Акустические методы исследования скважин

Обновлено: 02.07.2024

Теоретические и физические основы акустического метода, расчет кривых АК

Акустическим каротажем (АК) называют методы определения упругих свойств горных пород, пройденных скважиной, по наблюдениям за распространением в них упругих волн. По существу он представляет собой применение сейсмических методов разведки для изучения геологического разреза скважин. В основе акустических методов лежит различие упругих свойств пород, слагающих разрезы скважин.

Применение акустического метода в комплексе с другими геофизическими методами позволяет решать следующие задачи поисково-разведочной и промысловой геологии:

1) литологическое расчленение и корреляция разрезов скважин;

2) стратиграфическая привязка отложений;

3) выделение пластов-коллекторов;

4) определение характера насыщения пластов;

5) оценка коэффициента пористости пород;

6) определение положения водонефтяного и газожидкостных контактов.

Имеются все физические предпосылки определения по данным акустического метода коэффициентов водо- и нефтегазонасыщения и оценки фильтрационных и других характеристик коллекторов. Кроме того, акустического методом определяется техническое состояние скважин, например, контроль качества цементирования обсадной колонны (акустическая цементометрия) и диаметр скважины (акустическая кавернометрия).

Целью данной курсовой работы является изучение акустического метода: его теоретических и физических основ; геофизических кривых.

Поставленная цель может быть достигнута путём решения следующих задач:

1) Рассмотрение физики упругих колебаний: виды акустических волн, их геометрия и распространение в различных средах; свойства упругих тел

2) Рассмотрение скважинной акустической аппаратуры, принципа ее работы.

3) Изучение принципов построения геофизических кривых, методики их расчета.

1. ТЕОРЕТИЧЕСКИЕ И ФИЗИЧЕСКИЕ ОСНОВЫ МЕТОДА

1.1. Основные понятия

В основе акустических методов лежит различие упругих свойств пород, слагающих разрезы скважин. Горные породы в естественном залегании при тех напряжениях, которые возникают при исследовании разрезов скважин ультразвуковым методом, являются практически упругими телами. Если на элементарный объем породы, условно принимаемый за точку, в течение некоторого времени действует какая-либо сила, то про исходят деформация частиц породы и их перемещение. Это приводит к возникновению напряжений в слое, окружающем точку возбуждения, т. е. в этом слое возникают изменяющиеся во времени деформации. В результате во всех направлениях от точки приложения возбуждающей силы изменяется первоначальное состояние среды. После того как частица среды совершит колебания около своего первоначального положения, она успокоится.

Процесс последовательного распространения деформации называется упругой волной. В однородной среде упругие волны распространяются в радиальном направлении от источника колебаний (точки возбуждения). Геометрическое место точек пространства, в которых упругие колебания среды совершаются синфазно (в одной фазе), называется фронтом волны. В неоднородной среде пути распространения упругих волн и их фронт имеют более сложную картину. Линия, вдоль которой происходит распространение волны, в каждой своей точке образующая прямой угол с фронтом волны в соответствующий момент времени, называется лучом.

Есть два типа волн — продольные (Р) и поперечные (S). Продольная волна вызывается деформацией объема, и ее распространение представляет собой перемещение зон растяжения и сжатия. Частицы среды при этом совершают колебания около своего первоначального положения в направлении, совпадающем с лучом волны. Поперечная волна связана с деформацией формы, и распространение ее заключается в скольжении одного слоя среды относительно другого. Частицы среды при этом колеблются около своего первоначального положения в направлении, перпендикулярном к направлению распространения волны. (см. рис. 1.1.1) Поперечные волны могут возникать только в твердых телах.

1.jpg

Рис. 1.1.1. Схема смещения частиц среды при распространении продольных (а) и поперечных (б) волн.

Скорость распространения упругой волны по ходу луча зависит от упругих свойств и плотности среды, а также от типа волны.

Свойства упругих тел определяются модулем их продольного растяжения и коэффициентом поперечного сокращения:

(1.1.1)

(1.1.2)

Скорость распространения продольной упругой волны в породе:

4.jpg

(1.1.3)

Скорость распространения поперечной волны:

(1.1.4)

Для горных пород Е обычно изменяется от 1,5-10 -1 до 6 Па; коэффициент поперечного сокращения горных пород близок к 0,25. Для горных пород vp/vs=1,73, т. е. скорость распространения поперечной волны приблизительно в 1,73 раза меньше скорости распространения продольной волны, следовательно, продольная волна приходит к удаленным точкам раньше, чем поперечная.

Упругие свойства горных пород, а значит и скорости распространения упругих волн в них обусловлены их минеральным составом, пористостью и формой норового пространства и, таким образом, тесно связаны с литологическими и петрофизическими свойствами. (См. таб. 1.1.1)

6.jpg

(1.1.5)

Коэффициент поглощения энергии волны или, как его часто называют, ослабления или затухания волны выражают в децибелах на 1 м или 1/м, относя величину ослабления амплитуды к единице длины: 1 дБ/м = 8,68 м -1 . Величина зависит от пористости породы, минерального состава ее скелета и цемента, геометрии пор, свойств жидкости, насыщающей поры, частоты упругих колебаний и типа регистрируемых волн.

Таблица 1.1.1. Скорость распространения упругих волн в различных средах в м/с

При акустических исследованиях горных пород измеряют кинематические и динамические характеристики продольных и поперечных волн.

Кинематические характеристики (на них основан акустический каротаж по скорости) определяют скорость распространения упругих волн в породах:

Динамические характеристики (акустический каротаж по затуханию) связаны с поглощающими свойствами исследуемой среды:

1) Относительными амплитудами продольных и поперечных колебаний от ближнего и дальнего излучателей—А, А и А1S, А2S;

1.2. Принцип измерения

Для изучения акустических свойств горных пород ультразвуковым методом необходимо в скважине возбудить упругие колебания частотой 10—75 кГц и наблюдать за ними после прохождения их через горные породы, слагающие разрез.

Простейший скважинный прибор состоит из одного излучателя И и одного приемника П, разделенных между собой акустическим изолятором (рис. 1.2.1). Расстояние L между излучающим и приемным элементами называется базой измерен и я. Это расстояние является и длиной двухэлементного зонда.

Чтобы получить представление о принципе скважинных измерений ультразвуковым методом, целесообразно рассмотреть распространение упругих волн в идеализированных скважинных условиях от сферического излучателя И. При этом предполагается, что излучатель и приемник ультразвуковых колебаний расположены на оси скважины с постоянным диаметром, пересекающей пласт неограниченной мощности и заполненной однородной промывочной жидкостью (см. рис. 1.2.1.). В этом случае наблюдается следующая картина распространения упругих волн, испускаемых излучателем.

8.jpg

Рис.1.2.1. Схема распространения упругих волн от расположенного в скважине импульсного сферического излучателя.

1 – прямая (падающая) Р1;

2 – проходящая продольная Р12;

4 – отраженная (продольная) Р11.

При дальнейшем своем движении волна Р12 вызывает в промывочной жидкости новую волну Р121, называемую головной, которая распространяется со скоростью vРп и при достаточно большом расстоянии между излучателем и приемником первой достигает приемника. Фронт этой волны образует коническую поверхность с вершиной на оси скважины и основанием, равным окружности скважины. Следовательно, распространение колебаний от излучателя до приемника происходит по пути скважина — порода — скважина, который изображен ломаным лучом Л (см. рис. 1.2.1).

Аналогично распространяется и обменная поперечная волна P1S2, вызывая в промывочной жидкости образование головной волны P1S2P1 которая проходит в породе со скоростью vSп. Необходимо отметить, что головная волна P1S2P1 в промывочной жидкости распространяется как продольная, так как поперечные волны могут существовать только в твердых телах.

Таким образом, от излучателя к приемнику распространяются волны трех типов:

1) головная продольная Р121,

3) прямая продольная P1

с соответствующим соотношением скоростей vРп > vSп > vРр. Отраженная волна Р11 обычно не наблюдается вследствие больших углов падения (90°) и малой энергии. Но, если путь прохождения от излучателя до приемника одинаков для волн P121 и P1S2P1 , и равен сумме отрезков луча Л (см. рис. 1.2.1), то для прямой волны P1 он равен только расстоянию L между излучателем и приемником по прямой. Т. е. несколько меньше, чем в первом случае, причем разница эта зависит от диаметра скважины.

В связи с этим целесообразно применять многоэлементные зонды, содержащие один излучатель и два или более приемников упругих колебаний (или, наоборот, один приемник и несколько излучателей, работающих синхронно). Наибольшее распространение получили трехэлементные зонды с одним излучателем (приемником) и двумя приемниками (излучателями), расположенными на разных расстояниях от него. Для таких зондов базой измерения является расстояние между приемниками, а длиной зонда — расстояние от излучателя до дальнего приемника. При использовании трехэлементных зондов в случае, если оба приемника находятся на одинаковом расстоянии от стенки скважины, время прохождения упругих колебаний по промывочной жидкости исключается, т. е. повышается достоверность регистрируемых параметров ультразвукового метода. В этом случае время пробега волны по породе и не требует корректировки.

(1.2.1.)

Глубина исследования различна при измерении кинематических и динамических характеристик горных пород и определяется базой зонда, ,частотой упругих волн в породах, скважинными условиями проведения исследований. С увеличением базы зонда и скорости распространения упругих колебаний в горных породах радиус исследования возрастает. С повышением частоты упругих колебаний глубина исследования уменьшается. В средах, обладающих положительным градиентом волнового сопротивления по радиусу от стенки скважины, глубинность метода увеличивается. Практически, глубинность ультразвукового метода при регистрации кинематических характеристик не превышает 0,3 м. Радиус исследования по динамическим параметрам примерно в 2 раза больше, чем по кинематическим.

При применении ультразвукового метода используется импульсная ультразвуковая установка: излучатель периодически посылает пакеты из 3—4 периодов ультразвуковых колебаний частотой 10 -75 кГц с колокольной формой огибающей, разделенные во времени (рис. 1.2.2). Частота посылки импульсов ультразвуковых колебаний излучателя определяется необходимостью регистрации в первых вступлениях головной волны (проходящей по породам, а не по промывочной жидкости), и определяется расстоянием между стенкой скважины и приемником, соотношением скоростей распространения продольной волны в промывочной жидкости и в породах и изменением упругих свойств горных пород в прискважинной части, вызванным процессом бурения. Обычно частота посылки импульсов излучателем составляет 12—25 кГц.

Принцип действия аппаратуры основан на возбуждении в породах, пересеченных скважиной, упругих колебаний, последующем их приеме и преобразовании в электрический сигнал, который по геофизическому кабелю передается в наземный пульт, где измеряются амплитудные и временные параметры сигнала, характеризующие физико-механические свойства породы. Амплитудные и временные параметры регистрируются па диаграмме в функции глубин.

10.jpg

Рис. 1.2.2. График колебаний продольной волны (а) и волновая картина, полученная при записи упругих колебаний приемниками трехэлементного зонда (б).

I — запись ближним приемником;

II — запись дальним приемником;

III — марки времени (через 100 мкс).

1 — отметка импульса;

2 — первое вступление головной продольной волны;

3—поперечные колебания и волна, идущая по промывочной жидкости. Расстояние между излучателем и приемником 1,36 м; расстояние между приемниками 1,16 м; Т, А – период и амплитуда возбуждающих колебаний

2. РАСЧЕТ КРИВЫХ АК

2.1 Основные положения

11.jpg

Рис. 2.1.1. Схемы трехэлементных акустических зондов

(2.1.1.)

(2.1.2),

(2.1.3)

(2.1.4)

Где Vж – скорость упругих волн в жидкости, Vп – скорость волн в породе.

Таким образом, при отсутствии значительных каверн, пустот и т. п. отмеченное трехэлементным зондом время, не зависит от расположения его элементов относительно стенки скважины и зонд не нуждается в специальной ориентации в скважине, пока достаточно приближен к стенке скважины

2.2. Расчетная часть

Рассчитаем и построим кривую АК, пользуясь формулами (2.1.1 – 2.1.4).

Для расчетов возьмем зонд АСКУ И 4,0 П1 2,0 П2. Таким образом, примем L1=4 м, L2=6м, ?L=2м.

Кривую построим против пласта глин (hглин=8м), находящемся между пластов идентичного песчаника бесконечной толщины.

Примем Vглин=2500 м/с

В качестве скважинной жидкости возьмем воду нормальной солености и примем Vж=1600 м/с.

По формуле (2.1.4) сразу рассчитаем i для глины и песчаника, и занесем исходные данные в таблицу 2.2.1.

Геофизические исследования

Геофизические исследования в скважинах (geophysical exploration in wells) - методы, основанные на изучении естественных и искусственно создаваемых физических полей (электрических, акустических и тд), физических свойств горных пород, пластовых флюидов, содержания и состава различных газов в буровом растворе.

Применяются для изучения геологического разреза скважин и массива горных пород в околоскважинном и межскважинном пространствах, контроля технического состояния скважин и разработки нефтяных и газовых месторождений.

Первые геофизические исследования (термометрия) выполнены Д. Голубятниковым в 1908 г. на нефтяных промыслах г Баку.

В 1926 г. братьями Шлюмберже (Франция) был предложен электрический каротаж, высокая эффективность которого обеспечила его быстрое внедрение и развитие других методов геофизических исследований.

В СССР в разработку теории и техники геофизических исследований большой вклад внесли Л. Альпин, В. Дахнов и др, в США - Г. Арчи, Г. Гюйо, Дж. Долл и др.

Геофизические исследования, проводимые для изучения геологического разреза скважин, называют каротажем, который осуществляется электрическими, электромагнитными, магнитными, акустическими, радиоактивными (ядерно-геофизическими) и другими методами.

При каротаже с помощью приборов, спускаемых в скважину на каротажном кабеле, измеряются геофизические характеристики, зависящие от одного или совокупности физических свойств горных пород и их расположения в разрезе скважины.

В скважинные приборы входят каротажные зонды (устройства, содержащие источники и приемники наблюдаемого поля), сигналы которых по кабелю непрерывно или дискретно передаются на поверхность и регистрируются наземной аппаратурой в виде кривых (рис.) или массивов цифровых данных.

Разрабатываются способы каротажа, которые можно проводить в процессе бурения приборами, опускаемыми в скважину на бурильных трубах.

При электрическом каротаже изучают удельное электрическое сопротивление, диффузионно-адсорбционную и искусственно вызванную электрохимическую активность пород и т.п.

Для определения удельного сопротивления применяют боковое каротажное зондирование (измерения 3-электродными градиент-зондами разной длины), боковой каротаж (измерения зондами с фокусировкой тока), микрокаротаж и боковой микрокаротаж.

Различие в диффузионно-адсорбционной активности пород используется в каротаже самопроизвольной поляризации, а способность пород поляризоваться под действием электрического тока - в каротаже вызванной поляризации, основанном на различии потенциалов, возникающих на поверхности контактов руд (например, сульфидных), углей с другими горными породами.

При электромагнитном каротаже изучаются удельная электрическая проводимость (индукционный каротаж), магнитная восприимчивость (каротаж магнитной восприимчивости, КМВ) и диэлектрическая проницаемость (диэлектрический каротаж, ДК) горных пород индукционными зондами на различных частотах 1 кГц (КМВ), 100 кГц и 40 МГц (ДК).

При магнитном каротаже измеряются магнитная восприимчивость пород и характеристики магнитного поля.

Акустический каротаж основывается на регистрации интервальных времен (скорости), амплитуд и других параметров упругих волн ультразвукового и звукового диапазона.

При радиоактивном каротаже (ядерно-геофизическом) в скважинах измеряют характеристики ионизирующего излучения.

Широко используется изучение характеристик нейтронного и гамма-излучения, возникающих в породах при облучении их стационарным источником нейтронов (нейтрон-нейтронный каротаж и нейтронный гамма-каротаж) или источниками гамма-излучений (гамма-гамма-каротаж).

Модификации радиоактивного каротажа применяются с импульсными источниками нейтронов (импульсный нейтрон-нейтронный каротаж, импульсный нейтронный гамма-каротаж) и гамма-излучения (импульсный гамма-гамма-каротаж).

Естественное гамма-излучение пород исследуется в гамма-каротаже.

В активационном радиоактивном каротаже изучаются характеристики излучения искусственных радиоактивных изотопов, возникающих в породах при облучении их источником ионизирующих излучений.

Ядерно-магнитный каротаж заключается в наблюдении за изменением электродвижущей силы, возникающей в катушке зонда в результате свободной прецессии протонов в импульсном магнитном поле.

Газовый каротаж обеспечивает изучение физическими методами содержания и состава углеводородных газов и битумов в буровом растворе, а также параметров, характеризующих режим бурения.

Иногда применяются исследования, основанные на определении механических свойств в процессе бурения (механический каротаж).

Околоскважинные и межскважинные исследования основаны на изучении в массивах горных пород особенностей естественных или искусственно созданных геофизических полей:

-магнитного (скважинная магниторазведка), гравитационного (скважинная гравиразведка), распространения радиоволн (радиоволновой метод, РВМ), упругих волн (акустическое просвечивание), постоянного или низкочастотного электрического (метод заряженного тела), нестационарного электромагнитного (метод переходных процессов);

- пьезоэлектрического эффекта, возникающего в горных породах под воздействием упругих колебаний (пьезоэлектрический метод);

- потенциалов вызванной поляризации, возникающих на контакте рудного тела в результате воздействия источника тока в скважине или на поверхности Земли (контактный метод поляризационных кривых) и др.

В радиоволновых методах разведки источник электромагнитных колебаний (частота 0,16-37 МГц) размещается в скважине; регистрация осуществляется с помощью приемников (антенн) в этой же скважине (околоскважинные исследования) или в соседней (межскважинные исследования).

В некоторых случаях поле наблюдается на поверхности Земли.

При разведке акустическим просвечиванием возбуждение и наблюдение волн осуществляется так же, как в РВМ.

В методе заряженного тела токовый электрод размещают в скважине против рудного тела; наблюдения производят в скважине или на поверхности.

Методы околоскважинных и межскважинных исследований позволяют обнаружить и оконтурить рудные тела и другие геологические образования, пересеченные скважиной или находящиеся в стороне от нее.

При контроле технического состояния скважин измеряют ее зенитный угол и азимут (инклинометрия), средний диаметр (кавернометрия) и расстояние от оси прибора до стенки скважины (профилеметрия), температуру (термометрия), удельное электрическое сопротивление бурового раствора (резистивиметрия), определяют высоты подъема цемента в затрубном пространстве скважины и его качество (контроль цементирования) по данным кривым акустического и гамма-гамма-каротажа и др.

При разработке месторождения регистрируют скорости перемещения жидкости по скважине (расходометрия), вязкость заполняющей жидкости (вискозиметрия), содержание воды в последней (влагометрия), давление по стволу (барометрия) и др.

Отбор проб флюидов из пласта (опробование пластов) производится опробователями пластов, которые на каротажном кабеле опускаются в скважину на заданную глубину.

После этого блок отбора (башмак) прижимается к стенке скважины и кумулятивной перфорацией создается дренажный канал между пластом и прибором для подачи флюида в приемный баллон прибора.

Образцы пород из стенок скважин отбирают стреляющими грунтоносами и сверлящими керноотборниками.

При анализе проб определяется содержание нефти, газа и воды, а также компонентный состав газа, что дает возможность оценить нефтегазоносность пласта, литологию, наличие углеводородов, а иногда и коэффициент пористости породы.

Геофизические исследования применяют при поисках и разведке нефти и газа (промысловая геофизика), угля (угольная скважинная геофизика), руд и строительных материалов (рудная скважинная геофизика) и воды (геофизические исследования гидрогеологических скважин).

Получаемые данные обеспечивают расчленение разреза скважин на пласты, определение их литологии и глубины залегания, выявление полезных ископаемых (нефти, газа, угля и др.), корреляцию разрезов скважин, оценку параметров пластов для подсчета запасов (эффективную мощность, содержание полезных ископаемых), определение объема залежи нефти, газа, угля или рудного тела, оценку физико-механических свойств пород при строительстве различных сооружений и др.

Геофизические исследования - основной способ геологической документации разрезов скважин, дающий большой экономический эффект за счет сокращения отбора керна и количества испытаний пластов.

Повышение эффективности геофизических исследований связано с разработкой и внедрением новых методов, а также с совершенствованием методики и техники исследований; внедрением машинных методов обработки и интерпретации данных, создания цифровых каротажных лабораторий, управляемых бортовым компьютером, комплексных геолого-геохимическо-геофизических информационно-измерительных и обрабатывающих комплексов, высокоточных и термобаростойких комплексных скважинных приборов и др.

Комплекс исследований должен включать все основные методы.

Целесообразность применения дополнительных методов должна быть обоснована промыслово-геофизическим предприятием.

Комплексы методов исследований уточняют в зависимости от конкретных геолого-технических условий по взаимно согласованному плану между геофизической и промыслово-геологичсской службами.

Заключения об интервалах негерметичности обсадной колонны, глубине установки оборудования, НКТ, положения забоя, динамического и статического уровней, интервале прихвата труб и привязке замеряемых параметров к разрезу, герметичности забоя выдаются непосредственно на скважине после завершения исследований, а по исследованиям, которые проводятся для определения интервалов заколонной циркуляции, распределения и состояния цементного камня за колонной, размеров нарушений колонны, - передаются по оперативной связи в течение 24 час после завершения измерений и через 48 час - в письменном виде.

В заключении геофизического предприятия приводятся результаты ранее проведенных исследований (в том числе и не связанных с КРС), а в случае их противоречия с данными предыдущих исследований, указываются причины.

Перед началом геофизических работ скважину заполняют жидкостью необходимой плотности до устья, а колонну шаблонируют до забоя.

Основная цель исследования - определение источников обводнения продукции скважины.

При выявлении источников обводнения продукции в действующих скважинах исследования включают измерения высокочувствительным термометром,
гидродинамическим и термокондуктивным расходомерами, влагомером, плотномером, резистивиметром, импульсным генератором нейтронов.

Комплекс исследований зависит от дебита жидкости и содержания воды в продукции.

Привязку замеряемых параметров по глубине осуществляют с помощью локатора муфт и ГК.

Для выделения обводнившегося пласта или пропластков, вскрытых перфорацией, и определения заводненной мощности коллектора при минерализации воды в продукции 100 г/л и более в качестве дополнительных работ проводят исследования импульсными нейтронными методами (ИНМ) как в эксплуатируемых, так и в остановленных скважинах.

В случаях обводнения неминерализованной водой эти задачи решаются ИНМ по изменениям до и после закачки в скважину минерализованной воды с концентрацией соли более 100 г/л.

Эти измерения проводятся в комплексе с исследованиями высокочувствительным термометром для определения интервалов поглощения закачанной воды и выделения интервалов заколонной циркуляции.

Измерения ИНМ входят в основной комплекс при исследовании пластов с подошвенной водой, частично вскрытых перфорацией, при минерализации воды в добываемой продукции более 100 г/л.

По результатам измерений судят о путях поступления воды к интервалу перфорации - подтягиванию подошвенной воды по прискважинной зоне коллектора или по заколонному пространству из-за негерметичности цементного кольца.

Оценку состояния выработки запасов и величины коэффициента остаточной нефтенасыщенности в пласте, вскрытом перфорацией, проверяют исследованиями ИНМ в процессе поочередной закачки в пласт двух водных растворов, различных по минерализации.

По результатам измерения параметра времени жизни тепловых нейтронов в пласте вычисляют значение коэффициента остаточной насыщенности. Технология работ предусматривает закачку 3-4 м 3 раствора на 1 м толщины коллектора.

Закачку раствора проводят отдельными порциями с замером параметра до стабилизации его величины.

Состояние насыщения коллекторов, представляющих объекты перехода на другие горизонты или приобщения пластов, оценивают по результатам геофизических исследований. При минерализации воды в продукции более 50 г/л проводят исследования ИНМ.

При переводе добывающей скважины под нагнетание обязательными являются исследования гидродинамическим расходомером и высокочувствительным термометром, которые позволяют выделить отдающие или принимающие интервалы и оценить степень герметичности заколонного пространства.

Акустические и другие неэлектрические методы

Акустический каротаж АК основан на изучении характеристик упругих волн ультразвукового и звукового диапазона в горных породах. При АК в скважине возбуждаются упругие колебания, которые распространяются по ней и в окружающих породах и воспринимаются приемниками, расположенными в той же скважине.

Если в элементарном объеме некоторой упругой среды в течение короткого времени действует внешняя возбуждающая сила, в среде возникают напряжения, вызывающие относительные перемещения частиц. Это ведет к возникновению двух типов деформации: деформации объема (растяжение-сжатие) и деформация формы (сдвига). Процесс последующего распространения деформации называется упругой сейсмической волной. Поверхность, отделяющая в данный момент времени область среды, в которой уже возникло колебание частиц, от той, где колебания еще не наблюдаются, называется фронтом волны.

Линии, нормальные к волновым поверхностям, носят название лучей. В однородной среде лучи прямолинейные, в неоднородной – криволинейные. Распространение фронта волны изучается с помощью принципа Гюйгенса-Фринеля, согласно которому каждая точка фронта рассматривается как источник элементарных волн, а понятие луча связывают с направлением переноса энергии волны.

Различают два типа волн: продольные и поперечные. Продольная волна несет с собой только деформации объема, они могут существовать в различных средах. Поперечные волны могут существовать только в твердых телах.

АК сводится к определению скорости распространения упругих колебаний (АК по скорости), так же могут определяться поглощающие свойства горных пород (АК по затуханию). Скорость распространения упругих волн тесно связана с литологическими и петрографическими свойствами породы. Поглощающие свойства горных пород различаются еще больше, чем скорость и зависят от геологического характера пород. Среди горных пород по ослаблению ими упругих колебаний выделяются газоносные, трещинные и кавернозные породы. Сильное влияние на затухание также оказывает глинистость пород.

Основной зонд в АК является трехэлементный, который состоит из излучателя и двух расположенных на некотором расстоянии от него приемников, воспринимающих колебания. Расстояние между приемниками является характерной величиной – базой. Длине зонда соответствует расстояние от излучателя до ближайшего приемника.

АК в комплексе с другими методами ГИС может помочь при определении Кп пород, выделить зоны трещиноватости и кавернозности в карбонатном разрезе, уточнить литологию разреза, участвовать в интерпретации данных сейсморазведки и технического состояния скважины (высота подъема цементного кольца и качество цементации скважины).

Измерение температуры по стволу скважины производят в целях изучения естественного теплового поля земли, местных (локальных) тепловых полей, наблюдаемых в скважине в процессе бурения и эксплуатации скважины. Изучение искусственно вызванных локальных полей, которые возникают при наличии в скважине промывочной жидкости и цементного раствора в затрубном пространстве.

Температурные измерения направлены на определение основных геотермических параметров: геотермического градиента, геотермической ступени и плотности теплового потока; геотермических характеристик пород: теплопроводности и температуропроводности; изучения технического состояния скважин: высоты подъема цемента за колонной, наличия перетока флюидов в затрубном пространстве и мест его поступления в скважину, выявления интервалов поглощения жидкости или ее поступления из пласта в скважину в процессе бурения. Модификация – высокочувствительная термометрия.




Магнитный и ядерно-магнитный каротаж

Методы ГИС, основанные на изучении магнитных свойств горных пород, называют магнитным каротажем. Существует две модификации: каротаж по естественному магнитному полю и каротаж по магнитной восприимчивости. Каротаж по магнитному полю (скважинная магниторазведка) основана на изучении магнитных аномалий, связанных с магнитным полем Земли. Используются в основном для выявления намагниченных рудных тел в околоскважинном пространстве. Каротаж магнитной восприимчивости применяется для литологического расчленения разреза скважины и корреляции, выделения зон оруднения, определение железа в магнетитовых рудах и т.д. Основан на фиксировании изменения индуктивности соленоида и реактивной составляющей вторичного магнитного поля.

Ядерно-магнитный каротаж ЯМК основан на том, что ядра ряда элементов (H, F, Al, C 13 ) обладают собственным механическим моментом (спином) и магнитным моментом, оси которых совпадают. Используются для выделения коллекторов и оценки ФЕС, характера насыщения. Очень эффективно для разделения нефтеносных и битуминозных пород.

Газовый и механический каротаж

ДРУГИЕ ВИДЫ ИССЛЕДОВАНИЯ СКВАЖИН

Акустические методы исследования скважин основаны на изучении полей упругих колебаний (упругих волн) в звуковом и ультразвуковом диапазонах частот. Акустические методы можно подразделить на пассивные и активные.

Пассивными методами изучают колебания, создаваемые различными естественными (обычно технологическими) причинами. Сюда относятся, например, методы, находящиеся в стадии опробования: а) метод выделения газоотдающих интервалов в скважинах путем регистрации шумов, возникающих при поступлении газа или нефти в ствол скважины (шумометрия скважин); б) методы изучения шумов при бурении с целью определения характера проводимости пород по спектру колебания бурового инструмента; в) метод определения горизонтальной проекции текущего забоя на земную поверхность путем установления точки с максимумом мощности колебаний на поверхности земли.

Основное применение получили активные методы (методы искусственных акустических полей), в которых изучают распространение волн от излучателя, расположенного в скважинном приборе. Ниже рассматриваются именно эти методы. Существует две основные модификации метода: а) модификация, основанная на изучении времени прихода (скорости распространения) волн и называемая акустическим методом по скорости волн; б) модификация, основанная на изучении амплитуды колебаний и называемая акустическим методом по затуханию волн.

Акустические методы исследования скважин

Учебное пособие «Акустические методы исследования скважин» предназначено для студентов, обучающихся по специальности 080500 «Геология нефти и газа» и 080900 «Геофизические методы исследования скважин». Издание может представлять интерес для работников интерпретационных служб производственных и научно-исследовательских организаций.

В учебном пособии рассмотрены физические основы акустических методов исследования нефтяных и газовых скважин, методика измерений при AM, интерпретация данных стандартного и волнового AM, скважинного акустического телевизора и результатов вертикального сейсмического профилирования

Тематика Каротаж (ГИС)

Акустические методы исследования скважин

Для современного специалиста, работающего в области геофизических исследований скважин, необходимо знать методы, при помощи которых решаются геологические и технические задачи, и уметь применять их в своей деятельности.

Целями и задачами данной курсовой работы являются:

-ознакомление с ГИС;

-ознакомление с САТ;

-освоение основного принципа работы САТ.

Для каждого из методов геофизических исследований существует ряд приборов, оснащенных датчиками и детекторами, которые реагируют на различного рода воздействия.

В данной курсовой работе будет рассмотрен метод скважинного акустического телевидения, а также приборы, применяющиеся в этой области.

Геофизическое исследование скважин (ГИС).

Для того чтобы разобраться в том, что представляет собой метод скважинного акустического телевидения, необходимо знать что такое ГИС и что в него входит.

Геофизические исследования скважин (ГИС) - совокупность физических методов, предназначенных для изучения горных пород в околоскважинном и межскважинном пространствах. Традиционно к ГИС относят также изучение технического состояния скважин, опробование пластов и отбор проб из стенок скважин, перфорацию и торпедирование.

ГИС.

Методика исследований скважинным акустическим телевизором в обсаженной скважине до сих пор не разработана, хотя потребность в ней очевидна. Поэтому создание такой методики является актуальной задачей.

Для детальных геологических исследований, решения вопроса о наличии полезных ископаемых, а также для подсчетов их запасов бурят скважины, которые изучают с помощью геофизических методов исследования скважин (ГИС). ГИС необходимы также для надежной интерпретации результатов исследований полевыми геофизическими методами.

Задачи ГИС.

ГИС применяют для решения геологических и технических задач. К геологическим задачам, в первую очередь, относят литологическое расчленение разрезов, их корреляцию, выявление полезных ископаемых и определение параметров, необходимых для подсчета запасов. К техническим задачам относят изучение инженерно- геологических и гидрогеологических особенностей разрезов, изучение технического состояния скважин, контроль разработки месторождений нефти, газа и угля, проведение прострелочно-взрывных работ. Решение стоящих перед ГИС задач в сложных условиях скважинной геометрии требует всестороннего изучения физических свойств среды. В связи с этим существует большое число методов ГИС, которые объединяют в несколько групп. Основные из них - электрические, электромагнитные, ядерно-физические и акустические. Существуют также термические, магнитные, гравиметрические, механические и геохимические методы. Таким образом, ГИС — понятие собирательное, характеризующее не тот или иной физический метод, а объект исследования, каким являются скважина и околоскважинная среда.

Акустические методы исследования скважин.

Именно в акустические методы исследования скважин входит специальный метод скважинного акустического телевидения, о котором в дальнейшем пойдет речь. Чтобы понять всю суть САТ, необходимо знать, что такое АМ, а также где и как они применяются.

Скважинные акустические методы возникли в 50-х годах как средство решения относительно простых задач, таких как литологическое расчленение разреза, параметризация данных сейсмических исследований, контроля наличия цемента за колонной. Позднее с помощью акустических методов решался уже более широкий круг задач акустических исследований скважин (например, определение упругих свойств пород, выявление низкопористых кавернозно-трещинных коллекторов, контроль цементирования обсадных колонн и др.). Появились специальные методы (акустическое телевидение, акустический широкополосный каротаж и т. д.), обозначилась специализация направлений исследований.

Период 70-80 г.г. XX века характеризовался открытием в ряде районов страны (Восточное Предкавказье, Припятская впадина, Соликамская впадина, и др.) месторождений нефти и газа, приуроченных к низкопористым отложениям с коллекторами сложного строения. Стандартный комплекс геофизических исследований скважин не способен выделять низкопористые кавернозно-трещинные коллекторы. Работами Б.Н. Ивакина, Е.В. Каруса, П.В Краукли-са, О Л Кузнецова (1978), И П. Дзебаня (1981), Д В Белоконя, В Ф. Козяра (1985), Л.В Будыко, В.Д. Щербакова (1991) показана возможность решения этой задачи акустическими методами.

Максимальную эффективность добычи нефти и газа и экологическую безопасность разрабатываемых месторождений обеспечивает надёжная гидродинамическая изоляция затрубья нефтегазовых скважин, что достигается в первую очередь высоким качеством их цементирования. Работами П.А. Прямова (1978, 1988), Ю А Гуторова (1981,1984,1995), Б.И. Кирпиченко (1970, 1981, 1984) обоснована необходимость использования акустических методов для контроля качества цементирования нефтегазовых скважин.

Таким образом, повышение эффективности акустических методов для выявления низкопористых коллекторов и для контроля качества цементирования, их совершенствование и развитие являются важными задачами скважинных акустических исследований.

Для Пермского края изучение и совершенствование двух рассмотренных направлений акустических исследований актуально по двум причинам:

1) открытие ряда высокопродуктивных залежей нефти, приуроченных к низкопористым карбонатным отложениям со сложным строением коллекторов;

2) расположение ряда нефтяных месторождений на территории Верхнекамского месторождения калийных солей (ВКМКС);

При строительстве нефтяных скважин на ВКМКС применяется специальная двухколонная конструкция (техническая + эксплуатационная колонны) крепления ствола в интервалах солей и специальные технологии цементирования колонн. Это требует совершенствования техники и методики акустического контроля цементирования при строительстве скважин и обеспечения должного уровня акустического контроля состояния цементного кольца за двумя колоннами в ходе их эксплуатации.

Таким образом, выделяются, по крайней мере, два принципиально различных по строению объекта акустических исследований:

1) вскрытые скважиной низкопористые карбонатные потенциально продуктивные отложения с трещинными или сложнопостроенными коллекторами, отличающиеся разрывностью, неоднородностью свойств карбонатных пород как в радиальном направлении, так и вдоль оси скважины по всей её окружности;

2) обсаженные скважины (с одно- и двухколонными конструкциями крепления пород и др.), отличающиеся радиальной неоднородностью и имеющие при одноколонной конструкции три плотные среды (стальную или стеклопла-стиковую колонну, цементное кольцо, околоскважинную среду), а при двухколонной - пять плотных сред.

Объекты отличаются по содержанию и свойствам, и объединяет их только одно - гетерогенность (неоднородность) изучаемых сред. Для изучения и количественной оценки свойств этих объектов необходима разработка специальных акустических методов, приёмов и, в целом, современной технологии исследований Эта технология должна включать в себя цифровую регистрацию первичных данных (волновых сигналов, снимков CAT) и их обработку современными, легко адаптируемыми к решению новых задач акустических исследований, программными средствам.

Читайте также: