Уровни определения пола у человека

Обновлено: 25.04.2024

Почему пол человека не всегда определяется набором хромосом

В июне 2018 года в журнале Science группа британских биологов сообщила об обнаружении нового «полового переключателя» в геноме млекопитающих. Удаление маленького кусочка размером 500 пар оснований в геноме мышиных эмбрионов с мужским генотипом XY заставило их развиться в самок. Этот эксперимент напоминает, что граница между мужским и женским полом вовсе не такая жесткая и предзаданная, как мы привыкли думать. Все, что изначально определяет разницу между полами, — это наличие или отсутствие у эмбриона Y-хромосомы, однако в XX веке врачи столкнулись с ситуациями, когда ее носителями оказывались женщины. Вспоминаем наш текст о том, как становятся мужчинами и женщинами и что может этому помешать.

Женщина, которая оказалась мужчиной

С 1968 года все женщины, участвующие в крупных международных спортивных соревнованиях, таких как, например, Олимпийские игры, должны были проходить генетическое тестирование, чтобы подтвердить свой пол. По замыслу организаторов, это делалось, чтобы исключить мошенничество и уравнять возможности всех участниц женских состязаний. В 1985 году испанская чемпионка по барьерному бегу Мария Хосе Мартинес-Патино приехала на Всемирную Универсиаду в японском городе Кобе, где ее попросили сдать анализ на половую принадлежность.

Как рассказывает сама Мартинес-Патино в журнале Lancet , она росла и выглядела как обычная девушка, у нее были грудь и вагина. Более того, за два года до Универсиады она уже прошла проверку на Международном чемпионате по легкой атлетике в Хельсинки и получила «сертификат о феминности». Однако по результатам хромосомного теста, проведенного в Кобе, врачи сделали вывод, что Мария генетически является мужчиной с кариотипом (хромосомным набором) XY. От соревнований ее отстранили и лишили всех полученных ранее наград.

«Сертификат о феминности» Марии Мартинес-Патино, выданный ей в Хельсинки María José Martínez-Patiño / The Lancet 2005 «Сертификат о феминности» Марии Мартинес-Патино, выданный ей в Хельсинки María José Martínez-Patiño / The Lancet 2005

Поводом для введения обязательного тестирования на принадлежность к женскому полу для профессиональных спортсменок стала история с Дорой Ратьен — немецкой легкоатлеткой, участницей Олимпийских игр 1936 года. Как выяснилось после игр, Дора была мужчиной, который, осознанно или нет, обманывал оргкомитет. Через несколько лет после этого всех участниц начали осматривать врачи, а с развитием технологий визуальные осмотры заменили на анализ крови с проверкой кариотипа.

Наверняка с 1968 по 1996 год, пока для всех соревнующихся женщин действовало обязательное тестирование на половую принадлежность, генетические аномалии, подобные случаю Марии Мартинес-Патино, были выявлены неоднократно. Однако история Мартинес-Патино, по ее собственному желанию, стала достоянием общественности. Несмотря на то, что решение о дисквалификации вскоре было отменено благодаря протестам, в 1992 году Мария закончила спортивную карьеру и стала ученым — политологом и борцом за права спортсменок. Во многом благодаря ее усилиям обязательное тестирование отменили как процедуру, унижающую человеческое достоинство и способную привести к тяжелой психологической травме.

Тем не менее спортивные комитеты оставили за собой право проводить анализы в «подозрительных» случаях. В последние годы в качестве повода для отвода спортсменок от соревнований стали называть гиперандрогенизм, который характеризуется высоким уровнем тестостерона в крови женщин. Однако дисквалифицированные по этой причине индийская бегунья Дьюти Чанд и южноафриканская атлетка Кастер Семеня смогли через суд доказать свое право выступать на Олимпийских играх за женскую сборную. Основным доводом защиты стало отсутствие доказанной связи между концентрацией тестостерона в крови и спортивными результатами. В настоящее время под давлением активистов Международный Олимпийский комитет смягчил требования и допускает даже выступление за женскую сборную трансгендерных людей.

Женщина «по умолчанию»

В начале эмбрионального развития у зародышей вне зависимости от хромосомного набора, образовавшегося при оплодотворении яйцеклетки сперматозоидом, половая система закладывается одинаково и предоставляет возможности для развития как женской, так и мужской половой системы. В частности, у зародыша формируются одновременно вольфов и мюллеров протоки, которые потом превращаются в семяпровод у мужчин и матку с фаллопиевыми трубами и влагалищем у женщин. Половые железы (гонады) эмбриона не дифференцированы и содержат первичные половые клетки, которые могут превратиться как в клетки яичников, так и в клетки семенников.

Для того чтобы запустить развитие желез по мужскому пути, необходима Y-хромосома, точнее, единственный ее ген под названием SRY (sex-determining region Y). Этот ген кодирует фактор транскрипции, то есть белок, управляющий экспрессией других генов. Включение гена SRY на определенной стадии развития приводит к дифференциации первичных клеток-предшественников в клетки Сертоли — вспомогательные клетки семенников. Клетки Сертоли продуцируют анти-мюллеров гормон, подавляющий развитие мюллерова протока в женский половой тракт. Кроме того, они продуцируют факторы, способствующие развитию семенника, появлению в нем предшественников сперматозоидов и созреванию клеток Лейдига, вырабатывающих тестостерон. С участием тестостерона вольфов канал трансформируется в семявыводящий проток, а под действием его производной — дигидротестостерона — происходит дифференциация наружных половых органов по мужскому типу.

Если Y-хромосома есть, но SRY по какой-то причине не сработал, «по умолчанию» происходит активация факторов транскрипции WNT4 и RSPO1 , определяющих развитие женской половой системы: дифференциация предшественников во вспомогательные клетки яичников (гранулезные клетки), образование ооцитов и фолликулов. В отсутствие анти-мюллерова гормона и тестостерона внутренние и наружные половые органы дифференцируются по женскому типу, а вольфов канал редуцируется.

Схема, иллюстрирующая эмбриональное развитие гонад и половых путей по женскому (XX) и мужскому (XY) типу. Вольфов проток и образующиеся из него структуры обозначены красным цветом, а Мюллеров проток — фиолетовым Flavio JW / Wilimedia commons Схема, иллюстрирующая эмбриональное развитие гонад и половых путей по женскому (XX) и мужскому (XY) типу. Вольфов проток и образующиеся из него структуры обозначены красным цветом, а Мюллеров проток — фиолетовым Flavio JW / Wilimedia commons

Вымирающий пол

Система определения пола с участием Y-хромосомы появилась у млекопитающих около 300 миллионов лет назад (по другим данным, около 160 миллионов лет назад) и характерна для большинства из них (но не всех). Скорее всего, в процессе эволюции половые хромосомы произошли из пары идентичных соматических хромосом в результате того, что одна из них приобрела функции определения мужского пола. X- и Y-хромосомы не могут обмениваться участками между собой так, как это делают остальные пары хромосом, поэтому ДНК на Y-хромосоме не может ремонтироваться за счет рекомбинации. Это делает ее уязвимой к накоплению мутаций и деградации.

Система определения пола XX/XY характерна для млекопитающих, однако у животных существуют и другие варианты. К примеру, у некоторых насекомых система похожа на нашу, за исключением того, что Y-хромосомы у них нет. Они используют систему XX/XO, где самки несут две X-хромосомы, а самцы — одну. Развитие гонад в этом случае определяется дозой генов, расположенных на половой хромосоме. У общественных насекомых многие особи являются гаплоидными, то есть несут одинарный набор хромосом вместо двойного. Они развиваются из неоплодотворенных яиц и становятся самцами. Особи с двойным набором хромосом становятся самками.
У птиц и многих рептилий пол определяется парой хромосом ZZ и ZW, причем ZW соответствует женскому полу. Как определяется запуск мужской или женской программы развития, до конца не известно - вероятно, в этом участвуют гены DMRT1 на Z-хромосоме и FET1 и ASW на женской хромосоме W. Впрочем, у некоторых видов рептилий, например у аллигаторов, пол определяется не специальной хромосомой, а условиями окружающей среды,в частности температурой, при которой происходит развитие эмбриона.

В результате деградации за миллионы лет, прошедшие со времени появления половых хромосом, Y-хромосома потеряла подавляющее большинство генов. Сейчас она кодирует всего 50 белков, в то время как на X-хромосоме содержится более тысячи генов. Ученые подсчитали , что если Y-хромосома будет терять ДНК с такой же скоростью, через 5-10 миллионов лет она исчезнет.

Впрочем, сравнение последовательностей Y-хромосомы человека и шимпанзе показало , что за время с момента расхождения видов (около шести миллионов лет назад) некоторые гены шимпанзе на этой хромосоме приобрели вредные мутации и «сломались», в то время как у человека они по-прежнему функциональны. Это позволяет надеяться, что у человека Y-хромосома перестала уменьшаться или, по крайней мере, делает это с замедленной скоростью.

Эволюция Y-хромосомы и деградация вследствие запрещенной рекомбинации с X-хромосомой Jennifer Graves / Cell 2006 Эволюция Y-хромосомы и деградация вследствие запрещенной рекомбинации с X-хромосомой Jennifer Graves / Cell 2006

Не только половые хромосомы

Если для переключения пола необходим единственный ген SRY , что же обнаружили ученые в свежей статье в Science ? Как мы уже упомянули, SRY кодирует белок, запускающий целый каскад нижестоящих реакций. Основной его мишенью является ген SOX9 . Этот ген также кодирует фактор транскрипции и необходим для дифференцирования и функционирования клеток Сертоли. Для того чтобы запустить процесс, количество Sox9 в эмбриональных половых железах должно достигнуть определенного критического значения, но, как показали ученые ранее, одного SRY для этого недостаточно. Чтобы усилить экспрессию SOX9 , нужны удаленные регуляторные участки, называемые энхансерами (что в переводе и значит «усилители»).

Исследователи из Института Фрэнсиса Крика в Лондоне обнаружили усилитель под кодовым названием Enh13, который подключается к работе раньше всех остальных и без которого Sox9 не накапливается в нужном количестве. Этот участок размером всего 557 пар оснований находится на 17 хромосоме, на значительном удалении от подконтрольного ему гена SOX9 , и идентифицировать его оказалось очень сложно. Как сообщают ученые, трансгенные мыши с мужским генотипом XY и удаленным Enh13 развивались по женскому типу. Этот кусочек ДНК оказался консервативен у млекопитающих — он же, по-видимому, вносит вклад в определение пола и у людей. По крайней мере у некоторых пациентов с генотипом XY, но «обращенным» полом, усилитель отсутствовал из-за выпадения кусочка 17-й хромосомы.

Последовательная экспрессия генов SRY и SOX9 в развивающихся семенниках мыши (dpc — days post coitum, дни после зачатия) Kenichi Kashimada and Peter Koopman / Development 2010 Последовательная экспрессия генов SRY и SOX9 в развивающихся семенниках мыши (dpc — days post coitum, дни после зачатия) Kenichi Kashimada and Peter Koopman / Development 2010

В последнее время ученые пришли к выводу, что именно ген SOX9 , а не SRY , является ключевым фактором для развития половых желез по мужскому типу. Возможно, за пять миллионов лет SRY передаст свои функции активации SOX9 какому-нибудь другому белку, и тогда существование мужского пола не будет зависеть от сохранения Y-хромосомы, о котором говорилось в предыдущем параграфе.

Вероятно, при активации женской программы экспрессия SOX9 активно подавляется с участием своего «женского антагониста» — гена FOXL2 , который экспрессируется в гранулезных клетках яичника. Если ген FOXL2 сломан, у эмбриона возможно развитие семенников вместо яичников. Поэтому, справедливости ради, надо отметить, что «случайно» стать мужчиной с женским генотипом тоже возможно. Однако если не-мужчины с генотипом XY рождаются с частотой 1 на 3000 новорожденных, не-женщины с генотипом XX появляются в семь раз реже. Иногда это происходит из-за случайного «прыжка» гена SRY на X-хромосому.

Кто все эти люди

Состояния, когда фенотипический, гонадный (то есть определяемый наличием соответствующих половых желез) и хромосомный пол не соответствуют друг другу, называют расстройствами формирования пола (DSD — Disorders of sex development). Они, как правило, приводят к бесплодию и часто — к нарушению формирования половых органов, поэтому фактический пол таких людей определить бывает сложно и в научной литературе их называют интерсексуальными. Свой социальный и паспортный пол они определяют исходя из своего мировоззрения и окружения.

Помимо мутаций в генах SRY и SOX9 идентифицированы мутации более чем десятка генов на соматических хромосомах, нарушения работы которых в процессе развития плода могут привести к DSD. Многие расстройства происходят из-за сбоя в работе эндокринной системы. Распространенная причина DSD — синдром нечувствительности к андрогенам . Именно такой диагноз в конечном итоге был поставлен Марии Хосе Мартинес-Патино, а также джазовой певице Иден Этвуд. При полной нечувствительности к тестостерону они фенотипически «на сто процентов» являются женщинами , несмотря на наличие Y-хромосомы и сформированные семенники. Частичная резистентность к мужским гормонам приводит к формированию смешанного фенотипа.

Более распространенный синдром — избыточная продукция мужских половых гормонов в результате нарушения работы коры надпочечников ( адреногенитальный синдром ). Люди с этим синдромом выглядят избыточно маскулинно вне зависимости от генотипа, а у женщин бывают деформированы гениталии. Возможно, жертвами именно этого синдрома — и Олимпийского комитета — стали спортсменки, дисквалифицированные с международных соревнований за избыточный уровень тестостерона.

Американский психолог Джон Мани (John Money), который занимался проблемами половой идентичности, предположил, что концепция пола является многоступенчатой , и от хромосомного пола до социального лежит целая пропасть. Учитывая, сколько всего может пойти не так в процессе формирования мужчины или женщины, кажется, что условности, связанные с набором половых хромосом или наличием лишнего куска плоти, давно пора отбросить и позволить людям быть теми, кем они себя ощущают.

24. Определение пола у человека. Уровни дифференциации пола в развитии.

Пол возникает сначала как чисто репродуктивное (рекомбинационное) явление. В процессе эволюции он постепенно приобретает также и эволюционные функции. Одновременно и определение пола закономерно переходит от генного (у гермафродитов) к хромосомному (у раздельнополых форм начиная, видимо, с рыб) и геномному (у пчел). Параллельно повышается уровень дифференциации и происходит увеличение проявления полового диморфизма: у бесполых форм он отсутствует, у гермафродитов существует половой диморфизм только на уровне первичных половых признаков (гамет, гонад), у раздельнополых моногамов появляется организменный половой диморфизм (вторичных половых признаков), у раздельнополых полигамов—популяционный, включающий половой диморфизм по численности и дисперсии полов, а у пчел (возможно и других общественных насекомых)—появляется половой диморфизм генома (гапло-диплоидия).

В ходе развития организма (онтогенез определение пола может происходить в момент оплодотворения (генный уровень), а также контролироваться внутренними (гормоны) и/или внешними факторами. У человека и высших животных большую роль играет также воспитание и обучение.

Генное определение пола

Хромосомное определение пола:

У животных, растений и человека хромосомный механизм является начальным механизмом, определяющим пол. Согласно хромосомной теории, пол организма определяется половыми хромосомами в момент оплодотворения.

XY определение пола:

У одного пола ядра всех соматических клеток содержат диплоидный набор аутосом 2А и две одинаковые половые хромосомы (XX). Поэтому все гаметы этого пола содержат по одной Х-хромосоме. Это гомогаметный пол. У другого пола в каждой соматической клетке, помимо диплоидного набора аутосом 2А, содержатся две разные половые хромосомы Х и Y. Поэтoмy у него два вида гамет: Х- и Y-несущие. Это гетерогаметный пол. У большинства видов животных и растений гомогаметен женский пол, а гетерогаметен—мужской. Сюда относятся млекопитащие, большинство насекомых, многие рыбы, растения и др. Виды с мужской гетерогаметностью относят к типу Drosophila. Бывает два вида XY-определения пола. Один из них - как у человека: пол зависит от наличия Y-хромосомы (если она есть, генотип самца, если нет - самки). Второй - как у представителей рода Drosophila: пол определяется по соотношению числа Х-хромосом и числа аутосом.

ZW определение пола:

У меньшего количества видов (птицы, некоторые рептилии, рыбы, бабочки, ручейники, из растений—земляника) наблюдается обратная картина—гомогаметен мужской пол, а гетерогаметен—женский. Виды с женской гетерогаметностью относят к типу Аbraxas.

X0 определение пола:

При этом механизме определения пола один из полов (гомогаметный) обладает 2-мя Х-хромосомами, в то время, как второй (гетерогаметный) только 1-й. Принципиально, является разновидностью XY-механизма, так как при этом пол определяется также, как и у дрозофил: по соотношению числа Х-хромосом и аутосом.

Гапло-диплоидное (геномное) определение пола:

У насекомых (пчел и других перепончатокрылых, червецов, клещей) из оплодотворенных яиц получаются самки (или самки и самцы), а из неоплодотворенных развиваются только самцы.

Средовое определение пола:

При этом механизме определения пола развитие организма в самца или самку определяется внешними факторами, например, температурой (у большинства крокодилов).

Гормональное определение пола:

Определение пола можно представить в виде эстафеты, которую хромосомный механизм передает недифференцированным гонадам, развивающимся в мужские или женские половые органы. При изучении роли половых хромосом в развитии гонад было показано, что определяющим у человека является наличие или отсутствие Y-хромосомы. При отсутствии Y-хромосомы происходит дифференциация гонад в яичники и развивается женщина. В присутствии Y-хромосомы развивается мужская система. Очевидно Y-хромосома производит вещество, стимулирующее дифференциацию яичек. “Похоже, что основной план природы был сделать женщину, и что добавление Y-хромосомы производит вариацию—мужчину”. Следующий этап эстафеты продолжают гормоны, определяющие процесс половой дифференциации плода и его анатомическое развитие. При рождении первая часть программы заканчивается. После рождения, эстафета переходит к факторам среды, которые завершают формиррмирование пола—обычно, но не всегда в соответствии с генетическим полом. Определение пола является сложным многостадийным процессом, который у человека зависит кроме биологических также от психосоциальных факторов. Это может приводить к возникновению гетеросексуального, бисексуального или гомосексуального поведения и образа жизни.

Уровни дифференцировки пола в развитии:

Определение пола на уровне гонад

Фенотипическое – различие в строении внутренних и внешних развитии признака.

Генетика пола. Наследование, сцепленное с полом

Оборудование: таблицы “Мейоз”, “Хромосомный механизм определения пола”, “Наследование гемофилии”; задачи по данной теме и справочные материалы.

I. Организационный момент.

  1. Генетика пола.
  2. Хромосомный механизм определения пола.
  3. Различные формы определения пола.
  4. Соотношение полов.
  5. Наследование, сцепленное с полом.

III. Закрепление. Решение задач по теме, беседа по вопросам.

1. Генетика пола

Генетика объяснила сущность удивительной и важной проблемы:
равное распределение женских и мужских особей в поколениях животных и людей

Половое размножение очень широко распространено в природе, связано с формированием мужских и женских половых клеток.

Для начала вспомним, что представляет собой хромосомный набор клеток человека.

В кариотипе человека из 46 хромосом 44 одинаковы у всех особей, независимо от пола (эти хромосомы называют аутосомами), а одной парой хромосом, называемых половыми, женщины отличаются от мужчин. Это общебиологическая закономерность для всех живых организмов, размножающихся половым путем.

Диплоидная клетка организма человека: 46 хромосом =23 пары гомологичных хромосом, из которых 22 пары - аутосомы + 1 пара половые хромосомы: у мужчины - ХY; у женщины - ХХ. У человека гетерогаметным является мужской пол, а женский гомогаметный. В соматической клетке мужчины - разные половые хромосомы. В соматической клетке женщины - одинаковые половые хромосомы.

Пол можно рассматривать как один из признаков организма, как правило, определяется генами. Механизм же определения пола имеет иной характер - хромосомный.

2. Хромосомный механизм определения пола

Согласно хромосомной теории К.Корренса (1907), пол будущего потомка определяется сочетанием половых хромосом в момент определения. Пол, имеющий одинаковые половые хромосомы, называют гомогаметным, так как он дает один тип гамет, а имеющий разные-гетерогаметным, так как он образует два типа гамет. У человека, млекопитающих, мухи дрозофилы гомогаметный пол женский, а гетерогаметный - мужской.

У мужского пола в процессе гаметогенеза формируется 2 типа гамет в равной пропорции, так как мужской пол - гетерогаметный: Х-сперматозоиды и Y-сперматозоиды.

Поскольку у женского пола половые хромосомы одинаковы, так как женский пол - гомогаметный, то каждая яйцеклетка несет Х-хромосому.

Эта биологическая закономерность, обусловленная механизмом мейоза.

Учащимся предлагается ответить на вопросы:

От чего зависит рождение женских и мужских особей?

Для чего можно использовать таблицу “Хромосомный механизм определения пола”:

У дрозофилы всего 8 хромосом: 6 аутосом и 2 половые хромосомы, хромосомный набор самца – 6+ XY, самки - 6+ХХ. хочется отметить, что теоретически соотношение полов должно быть 1:1. Эта статистическая закономерность, обеспечиваемая условием равновероятной встречи гамет. Пол будущего организма всегда определяет гетерогаметный пол (т.е. мужской), именно потому, что гаметы с Х- и Y- хромосомой образуются у мужского пола в равных количествах.

Каким образом половые различия в хромосомных наборах самцов и самок поддерживаются в процессе размножения?

В чем же отличие “Х” хромосомы от “У” хромосомы?

Отличаются по строению: Y-хромосома состоит как бы из двух участков - одного гомологичного Х-хромосоме, а другого негомологичного. А так же по набору генов, которые в них находятся.

Работа со справочными материалами

3. Различные формы определения пола
  1. Прогамное определение пола. Осуществляется до оплодотворения в процессе онтогенеза. Так происходит, в частности. У коловраток при этом образуются яйцеклетки разных размеров - крупные и мелкие. После оплодотворения из крупных яиц развиваются самки, а из мелких - самцы.
  2. Сингамное определение пола, происходящее при оплодотворении, определяется половыми хромосомами. Этот тип является наиболее распространенным.
  3. Эпигамное (метагамное) определение пола зависит не от присутствия, соотношения или плоидности хромосом, а от интенсивности действия факторов окружающей среды, что может расцениваться как модификационная изменчивость. Ярким примером тому является детерминация пола у крокодилов. Из отложенных самкой яиц в зависимости от температуры окружающей среды могут вылупляться или юные самцы или самки. Весьма оригинально определяется пол у морского червя бонеллии (Bonellia viridis) из типа кольчатые черви. Если его личинка развивается в одиночестве, то из нее вырастает подвижная самка, ведущая самостоятельный образ жизни. Если она проникает в половые пути самки, то живет там как паразит, в связи, с чем его строение сильно упрощено.

4. Соотношение полов

Учащимся предлагается ответить на вопрос:

Почему у раздельнополых организмов (в том числе и у людей) соотношение полов составляет 1:1?

Работа со справочными материалами

5. Наследование, сцепленное с полом

Генетические исследования установили, что существуют признаки, которые определяются генами, лежащими в половых хромосомах.

Наследование признаков, гены которых локализованы в Х- или Y- хромосомах, называют наследованием, сцепленным с полом.

Х-хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм). Эти аномалии чаще встречаются у мужчин, хотя носителями чаще бывают женщины. У мужчин эти гены гемизиготны, их рецессивные аллели

вызывают заболевания: X h Y - мужчина, больной гемофилией; X d Y- дальтоник.

Пример: наследование гемофилии: Н - нормальная свертываемость крови; h- гемофилия.

1) Мать имеет нормальную свертываемость крови и является гомозиготной по этому признаку (X H Х H ),отец страдает гемофилией (Х h Y) тогда схема скрещивания:


Все дети фенотипически здоровы, но дочери гетерозиготны по гену гемофилии и являются носителями гена гемофилии.

2) Рассмотрим наследование, сцепленное с полом на примере дальтонизма:

Дальтоники - это люди, неспособные различать цвета. Болезнь имеет наследственный характер. Введем необходимые обозначения:

А - ген. отвечающий за формирование нормальной способности различать цвета.

а - ген, обусловливающий нарушение способности различать цвета (дальтонизм);

Х - женская хромосома, несущая ген нормального различения цветов;

Х d - женская хромосома, несущая ген дальтонизма.


Х D Х D - здоровая девочка;

Х D Х d - девочка - носитель;

Х D Y- здоровый мальчик;

Х d Y- мальчик-дальтоник.

У мальчиков, получивших от своей матери хромосому с геном а, будет наблюдаться дальтонизм.

Можно ожидать, что половина сыновей гетерозиготной по данному гену женщины будет дальтониками. Женщины-дальтоники встречаются крайне редко.

Известно, что Х-хромосомы генетически активны, как любая из аутосом. Y-хромосомы - генетически инертны, у человека лишь некоторые гены, не являющиеся жизненно важными, локализуются в ней (гипертрихоз - волосатые уши, некоторые формы аллергий, диспепсии),

такие признаки передаются только от отца к сыну. Такой тип наследования по мужской линии называется голандрический.

Законы передачи признаков, сцепленных с Х-хромосомами. Были впервые изучены Т. Морганом на дрозофилах.

Решение задач и обсуждение вопросов.

  1. в чем состоят особенности половых хромосом?
  2. В чем заключается генетический механизм определения пола?
  3. Какие признаки, наследование которых сцеплено с полом, вам известны у человека?
  4. установите генотип женщины, у которой половина сыновей больна цветовой слепотой?
  5. Что такое наследование, сцепленное с полом?
  6. От кого из родителей мальчик получает Х-хромосому?
  7. Когда определяется пол цыпленка: до оплодотворения или в момент оплодотворения?
  8. Почему у детей появляются новые признаки, не свойственные родителям?
  9. Влияет ли среда на формирование и проявление признаков организма?
  10. По какой хромосоме у человека произошло сцепление признаков: дальтонизма, гемофилии?

Серебристая курица из породы белый виандот скрещена с золотистым (коричневым) петухом породы леггорн. Определить соотношение и расщепление групп гибридов по фенотипу и генотипу.

Примечание: указанные признаки сцеплены с полом: доминантный ген серебристой окраски (С) локализован в одной Х-хромосоме, аллельный ему рецессивный ген золотистой окраски (с) - в другой Х-хромосоме. У птиц женский пол - гетерогаметный, а мужской - гомогаметный.

Черепаховую (пятнистую) кошку скрестили с рыжим котом. Как произойдет расщепление гибридов по фенотипу и генотипу (по окраске и по полу)? Почему?

От родителей, по фенотипу имеющих нормальное зрение, родилось несколько детей с нормальным зрением и один мальчик - дальтоник (не различает красный и зеленый цвета) Чем это объяснить? Каковы генотипы родителей и детей?

Какие дети могли бы родиться от брака гемофилика с женщиной, страдающей дальтонизмом (а в остальном имеющей вполне благополучный генотип)?

Пол организма, как и любой признак, развивается, с одной стороны, под влиянием генотипа, с другой - факторов внешней среды. Для различных организмов влияние генотипа и факторов внешней среды на определение пола различно, т.е. у одних организмов (человек, большинство млекопитающих) определяющим является генотип, у других (рыбы, некоторые черви) - факторы внешней среды.

Иногда факторы внешней среды оказывают существенное влияние на определение пола и у млекопитающих. Так, у крупного рогатого скота при одновременном развитии двух разнополых близнецов бычки рождаются нормальными, а телочки часто - интерсексами. Это объясняется более ранним выделением мужских половых гормонов и влиянием их на пол второго близнеца.

А. Соотношение полов.

Различают первичное соотношение полов, точнее, соотношение эмбрионов и вторичное - соотношение мальчиков и девочек среди новорожденных.

Теоретически соотношение полов в момент оплодотворения должно быть близким 1:1, так как встреча яйцеклетки со сперматозоидом, содержащим Х- или Y- половую хромосому, равновероятна.

При обследовании у человека обнаружено, что на 100 женских зигот образуется 140-160 мужских (первичное соотношение полов)

К моменту рождения на 100 девочек приходится 103-105 мальчиков 9 (вторичное соотношение полов).

Третичное соотношение полов (постнатальный период) к 20-ти годам на 100 девушек приходится 100 юношей; к 50-ти годам на 100 женщин - 85 мужчин, а к 85-ти годам на 100 женщин - 50 мужчин.

Отсюда напрашивается вывод о большей жизнестойкости женского организма, что может быть объяснено, наряду с другими причинами, мозаицизмом женского организма по половым хромосомам.

Основные механизмы определения пола

Прогамное – пол определяется до оплодотворения. Характерно для особей, размножающихся партеногенетически. Так, у пчел особи женского пола развиваются из оплодотворенных диплоидных яиц, мужского – из неоплодотворенных, гаплоидных.

Сингамное – пол определяется в момент оплодотворения. Данный тип характерен для большинства млекопитающих и человека. Пол наследуется как обычный менделирующий признак (т.е. в соответствии с законами Менделя) с вероятностью 50% для обоих полов.

Эпигамное – пол определяется после оплодотворения и зависит от факторов внешней среды. Классическим примером эпигамного определения пола является морской червь Bonnelia viridis. Самка крупная – диаметром 10-15 см, имеет хоботок длинной до 1 м. Самец микроскопических размеров, ведет паразитический образ жизни на хоботке самки. В том случае, если личинка окажется на хоботке самки, под влиянием гормонов из зиготы могут развиваться самцы.


Но если личинка будет развиваться вдали от самки, то из нее сформируется самка.

У некоторых видов в ходе обычного онтогенеза при определенных условиях происходит естественное переопределение пола. В Тихом океане обитают рыбки вида Labroides dimidiatus (сельдевые), живущие стайками из множества самок и одного самца. Все самки постоянно пребывают в состоянии стресса, источником которого является самец. При этом уровень напряженности между самками различается, так, что можно выделить альфа, бетта, гамма-самок и т.д. В случае гибели самца альфа-самка (главная самка) сбрасывает напряжение и превращается в полноценного самца. Такое переопределение пола зависит от уровня в организме гормонов, выделяемых клетками надпочечников.

Иногда факторы внешней и внутренней среды оказывают существенное влияние на определение пола и у млекопитающих. Так, у человека описаны случаи проявления женского фенотипа при мужском генотипе 46, XY. Это, т.н. синдром Морриса или синдром тестикулярной феминизации (рис.7.7). Причина развития данного синдрома заключается в следующем. Гены Y-хромосомы определяют дифференцировку половых желез по мужскому типу и синтез этими железами гормона тестостерона (Т). Однако для проникновения этого гормона в клетки-мишени необходим белок-рецептор (R), который является продуктом другого гена, расположенного в Х-хромосоме. Если белка R нет, то клетки не восприимчивы к действию Т. В этом случае развитие проходит по женскому типу. В результате появляется особь с кариотипом XY, но по внешним признакам сходная с женщиной. У таких индивидов не развиты ни мужские, ни женские половые органы (семенники, яичники, матка, влагалище и т.д. недоразвиты), но вторичные половые признаки характерны для женского пола.

Дифференцировка пола в процессе развития

Процесс первичной дифференцировки пола связан с периодом эмбрионального развития. Формирование закладок половых желез происходит до 4-й недели эмбрионального развития и обеспечивается только Х-хромосомой. Поэтому первичные гонады – половые железы – бисексуальны, т.е. состоят из одинаковых зачатков независимо от пола будущего организма.

Основная дифференцировка закладок в половые железы и половые органы у эмбриона человека происходит на 4-12 неделе эмбрионального развития. На этом этапе она полностью зависит от второй половой хромосомы: если это Х-хромосома, то развиваются яичники, если Y-хромосома, то развиваются семенники. Соответственно формируются

10)Генетика пола. Механизмы определения пола. Дифференцировка пола в процессе эмбрионального и постнатального развития человека. Первичные и вторичные половые признаки.

У человека важнейшим фактором определения пола в эмбриональном развитии является хромосома Y.

Пол-это важная фенотипическая характеристика особи,включающая совокупность морфологических,физиологических,биохимических,поведенческих признаков организма,обеспечивающих восспроизведение потомства и передачу ему наследованной информации

Процесс первичной дифференцировки пола у человека связан с периодом эмбрионального развития.Пол будущего ребенка определяется в момент оплодотворения и зависит от сочетания половых хромосом.Формирование закладок половых желез у человека происходит до 4-6 недели эмбрионального развития и обеспечивается только Х-хромосомой.ППоэтому первичные гонады бисексуальны ,они состоят из одинаковых зачатков независимо от пола будущего организма.

Основная дифференцировка первичных половых гонад в половые железы и половые органы происъходит до 12 недели эмбрионального развития.При наличии хромосомы и гена SRY формируются семенники.После дифференцировки семенники начинают продуцировать гормон тестостерон,под влиянием которого дифференцируются внутринние и наружные половые органы по мужсклму типу.Если Y-хромосомы нет,то экспрессируются в яичники,формируются женские внутренние и наружные половые органы.

В период полового созревания в результате действия половых гормонов на определенные гены клеток различных тканей происходит образованиеи дифференцировка вторичных половых признаков.Под влиянием тестестерона начинается сперматогенез и формируются мужские половые признаки:увеличиваются размеры наружных половых органов,появляется вторичное оволосение по мужскому типу,происходит специфическое развитие скелета и мышц,удлиняются голосовые связки.Для мужчин характерен рост волос на лице,низкий тембр голоса ,выступающий вперед щитовидный хрящ гортани(кадык)

В природе существуют несколько механизмов определения пола:програмная детерминация пола,сингамная детерминация пола,эусингамный

11)Синдромы, связанные с аномалиями числа половых хромосом у человека (классификация, особенности кариотипа, краткая характеристика).

Болезни, обусловленные нарушением числа аутосом [

синдром Дауна — трисомия по 21 хромосоме, к признакам относятся: слабоумие, задержка роста, характерная внешность, изменения дерматоглифики;

синдром Патау — трисомия по 13 хромосоме, характеризуется множественными пороками развития, идиотией, часто — полидактилия, нарушения строения половых органов, глухота; практически все больные не доживают до одного года;

синдром Эдвардса — трисомия по 18 хромосоме, нижняя челюсть и ротовое отверстие маленькие, глазные щели узкие и короткие, ушные раковины деформированы; 60% детей умирают в возрасте до 3-х месяцев, до года доживают лишь 10%, основной причиной служит остановка дыхания и нарушение работы сердца.

Болезни, связанные с нарушением числа половых хромосом

Синдром Шерешевского — Тёрнера — отсутствие одной Х-хромосомы у женщин (45 ХО) вследствие нарушения расхождения половых хромосом; к признакам относится низкорослость, половой инфантилизм и бесплодие, различные соматические нарушения (микрогнатия, короткая шея и др.);

полисомия по Х-хромосоме — включает трисомию (кариотии 47, XXX), тетрасомию (48, ХХХХ), пентасомию (49, ХХХХХ), отмечается незначительное снижение интеллекта, повышенная вероятность развития психозов и шизофрении с неблагоприятным типом течения;

полисомия по Y-хромосоме — как и полисомия по X-хромосоме, включает трисомию (кариотии 47, XYY), тетрасомию (48, ХYYY), пентасомию (49, ХYYYY), клинические проявления также схожи с полисомией X-хромосомы;

Синдром Клайнфельтера — полисомия по X- и Y-хромосомам у мальчиков (47, XXY; 48, XXYY и др.), признаки: евнухоидный тип сложения, гинекомастия, слабый рост волос на лице, в подмышечных впадинах и на лобке, половой инфантилизм, бесплодие; умственное развитие отстает, однако иногда интеллект нормальный.

Болезни, причиной которых является полиплоидия ]

триплоидии, тетраплоидии и т. д.; причина — нарушение процесса мейоза вследствие мутации, в результате чего дочерняя половая клетка получает вместо гаплоидного (23) диплоидный (46) набор хромосом, то есть 69 хромосом (у мужчин кариотип 69, XYY, у женщин — 69, XXX); почти всегда летальны до рождения.

Нарушения структуры хромосом [

Транслокации — обменные перестройки между негомологичными хромосомами.

Делеции — потери участка хромосомы. Например, синдром кошачьего крика связан с делецией короткого плеча 5-ой хромосомы. Признаком его служит необычный плач детей, напоминающий мяуканье или крик кошки. Это связано с патологией гортани или голосовых связок. Наиболее типичным, помимо «кошачьего крика», является умственное и физическое недоразвитие, микроцефалия (аномально уменьшенная голова).

Инверсии — повороты участка хромосомы на 180 градусов.

Дупликации — удвоения участка хромосомы.

Изохромосомия — хромосомы с повторяющимся генетическим материалом в обоих плечах.

Возникновение кольцевых хромосом — соединение двух концевых делеций в обоих плечах хромосомы.

12)Синдромы, связанные с аномалиями структуры и числа аутосом у человека (классификация, особенности кариотипа, краткая характеристика).

Аномальное число аутосом, за исключением трисомии по самой короткой хромосоме, обычно приводит к ранней смерти.Самые частые аутосомные трисомии у человека-по 21,13 и 18 хромосомам

Синдром Дауна трисомия по 21(47+21) При болезни Дауна обнаруживаются разнообразные пороки развития. Характер пороков и их распределение заметно отличаются от характера и частоты пороков в популяции. Среди умерших детей с болезнью Дауна врожденные пороки сердца и магистральных сосудов встречаются

в ⅔ случаев. При болезни Дауна часто выявляют пороки развития пищеварительной системы (атрезии разных отделов, мегаколон, мегадуоденум и другие дефекты). Со стороны мочеполовой системы могут быть мегауретер, эктазирование, сужение мочеточника, нередко дольчатость почек, поликистоз и агенезия почек. Отмечаются агенезия легких или их долей.

Головной мозг уменьшен в размерах, лобные доли - недоразвиты, борозды и извилины - недостаточно дифференцированы, нередко имеются аномалии сосудов мозга. Желудочки мозга часто недоразвиты, полости их уменьшены. Могут быть нарушены процессы миелинизации головного и спинного мозга. Отмечается недостаточное развитие клеточных структур в диэнцефальной области. В гипофизе отсутствуют секреторные гранулы, являющиеся показателем активности мозгового придатка.

1. Хромосомное определение пола

Теория наследования пола была разработана в начале \(20\) столетия Т. Морганом.

Пол — это совокупность признаков и свойств организма, обеспечивающих воспроизведение себе подобных и передачу наследственной информации следующему поколению.

Пол наследственно запрограммирован и обычно определяется одной парой хромосом, которые называют половыми хромосомами . Хромосомы, одинаковые у особей мужского и женского пола, называют аутосомами .

Половые хромосомы — хромосомы, различающиеся у особей женского и мужского пола.

Обычно половые хромосомы обозначают в генетических записях буквами X и Y . В этих хромосомах содержатся гены, определяющие синтез белков, которые регулируют работу половых желез (женских или мужских) и определяют половые признаки организма.

При образовании гамет в них попадает одна половая хромосома.

Пол, образующий одинаковые гаметы, называется гомогаметным .

Пол, образующий разные гаметы, называется гетерогаметным .

Пол будущего организма, как правило, определяется в момент оплодотворения.

Известно несколько типов определения пола.

Известно много видов животных, у которых женский пол гомогаметный, а мужской — гетерогаметный. Самка образует один вид гамет, а самец — два. Пол будущего организма зависит от того, какая из мужских гамет участвует в оплодотворении.

5..jpg

Так определяется пол у дрозофилы, человека, млекопитающих.

у дрозофилы в хромосомном наборе \(6\) аутосом и две половые хромосомы. Хромосомный набор самки \(6A\) \(+\) X X , хромосомный набор самца \(6A\) \(+\) X Y .

Самка образует один тип гамет с хромосомным набором \(3A\) \(+\) X , а самец — два типа гамет: \(3A\) \(+\) X и \(3A\) \(+\) Y .

в хромосомном наборе человека \(44\) аутосомы и две половые хромосомы: у женщины — \(44A\) \(+\) X X , у мужчины — \(44A\) \(+\) X Y .

07-06-2018 16-31-31.jpg

Хромосомный набор женщины

07-06-2018 16-33-31.jpg

Хромосомный набор мужчины

Все женские гаметы (яйцеклетки) имеют одинаковый набор хромосом. Они содержат \(22\) аутосомы и одну \(X\)-хромосому ( \(22A\) \(+\) X ). Мужской организм образует два вида гамет (сперматозоидов): \(22A\) \(+\) X и \(22A\) \(+\) Y .

Другой вариант — гетерогаметный женский пол, гомогаметный мужской пол. Такой тип определения пола наблюдается у птиц, бабочек. В этом случае пол будущего организма определяется женскими гаметами.

II. Тип X 0

Гомогаметный пол имеет две X -хромосомы и диплоидный набор хромосом в клетке, а гетерогаметный — только одну X -хромосому и непарный хромосомный набор.

07-06-2018 11-59-11.jpg

у самок некоторых видов клопов в клетках содержится по \(14\) хромосом ( \(12A\) \(+\) X X ), а у самцов — по \(13\) хромосом ( \(12A\) \(+\) X 0 ). Самка образует гаметы \(6A\) \(+\) X , а самец — \(6A\) \(+\) X и \(6A\) \(+\) 0 .

III. Диплоидный женский пол, гаплоидный мужской пол

У пчёл и муравьёв половых хромосом нет. Самки имеют диплоидный набор хромосом, а самцы — гаплоидный.

07-06-2018 11-56-28 — копия.jpg

IV. Пол организма зависит от условий среды

У некоторых животных пол определяется условиями внешней среды. Так, у некоторых видов крокодилов и черепах пол зависит от температуры, при которой происходит развитие зародыша в яйце: при высокой температуре появляется больше самок, при низкой — больше самцов.

Читайте также: