитальных и подготовительных выработок главные нормальные напряжения изменяются, а главные оси тензора напряжения поворачиваются по сравнению с начальными. В плоском сечении, перпендикулярном оси выработки (вдали от забоя), напряжённое состояние каждой точки можно охарактеризовать главными нормальными напряжениями s1 и s2 и линиями, указывающими направление главных осей в каждой точке, т.н. траекториями главных напряжений (рис. 2, а).

Напряжения s2 вблизи выработки уменьшаются по сравнению с напряжениями в нетронутом массиве, а напряжения s1 могут значительно возрастать или менять знак, вызывая опасное растяжение. Главные нормальные напряжения, направленные параллельно (или почти параллельно) оси выработки, вдали от забоя практически не изменяются. Концентрация напряжений s1, как правило, неодинакова в разных точках поверхности выработки, сильно возрастая в углах и закруглениях малого радиуса кривизны. Если концентрация напряжений не слишком велика, то напряжения s1 имеют общую тенденцию к убыванию при удалении от выработки (рис. 2, б), а s2 к возрастанию. При больших концентрациях напряжения превосходят соответствующие пределы прочности пород, и вблизи поверхности выработки эти породы начинают пластически деформироваться или хрупко разрушаться (зона неупругих деформаций). В этой зоне напряжения s1 падают по сравнению с теми значениями, которые наблюдались до её образования, и меняется характер их распределения (рис. 2, в). Максимум напряжений s1 приурочен к внешней границе зоны неупругих деформаций, на которой они могут претерпевать разрыв. Смещения точек поверхности выработки увеличиваются с удалением от забоя (рис. 3), однако на расстоянии 4-5 пролётов выработки наступает их стабилизация.

Дальнейший рост смещений во времени обусловлен реологическими свойствами горных пород. При прочих равных условиях смещения увеличиваются с ростом глубины разработки и уменьшением показателей прочности и модуля деформации пород.

Роль крепи в выработке сводится к предотвращению чрезмерного развития зоны неупругих деформаций и обрушения пород. При достаточно большой жёсткости крепи она работает в режиме заданной (или взаимовлияющей) деформации и горное давление возникает вследствие того, что крепь воспринимает прирост смещений с момента её установки, который зависит от давления (р). Поэтому последнее можно определить из условия совместности смещений:

где Ut (р) — смещение поверхности выработки в момент времени t;

U0 — смещение поверхности выработки до наступления контакта между крепью и этой поверхностью;

Ut k (р) — смещение контура крепи в момент времени t. Решение этого уравнения (относительно р) находят по графику (рис. 4).

схема формирования гд на крепь

При малой жёсткости крепи её смещения велики, и поэтому породы зоны неупругих деформаций отслаиваются от окружающих пород, нагружая крепь собственным весом (режим заданной нагрузки). В режиме заданной или взаимовлияющей деформации давление будет тем меньше, чем меньше жёсткость крепи. Этой возможностью снижения нагрузки пользуются на практике, создавая в крепи различные узлы и элементы податливости. Однако, чем меньше реакция крепи, тем больше размеры зоны неупругих деформаций, породы которой воздействуют на крепь своим весом. Таким образом, снижение жёсткости крепи имеет естественный предел — оптимальную жёсткость, обеспечивающую минимальное давление в данных горно-геологических условиях. При невозможности (или затруднительности) регулировки жёсткости постоянной крепи (например, монолитной бетонной или металлобетонной) давление на неё снижают, возводя крепь на достаточном расстоянии от забоя и (или) спустя достаточное время после обнажения. В период от момента образования обнажения до возведения постоянной крепи соответствующие участки выработки поддерживаются временной крепью. Для выработок, не испытывающих влияния очистных работ, типичное значение смещения контура выработки составляет 20-40 см, а давление на крепь — 100-200 кПа. Однако в зависимости от типа крепи, глубины разработки, свойств пород и других факторов эти величины могут изменяться в несколько раз.

график

Влияние очистных работ приводит к увеличению смещений контура выработки. Если выработка непосредственно примыкает к лаве (например, откаточный и вентиляционной штреки), то смещения достигают половины вынимаемой мощности пласта. С целью уменьшения этого влияния применяют различные способы охраны горных выработок. Общий характер изменения напряжений при сооружении вертикальных выработок (стволов) такой же, как при проведении горизонтальной выработки. Взаимодействие мощной и жёсткой крепи ствола с массивом имеет характер взаимовлияющей деформации.

Горное давление в очистных выработках. При очистной выемке длинными забоями (лавами) характер горного давления и его проявлений существенно иной, чем в подготовительных выработках и стволах (рис. 5).

Это связано с обнажением пород на больших площадях и наличием постоянного перемещения забоя, играющего существенную роль в формировании проявлений горного давления. Угольный пласт впереди забоя является опорой для кровли, поэтому в нём возникают повышенные нормальные напряжения (опорное давление), вызывающие частичное разрушение и выдавливание призабойной части пласта (отжим угля). В кровле очистной выработки основным видом смещений пород является послойный изгиб с образованием зазоров и щелей между отдельными слоями (расслоение и отслоение). При определенной величине подвигания забоя возможно разрушение слоев горных пород и обрушение их в выработку. Чтобы не допустить массового обрушения в призабойное пространство с разрушением крепи, применяют различные способы управления горным давлением (например, полное обрушение и закладку выработанного пространства). При полном обрушении индивидуальная крепь выбивается за задней границей призабойного пространства, вследствие чего нижний слой кровли (так называемая непосредственная кровля) обрушается по границе, которая обычно усиливается специальной посадочной крепью. Оставшаяся над призабойным пространством непосредственная кровля может быть надёжно поддержана призабойной крепью. Процесс обрушения в выработанном пространстве по мере подвигания забоя распространяется в висячий бок, захватывая вначале идущую вслед за непосредственной основную кровлю, а затем и вышележащие слои. По мере удаления от пласта беспорядочное обрушение сменяется упорядоченным обрушением и плавным опусканием слоев, уменьшающимся с увеличением степени разрыхления и мощности обрушающейся непосредственной кровли.

схема проявления гд в лаве

При работе с механизированной крепью непосредственная кровля обрушается вслед за передвижением крепи. Основная кровля некоторых пластов представляет собой мощные слои прочной породы (например, песчаника). Такая кровля обрушается только при очень значительном подвигании забоя, что вызывает усиленное давление на крепь. Эффективное управление горного давления при подобных труднообрушающихся кровлях возможно путём предварительного ослабления их впереди линии забоя взрыванием мощных скважинных зарядов (торпед), гидроразрыхлением и т.п. Перспективно также применение механизированных крепей высокого сопротивления. При слабых породах почвы, в которые вдавливается крепь, используют специальные расширенные опоры. Для управления горным давлением на крутопадающих пластах применяется закладка выработанного пространства, которая препятствует прогибу слоев кровли, ликвидируя чрезмерные изгибающие моменты и возможность обрушения.

Горное давление на крепь очистной выработки вычисляется с учётом условий её работы в режиме заданной нагрузки или заданной (взаимовлияющей) деформации аналогично горному давлению на крепи капитальных и подготовительных выработок. При этом слои кровли рассматриваются как балки, плиты или шарнирно-блочные системы. Размеры зоны расслоения, в пределах которой образуется система взаимодействующих балок (плит), определяются методами механики деформируемой среды. Балки (плиты) считаются загруженными собственным весом, а также пригрузкой со стороны вышележащих слоев. Величина пригрузки определяется из эмпирических соотношений, полученных на основе лабораторных экспериментов, или аналитического вывода, базирующегося на условии совместности смещений. Шарнирно-блочная система образуется в результате упорядоченного разрушения балок (плит) и состоит из блоков пород кровли, которые взаимодействуют между собой в отдельных точках и на целых поверхностях. Сами блоки практически не деформируются, но поворачиваются друг относительно друга, взаимно проскальзывают с трением на поверхностях. Поведение таких шарнирно-блочных систем и их взаимодействие с крепью рассчитываются методами строительной механики. Расчёт давления беспорядочно обрушенных пород и закладочных материалов на крепи осуществляется также методами механики сыпучей среды. Для анализа схем работы кровли и главным образом для практического выбора способов управления горным давлением широко используются различные классификации структур кровель.

Горное давление в целиках. Напряжённое состояние достаточно высоких (по сравнению с характерным размером основания) междукамерных столбчатых и ленточных целиков является соответственно приближённо одноосным или двухосным. Расчёты и экспериментальные исследования показывают, что междукамерные целики, находящиеся вблизи массивных панельных или барьерных целиков, а также вблизи границ залежи, в известной степени разгружены от горного давления. В широких целиках распределение напряжений по сечению существенно неравномерно и зависит от механических свойств горных пород целика почвы и кровли. В целиках, сложенных крепкими, хрупкими породами и залегающими в таких же породах, значительные концентрации напряжений наблюдаются вблизи стенок. При существенно пластичных породах (уголь, некоторые руды) у стенок целика происходит спад напряжений. В средней части широкого целика может образоваться "ядро", находящееся в объёмном напряжённом состоянии, что повышает несущую способность целика. Для учёта этого повышения применяют эмпирические коэффициенты, а также используют закономерности, полученные на основе использования теории предельного равновесия.

Гидростатическое давление, давление гидроразрыва горной породы

где р г.д - гидродинамическое давление, рассматриваемое в зависимости от выполняемой технологической операции: при циркуляции раствора в затрубном пространстве или при пуске насоса.

Давление гидроразрыва горной породы р г.д (МПа) - давление столба жидкости в скважине на глубине H, при котором происходит разрыв связной породы и образование в ней трещин. Определяется опытным путем.

При полном отсутствии данных

р гр = 0,87 р г ;
р гр =0,83Н + 6,6 р пл (1.31)

Давление поглощения p погл - давление в скважине, при котором начинается утечка бурового раствора по искусственным трещинам, образующимся в результате гидроразрыва связной породы, либо по естественным каналам в трещиноватых и закарстованных породах. Принимается по фактическим данным или по опытным нагнетаниям (подача 1-2 л/с).

При отсутствии данных

Относительное давление по воде в закрытой скважине k отн - отношение давления р H на глубине Н в скважине с закрытым устьем, частично или полностью заполненной пластовой жидкостью, к давлению пресной воды

p' погл =p погл /p (1/34)

где p р.т - давление раскрытия микротрещин или давление гидроразрыва монолитных пород.

Для прогнозирования ориентировочных значений k погл можно воспользоваться формулой

Пример 1.9 Определить давление, оказываемое буровым раствором плотностью р бр =1260 кг/м3 на стенки скважины на глубине 2000 м.

Горное, боковое и пластовое давление

Естественные напряжения в земной коре принято называть геостатическим или горным давлением.

Горное давление (геостатическое) р г - давление, обусловленное весом толщи вышележащих пород.

При бурении скважин на суше.

С увеличение Н растет р г , а вместе с ним возрастает и напряжение в породе. Для большинства пород при этом увеличиваются пределы текучести, прочности и пластичности.

При бурении скважин в море горное давление рассчитывается по формуле

Градиент геостатического давления — отношение геостатического давления в рассматриваемой точке к глубине этой точки

Формулой (1.24) можно пользоваться при разведочном бурении на малоизученных площадях, когда нет возможности установить действительную величину рпл по динамическому уровню жидкости в скважине, поскольку последние еще не пробурены.
При вскрытии водоносных горизонтов

где Н ст - величина столба жидкости, который устанавливается в покоящейся скважине.

Для характеристики геологических условий бурения широко используются относительные давления (индексы давления): геостатическое, боковое и пластовое (поровое). Они характеризуют отношение перечисленных давлений на глубине Н к давлению столба пресной воды.

называют также коэффициентами аномальности пластового и порового давления соответственно.

Давление относительной устойчивости пород p у - минимальное давление на участок ствола скважины, сложенный потенциально неустойчивой породой, при котором в течение продолжительного времени (достаточного для разбуривания всей толщи таких пород и перекрытия их обсадной колонной), при данном составе бурового раствора не возникают серьезные проявления неустойчивости (сужения ствола и связанные с этим осложнения - прихваты, затяжки и посадки колонны труб при спус-коподъемных операциях; интенсивные осыпания пород и т.п.).

Градиенты давления (геостатического, пластового, порового, гидроразрыва и поглощения соответственно) используются также при решении различных задач технологии бурения, равны отношению давления к глубине залегания пород:

Горное и пластовое давление

Давление является одним из основных источников энергии в природных резервуарах и нефтегазоносных комплексах и на этом основании является одним из основных факторов нефтегазообразования и нефтегазонакопления.

Различают два основных вида давлений: горное и пластовое.

Горное давление - это давление, под которым находится горная порода в какой-либо точке литосферы Земли. Оно создается суммарным действием геостатического и геодинамического давления.

Геостатическое или литостатическое давление обусловлено весом горных пород с насыщающими их флюидами в интервале от земной поверхности до точки измерения. В соответствии со средней плотностью осадочных пород, равной 2,31 г/см 3 , градиент геостатического давления составляет 0,0231 МПа на 1 м толщины пород.

Геодинамическое или геотектоническое давление связано с тектоническими процессами, вызывающими напряжения в горных породах, и имеет две составляющие: вертикальную и горизонтальную.

Пластовое давление - это давление, под которым находятся жидкости и газы, заполняющие поровое пространство пород-коллекторов. Пластовое давление определяет силу, движущую флюиды в природных резервуарах и является важным параметром, характеризующим энергетический потенциал залежей нефти и газа в недрах, а также определяет их фазовое состояние и состав.

Вода в пласте может находиться в статических и динамических условиях, то есть быть подвижной или неподвижной, но в обоих случаях наряду с понятием «пластовое давление», как синоним, используют и другое понятие: «гидростатическое давление».

Гидростатическое давление определяется весом столба неподвижной жидкости высотой от точки измерения до поверхности жидкости или пьезометрической поверхности.

Пьезометрическая (напорная или потенциометрическая) поверхность представляет собой поверхность равновесия, на которой устанавливаются уровни подземных вод в различных скважинах, вскрывших один и тот же водоносный горизонт. В статических условиях пьезометрическая поверхность имеет горизонтальное положение, а в динамических условиях – наклонное. Наклон указывает на направление движения вод от области питания к области разгрузки.

Для приблизительных расчетов, когда не известен характер изменения плотности флюидов по вертикали, используется величина условно гидростатического давления. Это - пластовое давление равное весу воображаемого столба пресной воды с плотностью 1 г/см 3 и высотой от точки залегания исследуемого пласта до земной поверхности (устья проектируемой скважины). Положение пьезометрической поверхности при этом не учитывается.

Вертикальный градиент условно гидростатического давления (при плотности воды 1 г/см 3 ) равен 0,01 МПа/м. Фактически значение градиента пластового давления может достигать 0,013 МПа/м.

В природе существуют инфильтрационные и элизионные гидродинамические системы. В инфильтрационных системах источником питания и создания напора являются воды земной поверхности, фильтрующиеся в недра под действием силы тяжести, то есть напор в них образуется под действием гидростатической нагрузки этих вод.

Инфильтрационные системы могут находиться в двух состояниях: статическом и динамическом. В статических инфильтрационных системах нет области разгрузки вод, поэтому их движение в пласте отсутствует и пьезометрическая поверхность расположена горизонтально на уровне области питания. Однако чаще подземные воды имеют область разгрузки и поэтому находятся в динамическом состоянии. Областями разгрузки вод служат области связи ПР с дневной поверхностью: выходы пласта на земную поверхность или в акваторию пересечение пласта разрывным нарушением, работа эксплуатационных скважин. В таких случаях пьезометрическая поверхность наклонена в направлении движения пластовых вод. Её положение определяется линией, соединяющей точки выхода водоносного пласта на земную поверхность в областях питания и разгрузки вод. Таким образом, при наличии движения вод, устанавливается гидродинамическое пластовое давление.




Рисунок – Схема распределения приведенных давлений (П) при горизонтальном и наклонном положении пьезометрической поверхности в инфильтрационных системах

Для определения величины напора подземных вод или определения наклона пьезометрической поверхности М.А. Жданов в 1933 году предложил использовать приведенные или пьезометрические давления, которые рассчитываются от какого-либо уровня приведения – уровня моря, водонефтяного контакта, или от какой-либо условной горизонтальной поверхности до пьезометрической поверхности данного пласта (см. рисунок, условная поверхность). Приведенные давления в одних и тех же скважинах по разным поверхностям сравнения отличаются друг от друга, но перепады давлений, определяющие величину напора и направления движения жидкостей в пласте, остаются неизменными.

На рисунке видно, что приведенные давления (напоры) для пласта I во всех скважинах равны, поскольку пьезометрическая поверхность горизонтальна, а для пласта II они уменьшаются от скважины 1 к скважине 3, то есть по направлению движения подземных вод.

Во флюидоупорах природных резервуарах выделяется поровое давление. Поровое давление (Рпор) это давление, действующее на флюиды в поровом пространстве пород, не обладающих эффективной пористостью и имеющих весьма низкую проницаемость. Поровое давление может расти и в пределе достигать значений литостатического давления. В этом случае аномально высокое поровое давление (АВПоД) приводит к гидроразрыву пород, разрушению стенок скважин и прихвату бурового инструмента.

Однако аномально высокое давление может возникать и в породах, обладающих эффективной пористостью, то есть в породах-коллекторах.

Таким образом, пластовое давление обусловлено давлением флюидов заполняющих пустотное пространство породы. Оно определяет силу упругого сжатия флюидов, которая оказывает давление на вмещающие породы или их скелет. Следовательно, пластовое давление препятствует процессу сжатия пород под действием горного давления. Разность между горным Рг и пластовым Рпл давлением показывает величину эффективного давления сжатия скелета горной породы или уплотняющего давления Ру:

Уплотняющее давление растет в породах-коллекторах при разработке нефтяных и газовых залежей. Иногда за счет этого коллектора теряют свою эффективную проницаемость.

Тема 2. Основные понятия о давлениях в скважине

Давление, P – Мпа; кгс/см. 2 . Давление определяется как сила, действующая на единицу площади. Давление в любой точке скважины одинаково во всех направлениях.


Гидростатическое давление, Pr - Мпа; кгс/см.кв.. . Гидростатическим давлением принято называть давление, определяемое весом столба раствора выше рассматриваемого сечения, приходящегося на единицу площади.

где r - плотность флюида, г/см 3 ;

H - глубина скважины, м.

В наклонных скважинах глубина скважины H определяется как вертикальная составляющая длины ствола.

Гидравлические потери (сопротивление) Pr.c, Мпа; кгс /см 2 . Гидравлические потери определяются как давление, которое необходимо создать, чтобы прокачать данный флюид с данной скоростью через данную систему. Гидравлические потери возникают только при прокачивании флюидов и суммируются со всеми другими давлениями, действующими в интересующей нас точке.

Значение гидравлических потерь определяется по существующим методикам.

Избыточное давление, Pиз -кгс/см 2 . Избыточное давление (противодавление) есть давление, действующее на закрытую или открытую (в динамике) систему, определяемое иными, чем гидростатическое давление, источниками. В нашем случае избыточным давлением в закрытой при ГНВП скважине будет давление в бурильных трубах Pиз.т. и колонне Pиз.к. Избыточным давлением в динамических условиях будут гидравлические потери в дросселе +Pr.c.

Избыточное давление добавляется к давлению, действующему в рассматриваемой точке в статических и динамических условиях. Это положение является основополагающим в понимании методики глушения скважины.

Избыточное давление в бурильных трубах. Pиз.т. - кгс /см 2 Pиз.т. - это давление на стояке при закрытой скважине без циркуляции. Pиз.т. равно разнице между пластовым давлением Pпл и гидростатическим давлением столба бурового раствора в бурильных трубах.

Избыточное давление в обсадной колонне, Pиз.к. - кгс/см 2 Pиз.к. - это давление в затрубном (кольцевом) пространстве на устье закрытой скважины при отсутствии циркуляции. Pиз.к. равно разнице между пластовым давлением и общим гидростатическим давлением столба флюидов в затрубном пространстве.

Пластовое давление, Pпл - кгс /см 2 . Пластовое давление – есть давление флюида в рассматриваемом пласте. Пластовое давление равно гидростатическому давлению столба бурового раствора в бурильных трубах плюс Риз.т. при закрытой скважине. Нормальным пластовым давлением считается давление равное гидростатическому давлению столба воды на глубине залегания пласта. Пластовое давление выше давления столба воды называется аномально высоким пластовым давлением. Пластовое давление ниже давления столба воды называется аномально низким пластовым давлением.

Забойное давление, Рзаб - кгс /см 2 Забойное давление есть общее давление на забое скважины (или под долотом) в любых условиях. Рзаб = Рr + Pr.ск + Риз.

Рзаб. в зависимости от условий может быть равно пластовому давлению, больше или меньше его:

ПОНЯТИЕ О ГОРНОМ И ПЛАСТОВОМ ДАВЛЕНИИ. РАСПРЕЛЕНИЕ ДАВЛЕНИЯ В ПРЕДЕЛАХ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ

Горное давление обусловлено весом вышележащих пород, интенсивностью и продолжительностью тектонических процессов, физико-химическими превращениями пород и т.п.

Различают вертикальную и горизонтальную компоненты горного давления, которые называют соответственно полным и боковым. Полное (геостатическое) давление соответствует суммарному весу вышележащей толщи, боковое (геотектоническое) давление, возникающее за счет напряжений, образующихся в пластах в результате тектонических процессов, их деформации обусловливающих релаксацию напряжений.


где g – ускорение свободного падения; n - число слоев.

Значение бокового горного давления определяется величиной вертикальной компоненты давления, коэффициентом Пуассона пород и геологическими свойствами пород. Коэффициент пропорциональности между вертикальной и горизонтальной (боковой) составляющими горного давления изменяется в зависимости от типа пород от 0,33 (для песчаников) до 0,70 (для прочных пород типа алевролитов).

Пластовое давление — один из важнейших факторов, определяющих энергетические возможности продуктивного пласта, производительность скважин и залежи в целом. Под пластовым понимают давление, при котором нефть, газ, вода находятся в пустотах пластов-коллекторов в геологическом разрезе месторождения.

Если вскрыть скважиной водоносный пласт-коллектор водонапорной системы и снизить в ее стволе уровень промывочной жидкости, то под действием пластового давления в эту скважину из пласта начнет поступать вода. Ее приток прекращается после того, как столб воды уравновесит пластовое давление. Аналогичный процесс протекает при вскрытии нефтегазонасыщенного пласта. Следовательно, величина пластового давления pпл может быть определена по высоте столба пластовой жидкости и скважине при установлении статического равновесия в системе пласт — скважина:

При практических расчетах формулу используют в следующем виде:

где c — коэффициент, равный 102 при измерении давления в МПа.

Устанавливающийся в скважине уровень жидкости, соответствующий пластовому давлению, называют пьезометрическим уровнем. Его положение фиксируют расстоянием от устья скважины или величиной абсолютной отметки.

Поверхность, проходящую через пьезометрические уровни в различных точках водонапорной системы (в скважинах), называют пьезометрической поверхностью.

Высоту столба жидкости h в (2) и (3) в зависимости от решаемой задачи обычно определяют как расстояние от пьезометрического уровня до середины пласта-коллектора. Такой столб жидкости h называют пьезометрической высотой (рис. 1). Или как расстояние от пьезометрического уровня до условно принятой горизонтальной плоскости — этот столб жидкости высотой h2 = h1 + z, где z — расстояние между серединой пласта и условной плоскостью, называют пьезометрическим напором.

Величину давления, соответствующую пьезометрической высоте, называют абсолютным пластовым давлением (pпл.а.); величину давления, соответствующую пьезометрическому напору, — приведенным пластовым давлением (pпл.пр.).




В скважинах с устьями, совпадающими с пьезометрической поверхностью (рис. 2, скв. 2),

Скважины с устьями ниже пьезометрической поверхности (рис. 2, скв. 3) будут фонтанировать. Пластовое давление в таких скважинах можно определить, замерив манометром давление ру на их герметизированных устьях:


Рис. 1. Пьезометрические высота и напор в скважине.

1 — пласт-коллектор; 2 — пьезометрический уровень в скважине; ОО — условная плоскость; h1 — пьезометрическая высота; z — расстояние от середины пласта до условной плоскости; h2 — пьезометрический напор

Рис. 2. Схема инфильтрационной водонапорной системы.

1 — водонасыщенный пласт-коллектор; 2 — залежь нефти; 3 — пьезометрическая поверхность; 4 — земная поверхность; 5 — скважина со столбом пластовой воды, уравновешивающим начальное пластовое давление; 6 — направление движения жидкости; 7 — водоупорные породы.


Для характеристики изменения пластового давления в водонапорных системах и залежах пользуются вертикальным градиентом пластового давления grad р, отражающим величину изменения рпл на 1 м глубины скважины:

grad р = pпл/Н (7)

Из рис. 2 видно, что на величину grad р в различных скважинах заметное влияние оказывает различие в разности абсолютных отметок пьезометрической поверхности и устьев скважин. В скважинах, устья которых находятся выше пьезометрической поверхности, значения grad р меньше, а в скважинах, устья которых находятся ниже этой поверхности, значения grad р больше по сравнению с его значениями в скважинах, устья которых совпадают с пьезометрической поверхностью. Градиент пластового давления имеет значения от 0,008 до 0,025 МПа/м и иногда более. Его величина зависит от характера водонапорной системы, взаимного расположения поверхности земли и пьезометрической поверхности.

При grad р > 0,013 пластовое давление обычно считают сверхгидростатическим (СГПД), при grad р < 0,008 — меньшим гидростатического (МГПД).

Наличие в пластах-коллекторах СГПД может быть объяснено тем, что на определенном этапе геологической истории резервуар получает повышенное количество жидкости в связи с превышением скорости ее поступления над скоростью оттока. Сверхгидростатическое пластовое давление характерно для элизионных водонапорных систем. В таких системах напор создается за счет выжимания вод из вмещающих пласты-коллекторы уплотняющихся осадков и пород и частично за счет уплотнения самого коллектора под влиянием геостатического давления, возрастающего в процессе осадконакопления (геостатические элизионные системы), или в результате геодинамического давления при тектонических напряжениях (геодинамические элизионные системы).

Пластовое давление, меньшее гидростатического, т. е. с вертикальным градиентом менее 0,008 МПа/м, встречается относительно редко. Наличие в пластах-коллекторах МГПД может быть объяснено тем, что на определенном этапе геологической истории создавались условия, приводящие к дефициту пластовой воды в резервуаре. Одним из таких условий может быть увеличение пористости, например при выщелачивании или перекристаллизации пород. Возможно также уменьшение объема жидкости, насыщающей пустотное пространство, например вследствие снижения температуры пластов-коллекторов в результате их перемещения при тектонических движениях на меньшие глубины.

Каждая залежь УВ обладает некоторым природным пластовым давлением. В процессе разработки залежи пластовое давление обычно снижается. Соответственно различают начальное (статическое) и текущее (динамическое) пластовое давление залежей.

Начальное (статическое) пластовое давление — это давление в пласте-коллекторе в природных условиях, т. е. до начала извлечения из него жидкостей или газа. Величина начального пластового давления в залежи и за ее пределами определяется особенностями природной водонапорной системы, к которой приурочена залежь, и местоположением залежи в этой системе.

В пределах нефтегазовых залежей значения начального пластового давления и статических уровней отличаются от значений этих показателей в водоносной части пласта при тех же абсолютных отметках залегания пластов. Величина разности этих значений зависит от степени различий в плотности пластовой воды, нефти и газа и от расстояния по вертикали рассматриваемой точки залежи до ВНК. На рис. 3 приведена схема инфильтрационной водонапорной системы, область питания которой расположена на абсолютной отметке 100 м. Общая высота приуроченной к этой системе залежи 400 м, отметка ВНК — 700 м, ГНК — 400 м, кровли пласта в своде залежи —300 м.

Нефтяная скв. 2а с той же абсолютной отметкой пласта, что и скв. 2, но с меньшей отметкой устья (100 м) будет фонтанировать. Давление на ее устье при герметизации pу2а = 140×0,85:102=1,17 МПа.


Рис. 3. Схема распределения пластового давления рпл и пьезометрических высот в районе расположения нефтегазовой залежи: 1 — вода; 2 — нефть; 3 — газ; поверхности: 4 — пьезометрическая; 5 — земная; pу — давление на устье скважины.

Пластовое давление в газовой скв. 3 может быть определено исходя из рпл2:рпл3 = 6,17–(100×0,85+100×0,1)/102=5,24 МПа. В скв. 3 в условиях насыщенности пласта водой пьезометрическая высота составила бы 400 м, а пластовое давление 3,92 МПа. Таким образом, пластовое давление газонасыщенного пласта в своде структуры в рассматриваемом случае на 1,32 МПа больше, чем оно могло бы быть при заполнении резервуара водой.

Для приведенного примера изменение значений начального пластового давления и соответственно пьезометрических уровней в районе залежи может быть изображено в виде профиля (рис. 4).


Рис. 4. График изменения начального пластового давления рпл.нач. в районе нефтегазовой залежи.

Профили давления: 1 — при водонасыщенности пласта; 2 — при наличии в пласте нефтегазовой залежи; К—К — положение контура залежи; pизб – избыточное пластовое давление.

Таким образом, уменьшение начального пластового давления от периферии к сводовой части залежи нефти и газа происходит непропорционально уменьшению абсолютных отметок залегания пласта. Особенно значительное превышение значений фактических пьезометрических высот h и значений начального пластового давления рпл нач. над гидростатическими hг и рг имеет место в сводовых частях газовых залежей с весьма большой высотой.

Горное давление

ГОРНОЕ ДАВЛЕНИЕ — (давление горных пород) давление горных пород, окружающих горные выработки, на стенки и крепь этих выработок … Словарь по гидрогеологии и инженерной геологии

ГОРНОЕ ДАВЛЕНИЕ — давление на стенки и крепь горных выработок, оказываемое горными породами, в к рых они пройдены. Г. д. результат внутр. напряжений, возникающих в породном массиве под действием гравитац. и отчасти тектонич. сил (и иных нагрузок) и реализующихся в … Большой энциклопедический политехнический словарь

ГОРНОЕ ДАВЛЕНИЕ — формируется в недрах Земли в результате действия в осн. гравитац. сил, в меньшей мере за счёт тектонич. сил и изменения темп ры верх. слоев земной коры. Вызывает деформирование массива горн. пород, приводит к горным ударам и внезапным выбросам … Естествознание. Энциклопедический словарь

ДАВЛЕНИЕ ГОРНОЕ — давление на стенки и крепь горных выработок, оказываемое г. п. в результате их перемещения и сдвига. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

ГОРНОЕ ДАВЛЕНИЕ

формируется в недрах Земли в результате действия в осн. гравитац. сил, в меньшей мере за счёт тектонич. сил и изменения темп-ры верх. слоев земной коры. Вызывает деформирование массива горн. пород, приводит к горным ударам и внезапным выбросам.

Естествознание. Энциклопедический словарь .

Смотреть что такое "ГОРНОЕ ДАВЛЕНИЕ" в других словарях:

ГОРНОЕ ДАВЛЕНИЕ — (давление горных пород) давление горных пород, окружающих горные выработки, на стенки и крепь этих выработок … Словарь по гидрогеологии и инженерной геологии

ГОРНОЕ ДАВЛЕНИЕ — давление на стенки и крепь горных выработок, оказываемое горными породами, в к рых они пройдены. Г. д. результат внутр. напряжений, возникающих в породном массиве под действием гравитац. и отчасти тектонич. сил (и иных нагрузок) и реализующихся в … Большой энциклопедический политехнический словарь

ДАВЛЕНИЕ ГОРНОЕ — давление на стенки и крепь горных выработок, оказываемое г. п. в результате их перемещения и сдвига. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

Читайте также: