Агрегаты подземного ремонта скважин с использованием колонн гибких труб

Обновлено: 04.07.2024

Добыча нефти и газа

нефть, газ, добыча нефти, бурение, переработка нефти

Ремонт скважин с помощью гибких труб

7.1 .1 . Инжекционные головки для ввода в скважину гибкой колонны НКТ.

7.1.2. Катушка, на которую наматывается гибкая колонна НКТ.

7.1 .3. Превенторный блок, который включает:

7.1.3.1. Превентор с глухими плашками.

7.1.3.2. Превентор с однонаправленными скользящими плашками, позволяющими при необходимости подвесить на них колонн>7 гибких труб.

7.1.3.3. Превентор с трубными плашками.

7.1 .4. Тройник с отводом для создания циркуляции или подключения выкидной линии устанавливается ниже превенторного блока.

7.1 .5. В случае, если работы в скважине выполняются при давлениях на устье более 21 МПа, ниже тройника устанавливается дополнительный Превентор с трубными плашками.

6.3.2.Не доходя 30—40 м до заданной глубины производят остановку, поднимают инструмент на 20—30 м и фиксируют его вес. Дальнейшее опускание до заданной глубины производят на пониженной скорости.

6.3.3. При работах в глубоких скважинах, заглушенных жидкостью глушения плотностью 1600-1800 кг/м3 в компоновку опускаемого инструмента включают одну или две грузовые штанги для увеличения массы инструмента.

6.3.4. В наклонно направленных скважинах в компоновку опускаемого инструмента дополнительно включают один или два шарнирных соединения на расстоянии 1 ,0—1 ,5 м друг от друга для придания гибкости спускаемой колонне. При остановке и съеме газлифтных клапанов шарнирные соединения устанавливают между яссом и нижней грузовой штангой.

6.3.5. При опускании инструментов для захвата ловильной головки массу всего набора инструментов полностью передают на ловильную головку. Затем дают небольшую натяжку для определения надежности захвата ловильной головки, разгружают массу инструмента для приведения ясса в заряженное положение. После каждого удара вверх механическим яссом инструмент опускают на ловильную головку срываемого оборудования плавно, без ударов.

6.3.5.1. Удар вверх гидравлическим яссом производят при натяжении троса в пределах 2,4—2,8 кН с выдержкой 2—4 мин, барабан при этом фиксируют тормозом. При необходимости производят повторный удар гидравлическим яссом, опускают и разгружают инструмент на ловильную головку и выдерживают в течение 6—8 мин.

6.3.5.2. При ударах механическим яссом вниз инструмент поднимают не более чем на длину хода штока (по показанию счетчика глубины и зафиксированного перед посадкой веса инструмента при подъеме).

6.3.6. Установку клапанов-отсекателей производят в следующем порядке.

6.3.6.1. Клапан-отсекатель присоединяют к опускаемому инструменту с ввинченным в него штоком для удержания шарнирного клапана в открытом положении.

6.3.6.2. Опускают клапан-отсекатель до посадочного ниппеля и, прежде чем произвести установку его, с помощью насоса пульта управления нагнетают масло в управляющую трубку до ее заполнения.

6.3:6.3. Ударами вниз с помощью ясса устанавливают клапан-отсекатель в посадочном ниппеле. После 10-12 ударов осуществляют натяжку троса (1 ,0-1 ,5 кН) лебедкой, проверяют надежность установки кла-пана-отсекателя в посадочном ниппеле.

6.3.6.4. Для подъема клалана-отсекателл, если он находится в открытом положении, опускают инструмент для подъема с ввернутым в него штоком, фиксации шарового или другого клапана в открытом положении. После посадки инструмента на замок отключают пульт управления и ударами вверх механическим яссом (вручную) срывают замок и поднимают его с отсекателем. Если клапан-отсекатель находится в закрытом положении, то его подъем осуществляют после выравнивания давлений над и под клапаном-отсекателем.

6.3.6.5. Для открытия (закрытия) механического циркуляционного клапана (скользящей гильзы) убеждаются в отсутствии перепада давления между трубным и затрубным пространством. Если скользящая гильза открывается (закрывается) ударами вверх, то опущенный инструмент пропускают через скользящую гильзу на 1—2 м, приподнимают ее и проверяют зацепление инструмента с внутренней втулкой при натяжении троса усилием 1 ,0-1 ,2 кН. Затем ударами механического ясса вверх открывают (закрывают) скользящую гильзу.

6.3.6.6. Если скользящая гильза открывается (закрывается) ударами вниз, то для проверки захвата инструмента внутренней втулкой разгружают полностью инструмент и, убедившись в остановке его в скользящей гильзе, производят удары яссом вниз. После выхода инструмента из скользящей гильзы его два-три раза пропускают через гильзу и убеждаются в ее закрытом положении.

6.3.7. Для извлечения приемных обратных клапанов и глухих пробок предварительно выравнивают давление над и под ними с помощью специальных боковых отверстий для перепуска давления перед извлечением. Для этого после опускания инструмента производят несколько ударов механическим яссом вверх, натягивают трос усилием 1 ,2—1 ,5 кН и выдерживают в таком положении в течение открытия перепускных отверстий. Затем при ударах вверх срывают устройство из посадочного ниппеля.

Удиви своих подружек и своего возлюбленного необычной новинкой завивка ресниц в ноябрьске Ты будешь звездой компании

Хоть и говорят- ремонт дело не для слабонервных- как не крути-но его нужно делать. составление сметы на ремонт Предлагаем свои услуги

на нашем сайте огромный выбор запчастей на ваш автомобиль запчасти land rover freelander

Агрегат подземного ремонта скважин с непрерывной колонной гибких труб

Изобретение относится к нефтепромысловому оборудованию, а именно к устройствам для выполнения подземного ремонта скважин с использованием колонны гибких труб, и может быть использовано при разработке оборудования для выполнения внутрискважинных работ - промывка скважин, удаление гидратных и парафиновых пробок и т.п. Агрегат подземного ремонта скважин с непрерывной колонной гибких труб содержит транспортную базу, кабину управления, барабан с центральным валом для намотки гибкой трубы, размещенный на опорах, эжектор, механизмы перевода эжектора и кабины управления в рабочее положение и герметизатор устья. В раме транспортной базы выполнена полость, закрытая со стороны грунта. Барабан установлен таким образом, что часть его периферийной зоны, обращенная к раме транспортной базы, размещена в полости. Расстояние от оси вращения барабана до верхней плоскости рамы транспортного средства как минимум в два, предпочтительно в два и более, раза превышает расстояние от нижней точки обода барабана, находящегося в нише, до верхней плоскости рамы транспортного средства. Опоры для вала барабана выполнены с возможностью изменения высоты расположения вала барабана от рамы транспортной базы. Изменение высоты расположения вала происходит по мере сматывания/наматывания трубы с барабана/на барабан дискретно, после сматывания/наматывания очередного слоя трубы. Барабан кинематически связан с устройством для изменения высоты опор. 1 з.п.ф-лы, 4 ил.

Изобретение относится к нефтепромысловому оборудованию, а именно к устройствам для выполнения подземного ремонта скважин с использованием колонны гибких труб, и может быть использовано при разработке оборудования для выполнения внутрискважинных работ - промывка скважин, удаление гидратных и парафиновых пробок и т.п.

Известна конструкция агрегата подземного ремонта с использованием колонны гибких труб, содержащего транспортную базу, на раме которой установлена кабина управления, трансмиссия, барабан для намотки гибкой трубы, трубоукладчик, эжектор, обеспечивающий принудительное перемещение гибкой трубы, механизмы перевода эжектора и кабины управления в рабочее положение, герметизатор устья (а.с. СССР N 1439197, E21B 19/00, 19/22, 1988).

Недостатком этой конструкции является низкая долговечность гибкой колонны труб, обусловленная, с одной стороны, двукратным циклом изгиба трубы при ее спуске и извлечении из скважины. Первый цикл изгиба трубы имеет место при ее сматывании с барабана - труба из согнутого положения распрямляется. Второй цикл изгиба - при входе в эжектор, где труба из прямолинейной формы повторно изгибается, перед тем как попасть в эжектор. Помимо этого, взаимное расположение кабины оператора, барабана и устьевого оборудования исключает одновременный контроль за их функционированием.

Известен агрегат подземного ремонта скважин с использованием непрерывной колонны гибких труб, содержащий транспортную базу, на раме которой установлена кабина управления, трансмиссия, барабан для намотки гибкой трубы, эжектор, обеспечивающий принудительное перемещение гибкой трубы, механизмы перевода эжектора и кабины управления в рабочее положение, герметизатор устья, при этом ось вращения барабана для намотки колонны гибких труб параллельна оси транспортной базы, которая при рабочем положении агрегата проходит через ось скважины (Патент РФ №2154146, МПК: E21B 19/22).

Указанное устройство работает следующим образом.

Ось вращения барабана для намотки колонны гибких труб параллельна оси транспортной базы, которая при рабочем положении агрегата проходит через ось скважины. В вертикальной плоскости труба изгибается при выходе/входе в эжектор, а во взаимно перпендикулярной ей вертикальной плоскости - при намотке на барабан. В результате зона максимальных пластических деформаций, а соответственно и напряжений, при первом изгибе не совпадает с зоной максимальных пластических деформаций при намотке на барабан.

Недостатком данного технического решения является то, что при разматывании трубы с барабана происходит изменение угла подачи трубы с барабана в эжектор, обусловленное уменьшением диаметра бухты трубы на барабане, что обуславливает дополнительные напряжения изгиба и, в конечном итоге, приводит к снижению долговечности трубы.

Задачей предложенного изобретения является устранение указанных недостатков и создание устройства, применение которого позволит увеличить долговечность гибкой колонны труб, основной причиной выхода из строя которой является малоцикловая усталость, обусловленная многократным деформированием трубы с образованием пластических деформаций.

Указанная задача решается за счет того, что агрегат подземного ремонта скважин с использованием непрерывной колонны гибких труб согласно изобретению содержит транспортную базу, на раме которой установлена кабина управления, барабан с центральным валом для намотки гибкой трубы, размещенный на опорах, эжектор, обеспечивающий перемещение гибкой трубы, предпочтительно, механизмы перевода эжектора и кабины управления в рабочее положение, герметизатор устья, при этом в раме транспортной базы выполнена полость, предпочтительно, закрытая со стороны грунта, а барабан установлен таким образом, что часть его периферийной зоны, обращенная к раме транспортной базы, размещена в указанной полости, предпочтительно, в плоскости, проходящей параллельно раме транспортной базы через оси вращения колес, при этом расстояние от оси вращения барабана до верхней плоскости рамы транспортного средства как минимум в два, предпочтительно в два и более, раза превышает расстояние от нижней точки обода барабана, находящегося в упомянутой нише, до верхней плоскости рамы транспортного средства, при этом опоры для вала барабана для намотки гибкой трубы выполнены с возможностью изменения высоты расположения указанного вала барабана от рамы транспортной базы, причем изменение высоты расположения вала происходит по мере сматывания /наматывания трубы с барабана/на барабан, предпочтительно, дискретно, после сматывания/наматывания очередного слоя трубы, при этом барабан кинематически связан с устройством для изменения высоты опор, преимущественно, при помощи его вала.

В варианте исполнения, опоры барабана выполнены телескопическими, состоящими как минимум из двух частей, подвижной и неподвижной, при этом неподвижные части упомянутых опор жестко закреплены на транспортной раме, а барабан кинематически связан с устройством для изменения высоты опор при помощи конической передачи, ведущие шестерни которой установлены на концах его вала, при этом устройство для изменения высоты опор выполнено в виде редуктора, предпочтительно многоступенчатого, установленного на подвижной части опоры, при этом выходной вал указанного редуктора выполнен в виде винта, взаимодействующего с гайкой пары «винт-гайка», причем гайка указанной пары жестко установлена в неподвижной части опоры, при этом осевой ход L винта за один его оборот равен диаметру трубы dmp, а число оборотов винта для сматывания/наматывания одного слоя трубы определено из соотношения:

n в = n б ⋅ d т р S б ,

где: nв - число оборотов винта;

nб - число оборотов барабана для сматывания/наматывания одного слоя трубы;

dтр - диаметр трубы;

Sб - ширина барабана в месте навивки труб.

Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемое решение соответствует критерию "новизна".

Сравнение заявляемого решения не только с прототипом, но и с другими техническими решениями в данной области техники не позволило выявить в них признаки, отличающие заявленное решение от прототипа, что позволяет сделать вывод о соответствии критерию "изобретательский уровень".

Схема агрегата подземного ремонта приведена на чертежах, где на фиг.1 приведен общий вид агрегата в рабочем положении, вид сбоку; на фиг.2 - общий вид агрегата в транспортном положении, вид сверху; на фиг.3 - вид А, барабан в увеличенном масштабе, вид сбоку, на фиг.4 - барабан в увеличенном масштабе, вид сбоку.

Агрегат подземного ремонта скважин с использованием непрерывной колонны гибких труб (агрегат) содержит транспортную базу 1, на раме 2 которой установлена кабина управления 3, сцепное устройство 4, барабан 5 с центральным валом 6 для намотки гибкой трубы 7, размещенный на опорах 8. На раме 2 располагается эжектор 9, обеспечивающий перемещение гибкой трубы 7 и герметизатор устья 10.

Опоры 8 для вала 6 барабана 5 для намотки гибкой трубы 7 выполнены с возможностью изменения высоты расположения указанного вала барабана от рамы 2 транспортной базы 1, причем изменение высоты расположения вала 6 происходит по мере сматывания /наматывания трубы 7 с барабана 5/на барабан 5, предпочтительно, дискретно, после сматывания/наматывания очередного слоя трубы. Барабан 5 кинематически связан с устройством 11 для изменения высоты опор 8, преимущественно, при помощи его вала.

Опоры 8 барабана 5 выполнены телескопическими, состоящими, как минимум, из двух частей, подвижной 12 и неподвижной 13, при этом неподвижные части упомянутых опор жестко закреплены на транспортной раме. Барабан 5 кинематически связан с устройством 11 для изменения высоты опор 8 при помощи конической передачи 14, ведущие шестерни которой установлены на концах его вала 6. Устройство для изменения высоты опор 8 выполнено в виде редуктора 11, предпочтительно многоступенчатого, установленного на подвижной части 12 опоры 8. Выходной вал указанного редуктора 11 при помощи конической передачи 15 связан с винтами 16, взаимодействующими с ответными гайками 17 соответствующей пары «винт-гайка». Осевой ход L винта 16 за один его оборот равен диаметру трубы dтр, а число оборотов каждого винта для сматывания/наматывания одного слоя трубы определено из соотношения:

n в = n б ⋅ d т р S б ,

где: nв - число оборотов винта;

nб - число оборотов барабана для сматывания/наматывания одного слоя трубы;

dтр - диаметр трубы;

Sб - ширина барабана в месте навивки труб.

Гайка 17 указанной пары жестко установлена в неподвижной 13 части опоры 8. На раме 2 установлены аутригеры 18. Устьевое оборудование обозначено поз.19. Для установки эжектора 9 в рабочее положение используются аутригеры 20. В раме 2 выполнена полость 21 для барабана 5.

Предложенное устройство работает следующим образом.

Агрегат размещается в непосредственной близости от устьевого оборудования 19 за счет его транспортировки при помощи сцепного устройства 4.

Оператор управляет работой агрегата из кабины оператора 3. Затем включается механизм подъема эжектора 9, который обеспечивает его подъем на высоту, определяемую высотой устья скважины и устьевого оборудования 19, смонтированного на нем.

После подъема эжектора 9 окончательно корректируется положение агрегата относительно устья скважины и выдвигаются аутригеры 18 агрегата и аутригеры 20 эжектора 9.

В процессе работы агрегата гибкая труба 7 с барабана 5 через укладчик направляется на направляющую эжектора 9 и подается последним через герметизатор устья 10 в полость скважины через устьевое оборудование 19 для дальнейшего применения.

За счет увеличения диаметра барабана уменьшается радиус гиба трубы и, соответственно, снижаются напряжения, возникающие в стенках трубы при ее укладке на барабан/сматывании с барабана.

При вращении барабана 5, при помощи конической передачи 14, шестерни которой установлены на выходном валу 6 барабана и входном валу редуктора 11, вращение передается на выходной вал редуктора 11, на котором установлена ведущая шестерня конической передачи 15. С ведущей шестерни 15 вращение передается на ведомую шестерню конической передачи, установленную на каждом винте 16. Винт 16 начинает вращаться в ответной гайке 17, и, за счет того, что гайка неподвижно установлена в неподвижной части 13 опоры 8, винт получает осевое перемещение и поднимается вверх или вниз вместе с барабаном 5, сохраняя при этом постоянным угол схода трубы 7 с барабана 5 и угол входа трубы 5 в герметизатор устья 10.

За счет сохранения постоянным угла схода/подачи трубы 7 с/на барабана 5 и угла входа/выхода трубы 5 в/из герметизатор/а устья 10, а также увеличения диаметра барабана и радиусов гиба трубы значительно снижаются напряжения, возникающие при неоднократных изгибаниях трубы 7, что способствует увеличению срока службы трубы.

Использование предложенного технического решения позволит увеличить долговечность гибкой колонны труб, основной причиной выхода из строя которой является малоцикловая усталость, обусловленная многократным деформированием трубы с образованием пластических деформаций.

1. Агрегат подземного ремонта скважин с непрерывной колонной гибких труб, характеризующийся тем, что он содержит как минимум транспортную базу, на раме которой установлена кабина управления, барабан с центральным валом для намотки гибкой трубы, размещенный на опорах, эжектор, обеспечивающий перемещение гибкой трубы, предпочтительно, механизмы перевода эжектора и кабины управления в рабочее положение, герметизатор устья, при этом в раме транспортной базы выполнена полость, предпочтительно закрытая со стороны грунта, а барабан установлен таким образом, что часть его периферийной зоны, обращенная к раме транспортной базы, размещена в указанной полости, предпочтительно в плоскости, проходящей параллельно раме транспортной базы через оси вращения колес, при этом расстояние от оси вращения барабана до верхней плоскости рамы транспортного средства как минимум в два, предпочтительно в два и более, раза превышает расстояние от нижней точки обода барабана, находящегося в упомянутой нише, до верхней плоскости рамы транспортного средства, при этом опоры для вала барабана для намотки гибкой трубы выполнены с возможностью изменения высоты расположения указанного вала барабана от рамы транспортной базы, причем изменение высоты расположения вала происходит по мере сматывания/наматывания трубы с барабана/на барабан, предпочтительно дискретно, после сматывания/наматывания очередного слоя трубы, при этом барабан кинематически связан с устройством для изменения высоты опор преимущественно при помощи его вала.

2. Агрегат по п.1, отличающийся тем, что опоры барабана выполнены телескопическими, состоящими как минимум из двух частей, подвижной и неподвижной, при этом неподвижные части упомянутых опор жестко закреплены на транспортной раме, а барабан кинематически связан с устройством для изменения высоты опор при помощи конической передачи, ведущие шестерни которой установлены на концах его вала, при этом устройство для изменения высоты опор выполнено в виде редуктора, предпочтительно многоступенчатого, установленного на подвижной части опоры, при этом выходной вал указанного редуктора выполнен в виде винта, взаимодействующего с гайкой пары «винт-гайка», причем гайка указанной пары жестко установлена в неподвижной части опоры, при этом осевой ход L винта за один его оборот равен диаметру трубы dтр, а число оборотов винта для сматывания/наматывания одного слоя трубы определено из соотношения:
n в = n б ⋅ d т р S б ,
где: nв - число оборотов винта;
nб - число оборотов барабана для сматывания/наматывания одного слоя трубы;
dтр - диаметр трубы;
Sб - ширина барабана в месте навивки труб.

Агрегат подземного ремонта скважин с непрерывной колонной гибких труб

Изобретение относится к нефтепромысловому оборудованию, а именно к устройствам для выполнения подземного ремонта скважин с использованием колонны гибких труб, и может быть использовано при разработке оборудования для выполнения внутрискважинных работ - промывка скважин, удаление гидратных и парафиновых пробок и т.п. Агрегат подземного ремонта скважин с использованием непрерывной колонны гибких труб содержит транспортную базу. На раме транспортной базы установлена кабина управления, трансмиссия, барабан с центральным валом для намотки гибкой трубы, размещенный на опорах, эжектор, обеспечивающий перемещение гибкой трубы, механизмы перевода эжектора и кабины управления в рабочее положение, герметизатор устья. Опоры для вала барабана для намотки гибкой трубы выполнены с возможностью изменения высоты расположения указанного вала барабана от рамы транспортной базы. Изменение высоты расположения вала происходит по мере сматывания/наматывания трубы с барабана/на барабан дискретно после сматывания/наматывания очередного слоя трубы. Барабан кинематически связан с устройством для изменения высоты опор при помощи его вала. Опоры барабана выполнены телескопическими, состоящими как минимум из двух частей, подвижной и неподвижной. Изобретение обеспечивает увеличение долговечности колонны гибких труб. 4 ил.

Изобретение относится к нефтепромысловому оборудованию, а именно к устройствам для выполнения подземного ремонта скважин с использованием колонны гибких труб, и может быть использовано при разработке оборудования для выполнения внутрискважинных работ - промывка скважин, удаление гидратных и парафиновых пробок и т.п.

Известна конструкция агрегата подземного ремонта с использованием колонны гибких труб, содержащего транспортную базу, на раме которой установлена кабина управления, трансмиссия, барабан для намотки гибкой трубы, трубоукладчик, эжектор, обеспечивающий принудительное перемещение гибкой трубы, механизмы перевода эжектора и кабины управления в рабочее положение, герметизатор устья (а.с. СССР N 1439197, Е21В 19/00, 19/22, 1988).

Недостатком этой конструкции является низкая долговечность гибкой колонны труб, обусловленная, с одной стороны, двукратным циклом изгиба трубы при ее спуске и извлечении из скважины. Первый цикл изгиба трубы имеет место при ее сматывании с барабана - труба из согнутого положения распрямляется. Второй цикл изгиба - при входе в эжектор, где труба из прямолинейной формы повторно изгибается, перед тем как попасть в эжектор. Помимо этого, взаимное расположение кабины оператора, барабана и устьевого оборудования исключает одновременный контроль за их функционированием.

Известен агрегат подземного ремонта скважин с использованием непрерывной колонны гибких труб, содержащий транспортную базу, на раме которой установлена кабина управления, трансмиссия, барабан для намотки гибкой трубы, эжектор, обеспечивающий принудительное перемещение гибкой трубы, механизмы перевода эжектора и кабины управления в рабочее положение, герметизатор устья, при этом ось вращения барабана для намотки колонны гибких труб параллельна оси транспортной базы, которая при рабочем положении агрегата проходит через ось скважины (Патент РФ №2154146, МПК Е21В 19/22).

Указанное устройство работает следующим образом.

Ось вращения барабана для намотки колонны гибких труб параллельна оси транспортной базы, которая при рабочем положении агрегата проходит через ось скважины. В вертикальной плоскости труба изгибается при выходе/входе в эжектор, а во взаимно перпендикулярной ей вертикальной плоскости - при намотке на барабан. В результате зона максимальных пластических деформаций, а соответственно и напряжений при первом изгибе не совпадает с зоной максимальных пластических деформаций при намотке на барабан.

Недостатком данного технического решения является то, что при разматывании трубы с барабана происходит изменение угла подачи трубы с барабана в эжектор, обусловленное уменьшением диаметра бухты трубы на барабане, что обуславливает дополнительные напряжения изгиба и, в конечном итоге, приводит к снижению долговечности трубы.

Задачей предложенного изобретения является устранение указанных недостатков и создание устройства, применение которого позволит увеличить долговечность гибкой колонны труб, основной причиной выхода из строя которой является малоцикловая усталость, обусловленная многократным деформированием трубы с образованием пластических деформаций.

Указанная задача решается за счет того, что предложенный агрегат подземного ремонта скважин с использованием непрерывной колонны гибких труб, согласно изобретению, содержит как минимум транспортную базу, на раме которой установлена кабина управления, трансмиссия, барабан с центральным валом для намотки гибкой трубы, размещенный на опорах, эжектор, обеспечивающий перемещение гибкой трубы, предпочтительно, механизмы перевода эжектора и кабины управления в рабочее положение, герметизатор устья, при этом опоры для вала барабана для намотки гибкой трубы выполнены с возможностью изменения высоты расположения указанного вала барабана от рамы транспортной базы, причем изменение высоты расположения вала происходит по мере сматывания/наматывания трубы с барабана/на барабан, предпочтительно дискретно, после сматывания/наматывания очередного слоя трубы, при этом барабан кинематически связан с устройством для изменения высоты опор преимущественно при помощи его вала.

В варианте исполнения, опоры барабана выполнены телескопическими, состоящими как минимум из двух частей, подвижной и неподвижной, при этом неподвижные части упомянутых опор жестко закреплены на транспортной раме, а барабан кинематически связан с устройством для изменения высоты опор при помощи конической передачи, ведущие шестерни которой установлены на концах его вала, при этом устройство для изменения высоты опор выполнено в виде редуктора, предпочтительно многоступенчатого, установленного на подвижной части опоры, при этом выходной вал указанного редуктора связан с винтами, взаимодействующими с ответными гайками соответствующей пары «винт-гайка», причем гайка указанной пары жестко установлена в неподвижной части опоры, при этом осевой ход L винта за один его оборот равен диаметру трубы dтр, а число оборотов каждого винта для сматывания/наматывания одного слоя трубы определено из соотношения:

n в = n б ⋅ d т р S б ,

где nв - число оборотов винта;

nб - число оборотов барабана для сматывания/наматывания одного слоя трубы;

dтр - диаметр трубы;

Sб - ширина барабана в месте навивки труб.

Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемое решение соответствует критерию "новизна".

Сравнение заявляемого решения не только с прототипом, но и с другими техническими решениями в данной области техники не позволило выявить в них признаки, отличающие заявленное решение от прототипа, что позволяет сделать вывод о соответствии критерию "изобретательский уровень".

Схема агрегата подземного ремонта приведена на чертежах, где на фиг.1 приведен общий вид агрегата в рабочем положении, вид сбоку; на фиг.2 - общий вид агрегата в транспортном положении, вид сверху; на фиг.3 - вид А, барабан в увеличенном масштабе, вид сбоку, на фиг.4 - барабан в увеличенном масштабе, вид сбоку.

Агрегат подземного ремонта скважин с использованием непрерывной колонны гибких труб (агрегат) содержит транспортную базу 1, на раме 2 которой установлена кабина управления 3, кабина оператора 4, барабан 5 с центральным валом 6 для намотки гибкой трубы 7, размещенный на опорах 8. На раме 2 располагается эжектор 9, обеспечивающий перемещение гибкой трубы 7, и герметизатор устья 10.

Опоры 8 для вала 6 барабана 5 для намотки гибкой трубы 7 выполнены с возможностью изменения высоты расположения указанного вала барабана от рамы 2 транспортной базы 1, причем изменение высоты расположения вала 6 происходит по мере сматывания/наматывания трубы 7 с барабана 5/на барабан 5, предпочтительно дискретно, после сматывания/наматывания очередного слоя трубы. Барабан 5 кинематически связан с устройством 11 для изменения высоты опор 8 преимущественно при помощи его вала.

Опоры 8 барабана 5 выполнены телескопическими, состоящими как минимум из двух частей, подвижной 12 и неподвижной 13, при этом неподвижные части упомянутых опор жестко закреплены на транспортной раме. Барабан 5 кинематически связан с устройством 11 для изменения высоты опор 8 при помощи конической передачи 14, ведущие шестерни которой установлены на концах его вала 6. Устройство для изменения высоты опор 8 выполнено в виде редуктора 11, предпочтительно многоступенчатого, установленного на подвижной части 12 опоры 8. Выходной вал указанного редуктора 11 при помощи конической передачи 15 связан с винтами 16, взаимодействующими с ответными гайками 17 соответствующей пары «винт-гайка». Осевой ход L винта 16 за один его оборот равен диаметру трубы dтр, а число оборотов каждого винта для сматывания/наматывания одного слоя трубы определено из соотношения:

n в = n б ⋅ d т р S б ,

где nв - число оборотов винта;

nб - число оборотов барабана для сматывания/наматывания одного слоя трубы;

dтр - диаметр трубы;

Sб - ширина барабана в месте навивки труб.

Гайка 17 указанной пары жестко установлена в неподвижной 13 части опоры 8. На раме 2 установлены аутригеры 18. Устьевое оборудование обозначено поз.19. Для установки эжектора 9 в рабочее положение используются аутригеры 20.

Предложенное устройство работает следующим образом.

Агрегат размещается в непосредственной близости от устьевого оборудования 19. Оператор управляет работой агрегата из кабины оператора 4. Затем включается механизм подъема эжектора 9, который обеспечивает его подъем на высоту, определяемую высотой устья скважины и устьевого оборудования 19, смонтированного на нем.

После подъема эжектора 9 окончательно корректируется положение агрегата относительно устья скважины и выдвигаются аутригеры 18 агрегата и аутригеры 20 эжектора 9.

В процессе работы агрегата гибкая труба 7 с барабана 5 через укладчик направляется на направляющую эжектора 9 и подается последним через герметизатор устья 10 в полость скважины через устьевое оборудование 19 для дальнейшего применения.

При вращении барабана 5 при помощи конической передачи 14, шестерни которой установлены на выходном валу 6 барабана и входном валу редуктора 11, вращение передается на выходной вал редуктора 11, на котором установлена ведущая шестерня конической передачи 15. С ведущей шестерни 15 вращение передается на ведомую шестерню конической передачи, установленную на каждом винте 16. Винт 16 начинает вращаться в ответной гайке 17, и за счет того, что гайка неподвижно установлена в неподвижной части 13 опоры 8, винт получает осевое перемещение и поднимается вверх или вниз вместе с барабаном 5, сохраняя при этом постоянным угол схода трубы 7 с барабана 5 и угол входа трубы 5 в герметизатор устья 10.

За счет сохранения постоянным угла схода/подачи трубы 7 с/на барабана 5 и угла входа/выхода трубы 5 в/из герметизатор/а устья 10 значительно снижаются напряжения, возникающие при неоднократных изгибаниях трубы 7, что способствует увеличению срока службы трубы.

Использование предложенного технического решения позволит увеличить долговечность гибкой колонны труб, основной причиной выхода из строя которой является малоцикловая усталость, обусловленная многократным деформированием трубы с образованием пластических деформаций.

Агрегат подземного ремонта скважин с использованием непрерывной колонны гибких труб, характеризующийся тем, что он содержит как минимум транспортную базу, на раме которой установлена кабина управления, трансмиссия, барабан с центральным валом для намотки гибкой трубы, размещенный на опорах, эжектор, обеспечивающий перемещение гибкой трубы, предпочтительно механизмы перевода эжектора и кабины управления в рабочее положение, герметизатор устья, при этом опоры для вала барабана для намотки гибкой трубы выполнены с возможностью изменения высоты расположения указанного вала барабана от рамы транспортной базы, причем изменение высоты расположения вала происходит по мере сматывания/наматывания трубы с барабана/на барабан, предпочтительно дискретно, после сматывания/наматывания очередного слоя трубы, при этом барабан кинематически связан с устройством для изменения высоты опор преимущественно при помощи его вала, при этом опоры барабана выполнены телескопическими, состоящими, как минимум, из двух частей, подвижной и неподвижной, при этом неподвижные части упомянутых опор жестко закреплены на транспортной раме, а барабан кинематически связан с устройством для изменения высоты опор при помощи конической передачи, ведущие шестерни которой установлены на концах его вала, при этом устройство для изменения высоты опор выполнено в виде редуктора, предпочтительно многоступенчатого, установленного на подвижной части опоры, при этом выходной вал указанного редуктора связан с винтами, взаимодействующими с ответными гайками соответствующей пары «винт-гайка», причем гайка указанной пары жестко установлена в неподвижной части опоры, при этом осевой ход L винта за один его оборот равен диаметру трубы dтр, а число оборотов каждого винта для сматывания/наматывания одного слоя трубы определено из соотношения:
n в = n б ⋅ d т р S б ,
где nв - число оборотов винта;
nб - число оборотов барабана для сматывания/наматывания одного слоя трубы;
dтр - диаметр трубы;
Sб - ширина барабана в месте навивки труб.

Агрегат подземного ремонта скважин с непрерывной колонной гибких труб

Изобретение относится к нефтепромысловому оборудованию, в частности к устройствам для выполнения подземного ремонта скважин с использованием колонны гибких труб. Сущность изобретения заключается в том, что ось вращения барабана для намотки колонны гибких труб параллельна оси транспортной базы, которая при рабочем положении агрегата проходит через ось скважины, что обеспечивает повышение долговечности гибкой колонны труб. 3 з.п. ф-лы, 5 ил.

Изобретение относится к нефтепромысловому оборудованию, а именно к устройствам для выполнения подземного ремонта скважин с использованием колонны гибких труб, и служит для выполнения внутрискважинных работ - промывка скважин, удаление гидратных и парафиновых пробок и т. п.

Известна конструкция агрегата подземного ремонта с использованием колонны гибких труб, содержащего транспортную базу, на раме которой установлена кабина управления, трансмиссия, барабан для намотки гибкой трубы, трубоукладчик, эжектор, обеспечивающий принудительное перемещение гибкой трубы, механизмы перевода эжектора и кабины управления в рабочее положение, герметизатор устья [1].

Недостатком этой конструкции является низкая долговечность гибкой колонны труб, обусловленная, с одной стороны двукратным циклом изгиба трубы при ее спуске и извлечении из скважины. Первый цикл изгиба трубы имеет место при ее сматывании с барабана - труба из согнутого положения распрямляется. Второй цикл изгиба - при входе в эжектор, где труба из прямолинейной формы повторно изгибается, перед тем как попасть в эжектор. Помимо этого, взаимное расположение кабины оператора, барабана и устьевого оборудования исключает одновременный контроль за их функционированием.

Технической задачей, решаемой предлагаемым устройством, является увеличение долговечности гибкой колонны труб, основной причиной выхода из строя которой является малоцикловая усталость, обусловленная многократным деформированием трубы с образованием пластических деформаций.

Указанная задача решается за счет изгиба гибкой трубы в двух взаимно перпендикулярных плоскостях. Это достигается за счет того, что ось вращения барабана для намотки колонны гибких труб параллельна оси транспортной базы, которая при рабочем положении агрегата проходит через ось скважины. В вертикальной плоскости труба изгибается при выходе (входе) в эжектор, а во взаимно перпендикулярной ей вертикальной плоскости - при намотке на барабан. В результате зона максимальных пластических деформаций (а соответственно и напряжений) при первом изгибе не совпадает с зоной максимальных пластических деформаций при намотке на барабан. Это способствует увеличению долговечности трубы.

Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемое решение соответствует критерию "новизна".

Сравнение заявляемого решения не только с прототипом, но и с другими техническими решениями в данной области техники не позволило выявить в них признаки, отличающие заявленное решение от прототипа, что позволяет сделать вывод о соответствии критерию "изобретательский уровень".

Схема агрегата подземного ремонта приведена на чертежах, где на фиг. 1 приведен общий вид агрегата в транспортном положении, вид сбоку; на фиг. 2 - то же, вид сверху; на фиг. 3 - показан агрегат в рабочем положении на скважине, вид сбоку; на фиг. 4 - то же, вид сверху; на фиг. 5 показан вариант исполнения агрегата, вид сбоку в рабочем положении.

Агрегат устроен следующим образом (фиг. 3). На раме 1 транспортной базы 2 установлена рама агрегата 3, в средней части которой установлен барабан 4 для колонны гибких труб 5. Для укладки трубы на барабан при наматывании и сматывании служит укладчик 6.

За кабиной водителя транспортной базы 2 располагается бак масляной системы 7, а рядом с ним (в, транспортном положении) находится кабина оператора 8 (фиг. 1). В рабочем положении кабина оператора 8 находится сбоку агрегата (фиг. 4). (На фиг. 3 кабина оператора условно не показана).

В кормовой части агрегата (фиг. 3) расположен эжектор 9, в верхней части которого установлено направляющее устройство 10. Под эжектором 9 располагается уплотнитель 11 гибкой трубы 5 и, при необходимости, узел превентора. Эжектор 9, направляющее устройство 10, уплотнитель 11 - располагаются над устьем скважины 12 с устьевым оборудованием 13 и закреплены на стойках 14.

Механизм установки эжектора 9 выполнен в виде двухзвенного шарнирного механизма, одно из звеньев 15 которого шарнирно закреплено на раме 3 агрегата, а на втором звене 16 шарнирно закреплен эжектор 9. Перемещение звеньев 15, 16 и эжектора 9 относительно друг друга обеспечивается приводными гидроцилиндрами, которые условно не показаны.

В рабочем положении рама 3 агрегата опирается на грунт посредством четырех аутригеров 17.

Вариант исполнения агрегата (фиг. 5) предусматривает выполнение механизма установки эжектора 9 в виде гидравлического подъемника, состоящего из стоек 18, шарнирно соединенных с рамой агрегата 3 и служащих направляющими для подвижной площадки 19, на которой смонтирован эжектор 9. Перемещение площадки 19 относительно стоек 18 осуществляется гидравлическими цилиндрами, которые на рисунке условно не показаны. В рабочем положении под заднюю кромку площадки 19 устанавливаются две стойки 14. В нижней части стойки 18 имеется аутригер 20.

В рабочем положении агрегата стойки 18 устанавливаются вертикально, а в транспортном - горизонтально.

Для нагнетания технологической жидкости в колонну гибких труб в процессе проведения операций подземного ремонта, агрегат оборудован насосом 21 (винтовым или многоступенчатым центробежным): расположенным вдоль борта транспортной базы и имеющим гидропривод. Питание исполнительных органов гидропривода обеспечивается блоком насосов 22, приводимым в действие от коробки отбора мощности ходового двигателя транспортной базы.

Разворачивание агрегата на скважине перед проведением подземного ремонта осуществляется следующим образом. В транспортном положении кабина 8 располагается между кабиной водителя 2 транспортной базы и барабаном 4 (см. фиг. 1 и 2). В процессе подготовки к работе стрела, на которой смонтирована кабина 8 поворачивается вокруг оси примерно на 90 o и занимает положение, показанное на фиг. 4.

Затем включается механизм подъема эжектора (независимо от варианта его исполнения), который обеспечивает его подъем на высоту, определяемую высотой устья скважины 12 и оборудования 13 смонтированного на нем.

После подъема эжектора окончательно корректируется положение агрегата относительно устья скважины и выдвигаются аутригеры 17 (20), устанавливаются стойки 14.

Положение кабины при работе агрегата (см. фиг. 4) обеспечивает оператору хороший обзор и барабана 4 с наматываемой (сматываемой) гибкой трубой 5, взаимодействующей с укладчиком 6, и зоны устья скважины 12. Минимальный угол обзора, необходимый оператору при работе показан на фиг. 4 и обозначен "A".

Сворачивание агрегата после выполнения операций подземного ремонта выполняется в обратном порядке.

В процессе работы агрегата гибкая труба с барабана 4 через укладчик 5 направляется на направляющую 10 эжектора 9 и подается последним через герметизатор 11 в полость скважины 12. При подъеме трубы укладчик 5 обеспечивает равномерную намотку трубы 5 на барабан 4. При этом происходит изгиб трубы 5 в двух взаимно перпендикулярных плоскостях при сматывании (наматывании) с барабана и при входе (выходе) в эжектор. Это способствует увеличению срока службы трубы. Этому так же способствует хороший обзор за работой укладчика, свободным участком трубы 5 между укладчиком 6 и направляющей 10.

Источник информации 1. А.С. СССР N 1439197, E 21 B 19/00, 19/22, 1988.

1. Агрегат подземного ремонта скважин с использованием непрерывной колонны гибких труб, содержащий транспортную базу, на раме которой установлена кабина управления, трансмиссия, барабан для намотки гибкой трубы, эжектор, обеспечивающий принудительное перемещение гибкой трубы, механизмы перевода эжектора и кабины управления в рабочее положение, герметизатор устья, отличающийся тем, что ось вращения барабана для намотки колонны гибких труб параллельна оси транспортной базы, которая при рабочем положении агрегата проходит через ось скважины.

2. Агрегат подземного ремонта скважин по п.1, отличающийся тем, что кабина оператора выполнена подвижной и установлена на консоли, ось вращения которой расположена у заднего по ходу движения транспортной базы торца барабана для намотки труб.

3. Вариант исполнения агрегата по п.1, отличающийся тем, что механизм установки эжектора выполнен в виде двухзвенного шарнирного механизма, одно из звеньев которого шарнирно закреплено на раме агрегата, а на втором звене шарнирно закреплен эжектор, причем перемещение звеньев и эжектора относительно друг друга обеспечивается приводными гидроцилиндрами.

4. Агрегат подземного ремонта скважин по п.1, отличающийся тем, что механизм установки эжектора выполнен в виде гидравлического подъемника, в рабочем положении установленного вертикально, а в транспортном - горизонтально, причем подъемник снабжен аутригерами, которые при рабочем положении воспринимают рабочую нагрузку от эжектора.

Подземный ремонт и бурение скважин с применением гибких труб

Рассмотрены важные вопросы техники и технологии подземного ремонта скважин с использованием непрерывной колонны гибких труб. Приведена теория создания параметрического ряда оборудования; описаны основные конструкции отечественных н зарубежных агрегатов, устройство их наиболее важных узлов. Даны сведения о колоннах гибких труб. Представлена информация об особенностях технологических процессов при проведении подземного ремонта.
Для инженерно-технических работников, занимающихся подземным ремонтом скважин, а также в качестве учебного пособия для студентов нефтепромысловых специальностей и производственного персонала, обслуживающего агрегаты на промыслах.

Читайте также: