Теорема о линолеуме доказательство

Обновлено: 05.05.2024

О теоремах, данных без доказательств

Я учился в математической школе. Учился весьма посредственно, но, например, те, кого вовсе отчисляли, переходя в обычную школу, стабильно учились там на отлично без малейшего напряжения мозга.

Однажды для меня стало большим откровением, что в обычных школах некоторые теоремы и формулы давались без доказательства. То есть, людям просто говорили, что есть теорема Фалеса, а есть — формула Герона. А потом сразу давали задачи, которые можно было решить с их использованием. Это для меня было абсолютным разрывом мозга. Это не укладывалось в голове. Я совершенно не мог понять, какой смысл в том, чтобы проходить формулу, не выводя её — это же тогда просто бессмысленный набор букв и знаков. Ну или максимум «занимательный факт»: британские учёные выяснили, что.

Нас, помню, развлекал учитель математики, читая на перемене вопросы билетов экзамена по геометрии из какой-то там другой школы. Идея того, что в ответ на вопрос нужно тупо по памяти написать формулу или формулировку теоремы, представлялась смешной всему классу.

Позже в университете для некоторых моих одногруппников казалось странной необходимость доказывать теоремы или выводить формулы. По школьной привычке учить формулы наизусть эти люди учили наизусть и вывод формул, не понимая, что там происходит. При этом многие из них благодаря прилежности хорошо писали контрольные; боялись же они экзамена. У меня история была обратная: всегда было очень трудно попасть на экзамен, потому, что для этого надо было сдать зачёт, а чтобы допуститься на него, нужно было написать все контрольные в семестре. Терпения же и внимательности на решение практических задачек всегда не хватало.

Экзамены по математике в университете я сдавал на 4, 4, 4 и 5 (в четвёртом семестре была теория функции комплексного переменного, которую я обожаю).

Каждый раз, когда я сдавал листочек с ответами Олегу Геннадьевичу, напротив большинства пунктов задания он ставил минус. Потом, когда он вызывал меня отвечать, он спрашивал: почему не решили эту задачу? Я говорил: забыл формулу такую-то и откуда она берётся. Он говорил: ну, а если бы знали формулу, что бы делали? Я отвечал: нашёл бы то-то, подставил бы в формулу, выразил бы это через это и получил бы ответ. Он подсказывал: ну, вот если вы возьмёте то-то, представите это как сумму этого и этого, а потом домножите на то-то, то вы увидите, как вывести формулу. Я садился, выводил формулу, и он ставил мне плюсик, не дожидаясь, пока я решу собственно задачу. Потом мы переходили к следующему пункту. Почему, спрашивал он, не доказали теорему? Я говорил: я знаю, что при соблюдении таких-то условий она вытекает из того-то через то-то и то-то, но совершенно не помню, как от вот этой формулы делается переход дальше. Он говорил: ну дак дальше из того-то следует, что так-то и так-то. А! перебивал его я, ну точно же, и тогда мы сможем заменить это на это, и там то-то то-то сократится и останется как раз то, что нам нужно!

Люди учившие всё наизусть, частенько уходили с двойками, даже если на листочке напротив всего стояли плюсы: когда в ходе разговора выяснялось, что человек не соображает, листочек уже не имел никакого значения. Он ценил понимание больше прилежности, и понимающему человеку готов был прощать лень и плохую подготовку, за что я ему очень благодарен.

Теорема и её доказательство, формула и её вывод, данные в неразрывной связке, воспитывают навык видеть во всём здравый смысл. Не обязательно знать это всё наизусть, чтобы сформировать правильное отношение к математике. Важно, что математика существовала бы, даже если бы не было Пифагора и Фалеса, Эйлера и Коши, Остроградского и Гаусса. Всё работает так, как работает, с неизбежностью, а не потому, что кто-то так придумал.

Когда люди учат в школе теоремы без доказательств, они потом твердят, что факториал нуля равен 1 по определению. Знающие же то, что математика существует независимо от того, что написано в определениях, понимают, что факториал нуля равен 1 объективно, и он оставался бы равен 1, даже если бы об этом никто не написал в определении.

В математике так много разделов и направлений, и они так сильно взаимосвязаны, что практически невозможно придумать способ последовательного изложения всего этого, чтобы никогда не было необходимости ссылаться вперёд. Нужно быть готовым, что иногда тебе придётся поверить во что-то на слово, а уже позже убедиться, что это действительно так. Человек же, приученный всегда верить на слово, про вторую часть мгновенно забывает.

Читайте также: