Сероводород накапливается на уровне 2 метров от пола

Обновлено: 16.05.2024

Сероводород в скважине: чем грозит и что делать

Сероводород в скважине придает воде крайне неприятный запах, напоминающий «аромат» тухлых яиц. Но это, как говорится, еще полбеды. Основная проблема в том, что данный газ очень опасен для здоровья. И последствия использования, а тем более питья воды с подобными примесями будут весьма негативными.

Вариант тут только один – немедленно избавиться от наличия сероводорода в скважине. К счастью, проблему достаточно легко решить, причем несколькими способами. Но для того, чтобы выбрать какой-то конкретный, следует знать особенности каждого из них. Собственно, об этом и пойдет речь в нашей статье.

5 причин появления запаха сероводорода в скважине

Сразу после бурения скважины сероводород в ней может быть не обнаружен: вода поступает чистая, в ней нет посторонних включений, она ничем не пахнет. Такая ситуация указывает на то, что технология проведения бурильных работ не была нарушена и все необходимые действия выполняла команда профессионалов.

Но с течением времени качество жидкости может стать хуже: появляется резкий запах протухших яиц либо тины. При этом он усиливается с каждым днем, пить такую воду становится невозможно. Данный признак указывает на то, что в скважине появился сероводород.

Выделение этого газа происходит из-за размножения анаэробных микроорганизмов, которые обитают в бескислородной среде. Чтобы выжить, они используют энергию химических связей, как побочный продукт этой реакции и образуется сероводород.

Важно! Помимо данного газа, в процессе своей жизнедеятельности микроорганизмы выделяют следующие вещества: меркаптаны, диметилсульфид, 2-метилизоборнеол и другие. Все они имеют резкий запах.

Как понять, почему вода из скважины пахнет сероводородом? Есть множество причин возникновения неприятного запаха.

Причина первая. Серобактерии активизируются после ливневых дождей, образования паводковых вод. Дело в том, что вода, проходя через слои почвы до водоносного пласта, уносит с собой сульфиды и сульфаты. Именно эти вещества используют микроорганизмы: начинается их активный рост и размножение.

5 причин появления запаха сероводорода в скважине

Вторая причина. Произошла разгерметизация обсадной колонны. В такой ситуации соединения серы быстро проникают в питьевую воду, к примеру, после ливня.

Третья причина. При проведении бурильных работ в источник попали сернистые руды. Если такое действительно произойдет, вы сразу заметите, что в скважине сероводород.

Четвертая причина. Водоносный пласт контактирует с месторождением сульфидной руды. Это явление достаточно распространено, поскольку с древних времен человек селился рядом с такими месторождениями.

Обратите внимание! Если вы заметили, что в скважине внезапно появились примеси – сероводород, а также нефть либо хлор, скорее всего, произошло техногенное загрязнение. Например, рядом с вашим населенным пунктом находится завод, который незаконно захоронил токсичные отходы, они проникли в водоносный пласт. Это явление – пятая причина.

Опасность наличия сероводорода в скважине

Допустимая концентрация этого вещества – 0,03 мг/л. Рассмотрим, какое оказывает влияние сероводород в воде из скважины.

  • Если вдыхать воздух с малой концентрацией сероводорода, кислород будет хуже переноситься по кровеносной системе, у человека начнет болеть и кружиться голова, появятся признаки отравления и неприятные ощущения в эпигастральной области, произойдет потеря зрения.
  • Высокие концентрации сероводорода приведут к тому, что человек впадет в бессознательное состояние, у него начнутся судороги, отек легких.
  • Если пить воду, в которой растворена сера, произойдет нарушение обмена веществ.
  • Человек перестанет чувствовать вкус и запахи.
  • Если сероводород соединится с гемоглобином, у человека начнется удушье.
  • При вдыхании сероводород вызывает воспаление слизистых оболочек.

Опасность наличия сероводорода в скважине

Что делать, если в скважине сероводород? Использовать такую воду как техническую нельзя, поливать ей садовые посадки не рекомендуется. Из-за того что вы будете вдыхать газ, произойдет отравление организма. Да и если сера в большом количестве попадет в почву, это негативно скажется на растениях, в результате они могут даже погибнуть.

Раствор серы проявляет свойства кислоты. Соединяясь с железом, которое содержится в воде, образует соли сернистого железа. Это вещество откладывается внутри труб, бытовой техники, из-за чего образуется ржавчина. Самое неприятное, что может произойти, — зарастание водопроводных труб.

Чтобы такого не случилось, необходимо убрать сероводород из скважины. Далее рассмотрим, какие способы борьбы с серой, растворенной в воде, существуют.

Определение присутствия сероводорода в воде

Если сера растворена в воде в малом количестве, вы можете не ощутить едкий запах. А когда концентрация этого вещества слишком высокая, сероводород заблокирует обонятельные рецепторы, и вам будет казаться, что жидкость ничем не пахнет.

Для начала проведите простейший анализ воды прямо у себя дома. Для этого нужно налить жидкость в стеклянный бокал и поставить на подоконник. Если в воде растворена сера, через некоторое время она станет мутной, поскольку сероводород начнет выделяться в результате окисления под действием ультрафиолета.


Чтобы узнать концентрацию этого вещества в воде, придется отвезти жидкость в специальную лабораторию. После проведенного исследования вы будете знать, какие загрязнения содержатся в жидкости и не превышает ли сера предельно допустимую концентрацию.

Определение присутствия сероводорода в воде

Чтобы результаты анализы были точными, необходимо действовать следующим образом:

  • набирайте жидкость в стерильную емкость, чтобы исключить загрязнение;
  • слейте воду в течение 5–10 мин, и только потом набирайте;
  • от момента, когда вы взяли пробу, до лабораторного исследования должно пройти не более 2 часов.

Рекомендация: когда на дне скважины образуется темный осадок, значит, в воде есть сероводород. Концентрацию этого вещества получится узнать только после исследования в лабораторных условиях.

3 основных технологии очистки воды из скважины от сероводорода

Есть несколько способов, с помощью которых можно очистить воду. Выбор метода необходимо осуществлять с учетом результатов исследования. Не обойтись без фильтра для скважины от сероводорода, реагентов либо специального оборудования.

1. Очистка воды с помощью реагентов

Принцип действия этого метода следующий: сера — сильнейший восстановитель, ее можно окислить, используя окислители. С помощью данного способа получится полностью очистить жидкость. Однако его нельзя использовать, если у вас артезианский источник, так как в ходе химической реакции выделяются продукты распада.

Например, в прежние времена, чтобы связать сероводород, применялся свободный хлор, при этом после выделения коллоидной серы была необходима коагуляция, а также очистка воды. Чтобы убрать сероводород в скважине, данный метод нельзя использовать. Едкий запах придется устранять, устанавливая угольные фильтры.

Сейчас, чтобы окислить сероводород, используют озон, гипохлорит натрия и перекись водорода. Благодаря их взаимодействию образуются нерастворимые включения, которые задерживает система фильтров. В краны жидкость поступает 100 % чистая.

3 основных технологии очистки воды из скважины от сероводорода

  • Удаление сероводорода с помощью гипохлорита натрия

В фильтрующую колонну необходимо добавить концентрированное вещество, предварительно смешав его с дистиллированной водой. Используется насос-дозатор, который в нужном количестве добавляет в скважину гипохлорит натрия. За счет импульсного счетчика контролируется то, насколько часто будет подаваться реагент. Когда он смешивается с жидкостью, происходит окисление соединений железа и марганца, разрушается сероводород. Поскольку применяется химический реагент и требуется разбавлять его с дистиллированной водой, данный способ не подходит для применения в быту.

  • Очищение воды с помощью пероксида водорода

Данный вариант – альтернатива предыдущему методу. Однако этот способ более экологичный и безопасный. Дело в том, что гипохлорит образует ядовитые производные хлора, они не поддаются биохимическому окислению. В этом же случае также используется система дозирования.

  • Удаление сероводорода из скважины с помощью озона

Озонирование – наиболее популярный метод очищения скважины от сероводорода. Газ озон – сильнейший природный окислитель. Он окисляет растворенное железо, сероводород, а также убивает опасные микроорганизмы, вирусы. Озон — это активная форма кислорода, и его излишки переходят в кислород.

Этот газ используется для стерилизации, при этом эффективность его применения выше, чем ультрафиолетового излучения или хлора. Оборудование для озонирования нельзя назвать бюджетным, однако, чтобы использовать такую систему, не нужны реагенты либо дополнительное обслуживание, поскольку озон генерируется из воздуха.

2. Физический метод

Самым популярным методом очищения воды является физическая аэрация, она бывает следующих видов:

  • вакуумно-эжекционная аэрация, для подсоса воздуха в водяной поток применяют специальное оборудование;
  • напорная аэрация, воздух подается благодаря работе компрессора;
  • упрощенная аэрация, когда вода разбрызгивается и ее капли пролетают через воздух от разбрызгивающих насадок до зеркала воды.

Удаление сероводорода из скважины с помощью озона

Во время аэрации жидкость с сероводородом соприкасается с кислородом. Парциальное давление практически равно нулю, благодаря этому снижается содержание серы в воде. Можно приобрести аэрационные установки нескольких видов:

  • пленочные дегазаторные, они выполнены в виде колонок с несколькими насадками, через которые жидкость протекает тонкой пленкой;
  • пенные дегазаторные (барботажные дегазаторные), в них сжатый кислород продувается через слой дегазируемой жидкости;
  • вакуумные дегазаторные, в них с помощью вакуумных насосов, паро- либо водоструйных эжекторов вода закипает при нормальной температуре в безвоздушной среде.


3. Физико-химический метод

В этом случае происходит процесс сорбции: жидкость под напором проходит через активированный либо древесный уголь. При соприкосновении с фильтрующим веществом происходят реакции обмена, и молекулы сероводорода окисляются, а затем распадаются на простую серу и ее соединения. При этом пористая поверхность материала задерживает токсичные соединения.

Для фильтрации чаще всего используется каталитический уголь Centaur американского производства. С его помощью получится удалить из воды серу, железо, хлорамины, нефтепродукты. После такой очистки улучшаются вкусовые характеристики питьевой воды. Centaur применяют, когда концентрация сероводорода в воде не более 6,0 мг/л.

Новое Место. Отзыв Егора Кончаловского о монтаже септика:

С помощью данного метода получается практически полностью очистить жидкость, однако время контакта должно быть не менее 3 минут. Прежде чем подавать воду в фильтр, ее нужно аэрировать. Поэтому потребуется эжектор либо компрессоры. Для промывки загрузки применяется противоток воды, поэтому нет необходимости в дополнительных восстановителях.

Следующая эффективная загрузка для фильтрации — марганцовокислый зеленый песок (Manganese Greensand). Получают марганцевый цеолит во время обработки натурального минерала глауконита. При использовании такой загрузки сероводород окисляется до серы и сульфатов. Остаток фильтруется, когда вода проходит через слой гранулированного материала. Продается Manganese Greensand в мешках 28 л, такого объема достаточно для использования в течение трех лет.

Физико-химический метод

У такого способа очистки есть много преимуществ: из скважины удаляется до 98 % сероводорода, вода очищается и дезодорируется, кроме того, можно фильтровать жидкость в большом объеме. Есть также и недостатки: стоимость сорбентов высокая, необходим большой объем воды для фильтрации, скорость которой невысокая. Однако лишь этот метод позволяет практически полностью очистить жидкость.

Не важно, какой способ фильтрации вы выберете, если в скважине сероводород, действовать необходимо следующим образом.

Прежде всего удаляем илистые отложения со дна источника, со стенок труб. Важно производить такую чистку каждые 2 года. Также необходимо прокачивать скважину, чтобы удалить глину и песок. Помните, что трубы должны быть герметичны, если это не так, следует заменить их. Так вы не допустите образования питательной среды для серобактерий, в результате в скважине не будет образовываться сероводород. Только после выполнения этих манипуляций можно приступать к очистке воды.

Чтобы эффективно бороться с неприятным запахом, вспомните, когда вода начинает пахнуть сильнее всего. Все вышеописанные рекомендации относятся только к холодной воде, которая поступает из источника. Если же неприятный запах появился у горячей воды, необходимо осмотреть трубчатые электронагреватели бойлеров. Скорее всего, оборудование функционирует неправильно, накапливаются соли, в которых размножаются серобактерии. Тогда придется выполнять промывку водонагревательной системы, а также установить сорбционный фильтр.

Третий газ

Современная физиология живет по команде: «Газы»! Сначала оказалось, что простая неорганическая молекула монооксид азота (NO) регулирует просвет сосудов, влияет на работу иммунной системы и выполняет функции нейротрансмиттера. В середине 1990-х годов компанию ему составил еще один сосудорасширяющий газ — монооксид углерода (CO). Но исследователи не прекращали поиски и обнаружили третий газ-регулятор — сероводород. Он тоже расширяет сосуды, а еще выполняет множество других функций, исследование которых продолжается до сих пор.

Вот — сероводород

Мысль о сероводороде ни у кого не вызывает восторга: уж очень он вонючий, а главное — ядовитый. H2S легко проникает сквозь клеточные мембраны, связывает ионы железа и нарушает клеточное дыхание. Первой страдает нервная система. Конечно, если понюхать разок-другой тухлое яйцо, это здоровью не повредит, но систематическое пребывание в атмосфере сероводорода вызывает чихание и кашель, общую слабость, головную боль, тошноту, головокружение и бессонницу. При концентрации газа 700 мг/м 3 у человека начинаются судороги и он теряет сознание, а при 1000 мг/м 3 умирает в течение нескольких минут.

К счастью, в организме сероводород присутствует в значительно меньшей концентрации; в сыворотке и большинстве тканей она составляет около 50 мкМ, и только в мозгу в три раза выше и приближается к опасному уровню.

Сероводород в организме образуется в результате ферментативных реакций. Субстратом для них служит серосодержащая аминокислота L-цистеин, а возможных путей синтеза два (см. рис.). В одном случае две молекулы цистеина образуют цистин, который при участии фермента цистатионин-γ-лиазы (ЦЛ) расщепляется на тиоцистеин, пируват и аммиак. Затем тиоцистеин, уже без всяких ферментов, распадается на цистеин и сероводород. Второй метаболический путь начинается с конденсации цистеина и гомоцистеина, при которой высвобождается сероводород. Этот процесс регулирует фермент цистатионин-β-синтаза (ЦС). ЦС действует в основном в центральной нервной системе, а ЦЛ — в клетках гладкой мускулатуры сосудистых стенок и кардиомиоцитах (мышечных клетках сердца). В печени и почках работают оба фермента. H2S в организме не накапливается — он окисляется до тиосульфата, сульфита и сульфата, его уровень иногда определяют по содержанию тиосульфата в моче.

Изображение: «Химия и жизнь»

Сероводород — молекула, весьма способная к химическим реакциям, особенно с теми соединениями, которые содержат кислород и азот, в том числе с супероксиданионом (O2 – ), гипохлоридом (ClO – ), пероксинитритом (ONOO – ). Все эти ионы повреждают белки и липиды, a H2S, следовательно, защищает от повреждений многие молекулы. Взаимодействует сероводород и с оксидом азота, понижая его концентрацию в сыворотке (a NO, в свою очередь, влияет на синтез H2S).

Один из корифеев сероводородоведения, американский исследователь Соломон Снайдер, обнаружил, что молекулы H2S взаимодействуют с серосодержащими аминокислотами некоторых белков, изменяя таким образом их конформацию и активность. Этот процесс Снайдер назвал сульфгидрацией. В ходе сульфгидрации сера атакует связь «сера-водород», превращая ее в связь «сера-сера-водород». В результате цистеин приобретает дополнительный атом серы, пространственная структура белковой молекулы меняется, и она становится более доступной для других химических реакций. Оксид азота, по предварительным данным, взаимодействует с белками аналогичным образом, однако он преобразует примерно одну из ста молекул цистеина, а сульфгидрация модифицирует 10-20 аминокислот из каждой сотни. Возможно, сероводород действует менее избирательно, чем оксид азота, для которого большее значение имеет положение цистеина в молекуле белка. Снайдер полагает, что H2S изменяет активность по крайней мере сорока белков печени. Один из этих белков — глицеральдегид-3-фосфатдегидрогеназа (GAPDH), которая участвует в процессе гликолиза. Под действием сероводорода активность фермента возрастает в семь раз. Физиологи с нетерпением ждут продолжения исследований в этой области. Вообще, данных о сероводороде на различные физиологические параметры довольно много, но в систему они пока не приведены и подчас противоречивы.

Сероводород и сосуды

Сероводород прославился как сосудорасширяющий газ. Обнаружил это свойство канадский ученый Ван Жуй методом научного тыка. Он работал и с крысиными артериями, и с живыми крысами, которым вводил в вену сероводород или раствор NaHS в физиологических концентрациях. (Раствор гидросульфида натрия диссоциирует на катионы Na + и анионы HS – , которые затем взаимодействуют с ионами водорода и образуют H2S.) Во время опыта животные находились под наркозом, который избавил их от переживаний и связанных с ними скачков давления. Оказалось, что сероводород вызывает расслабление гладкой мускулатуры сосудистых стенок. В результате сосуды расширяются, а артериальное давление падает секунд на 30. Частота сердечных сокращений при этом не менялась. Ван также выяснил, что на уровень сероводорода в клетках влияет NO. Он повышает активность ЦЛ в сосудистой стенке, но как именно это делает, ученым не вполне ясно.

Профессор Ван Жуй из Канады обнаружил, что сероводород расширяет сосуды. Изображение: «Химия и жизнь»

Профессор Ван Жуй из Канады обнаружил, что сероводород расширяет сосуды. Изображение: «Химия и жизнь»

Механизм действия сероводорода отличается от эффекта других сосудорасширяющих газов. NO и СО активно проникают в гладкую мускулатуру кровеносных сосудов и активируют фермент гуанилилциклазу. Этот фермент вызывает образование циклического ГМФ, который, в свою очередь, запускает цепь реакций, приводящую к расслаблению сосудистых стенок. Сероводород же активизирует работу мембранных АТФ-зависимых калиевых каналов, которые «затаскивают» ионы калия из внеклеточной среды внутрь клетки. В результате этой деятельности клеточная мембрана становится гиперполяризованной, что в конечном счете приводит к расслаблению гладкой мускулатуры и расширению сосудов.

Интересно, что сероводородный механизм расширения сосудов ученые обнаружили у всех позвоночных, от рыб до человека, следовательно, он более древний, чем механизм с участием NO, который появился только у амфибий.

Фактически Ван открыл новый механизм воздействия эндогенного газа на сосуды, но не успокоился на достигнутом. Для продолжения исследований он создал генетически-модифицированных мышей с удаленным геном цистатионин-γ-лиазы (CSE) и привлек к работе Соломона Снайдера. (Снайдер в свое время изучал фермент, ответственный за продукцию оксида азота, и Ван надеялся на его помощь в аналогичных исследованиях сероводорода.)

Все мутантные мыши, как гомозиготные, то есть с двумя мутантными генами, так и гетерозиготные, с одним мутантным геном и одним нормальным, были вполне жизнеспособны, плодовиты и внешне неотличимы от животных дикого типа. Однако содержание сероводорода в крови, сердечной мышце и стенке аорты у гомозигот составляло всего 20% от нормального уровня, а у гетерозигот — 50%. Уровень H2S в сыворотке крови также был ниже нормы. Но отсутствие цистатионин-γ-лиазы не повлияло на уровень сероводорода в тканях мозга, где его синтез обеспечивает цистатионин-β-синтаза.

С возрастом у мутантных мышей развивалась гипертония. У двенадцатинедельных гомозиготных животных давление превышало норму на 18 мм. рт. ст., то есть примерно на 15%. Инъекция NaHS на некоторое время понижала кровяное давление, причем у мутантов сильнее, чем у животных дикого типа. Очевидно, мутантные мыши обладают большей чувствительностью к сероводороду.

Мыши Вана прославились на весь мир, и одна из них даже удостоилась фотографии в журнале Nature на фоне большого тонометра. А тут подоспел итальянец Джузеппе Кирино со своими крысами, у которых он с помощью инъекций гидросульфида натрия или L-цистеина (субстрата для синтеза H2S) вызвал эрекцию. Она ведь тоже возникает благодаря расширению сосудов. По данным ученого, ткань человеческого пениса содержит оба фермента, превращающих цистеин в сероводород: ЦЛ и ЦС. Они работают в мышечных тяжах пениса и гладкомышечных компонентах пенильной артерии, а ЦЛ еще и в периферических нервах. Профессор Кирино надеется, что в будущем ученые создадут препарат, который поможет вырабатывать сероводород в нужное время в нужном месте.

Однако действие сероводорода на сосуды не исчерпывается их расширением. Ведь где сосуды, там и атеросклероз. Он возникает по разным причинам: из-за отложения липидных бляшек, разрастания гладкомышечных клеток сосудистой стенки, ее воспаления или повреждения. Благодаря опытам на крысах ученые выяснили, что сероводород тормозит деление мышечных клеток аорты и вызывает их апоптоз, а также препятствует кальцификации стенок. В некоторых случаях он подавляет воспалительную реакцию, в других, правда, стимулирует.

Кроме того, сероводород защищает сосуды от повреждающего действия активных форм кислорода и гомоцистеина. Эта аминокислота — метаболический предшественник цистеина, метионина и серы. При избытке гомоцистеина в плазме возрастает риск развития атеросклероза и смерти от сердечно-сосудистых заболеваний. Инъекции NaHS приводят к сокращению атеросклеротических бляшек у линии крыс, которые склонны к их образованию. Зато они же замедляют восстановление поврежденной внутренней оболочки артерии.

Сероводород и другие болезни

АТФ-зависимыми калиевыми каналами изобилуют миокардиоциты — клетки сердечной мышцы. И сероводород влияет на их жизнеспособность. Так, у крыс с экспериментально вызванным инфарктом уровень H2S в миокарде и плазме составляет лишь 40% от физиологической нормы, а инъекции гидросульфида натрия снижают крысиную смертность и уменьшают постинфарктную область некроза. А если оросить крысиное сердце раствором NaHS до инфаркта, сероводород уменьшит область последующего поражения.

Еще один тип клеток, в котором много калиевых каналов — β-клетки поджелудочной железы, которые вырабатывают инсулин. Но при сахарном диабете сероводород не поможет, напротив, его избыток мешает β-клеткам адекватно реагировать на изменение концентрации глюкозы. В крови больных диабетом исследователи находят излишек цистеина и избыточную активность обоих ферментов, ЦС и ЦЛ. Таким пациентам, возможно, помог бы хороший ингибитор ферментов.

Уровень сероводорода повышен и у крыс, пострадавших от септического шока. Сепсис — это бактериальная инфекция, а липополисахариды бактериальной стенки расширяют сосуды. Эффект бывает так велик, что больной теряет сознание. Оказывается, и здесь не обходится без H2S .

А еще он защищает слизистую оболочку желудка от некоторых повреждений, вызванных аспирином и нестероидными противовоспалительными лекарствами, зато другие повреждения, вызванные теми же препаратами, усугубляет. Неоднозначна роль H2S и в развитии воспаления. А вообще, существует довольно длинный и постоянно растущий список расстройств, связанных с изменением концентрации сероводорода, при которых помогает либо инъекция раствора NaHS, либо ингибитор соответствующего фермента. Большинство этих данных получены на крысах (низкий им поклон!), и сейчас исследователи разбираются в том, как обстоят дела у людей.

Сероводород и нервная система

В мозгу, как мы помним, за синтез H2S отвечает фермент цистатионин-β-синтаза. (Интересно, что и NO, и CO, ингибируют действие ЦС в мозгу, а в сердечно-сосудистой системе оксид азота повышает активность ЦЛ.)

У человека ген ЦС находится в 21-й хромосоме. Следовательно, в мозгу пациентов с болезнью Дауна (трисомия по 21-й хромосоме) ЦС должно быть больше нормы. И действительно, у этих больных обнаружили в моче избыток тиосульфата — продукта утилизации H2S, что косвенно свидетельствует о повышенном содержании сероводорода в мозгу больных. А сероводород, как мы помним, сильный нервный яд — ингибитор клеточного дыхания, к тому же он обладает свойством чрезмерно стимулировать нейроны. Не исключено, что избыток H2S вносит изрядную лепту в умственную отсталость пациентов с тремя 21-ми хромосомами. Неудивительно также, что повышенную концентрацию сероводорода специалисты обнаруживают в коре головного мозга больных ишемическим инсультом, а ингибиторы ЦС уменьшают площадь поражения. Но, с другой стороны, сероводород защищает нейроны от действия другого нейротоксина, глутамата, который в избытке образуется при эпилептических припадках, фибрильных судорогах, ишемии мозга или травмах. Начало судорог, оказывается, стимулирует активность ЦС в гиппокампе и повышает уровень сероводорода в плазме. Возможно, синтез сероводорода представляет собой защитную реакцию организма на судороги, поскольку введение гидросульфида натрия смягчает их последствия. Кроме того, H2S оберегает мозг от действия активных форм кислорода и азота.

В конце прошлого века японские ученые из лаборатории профессора Хидео Кимуры обнаружили, что в мозгу пациентов с болезнью Альцгеймера уровень сероводорода ниже, чем у здоровых людей того же возраста, из-за дефицита S-аденозилметионина, активатора ЦС. Введение гидросульфида натрия усиливает длительную активацию нейронов гиппокампа — отдела мозга, ответственного за научение и память. Возможно, сероводород поддержал бы угасающую память больных. H2S также активизирует астроциты — клетки, которые снабжают нейроны питательными веществами, а возможно, и участвуют в передаче информации.

Лечиться будем?

Все вышеизложенное — лишь краткий и неполный рассказ о физиологической роли сероводорода. Исследований, проведенных на людях, гораздо меньше, чем на животных, а молекулярные механизмы действия H2S не всегда понятны. Однако ясно уже сейчас, что введение сероводорода может помочь пациентам с гипертонией различной этиологии, ишемической болезнью сердца, эректильной дисфункцией, гастритами, колитами, фебрильными судорогами. Пострадавшим от септического шока, панкреатита и ишемического инсульта сероводород вреден, и таким больным нужно вводить ингибиторы фермента. Сделать это, однако, гораздо сложнее, чем кажется на первый взгляд.

Например, в какой форме назначать пациенту сероводород? Дышать им неприятно, а контролировать его терапевтический эффект сложно, поскольку он зависит от многих факторов, в том числе от действия других газов-регуляторов, оксидов азота и углерода. Контролировать концентрацию тоже сложно, а газ ядовитый. Постоянно жевать свежий чеснок, который стимулирует образование H2S в организме, — нереально. Вводить больному гидросульфид натрия тоже плохо, потому что эта соль быстро разлагается и может вызвать резкое падение давления. Идеальный донор сероводорода, который высвобождал бы H2S постепенно и долго, пока не нашли.

Известные ингибиторы ЦС и ЦЛ тоже нельзя использовать в качестве лекарств, потому что они действуют неизбирательно. Один из ингибиторов, пропаргилглицин, ядовит и годится только для экспериментов на животных, другие плохо проходят через клеточные мембраны.

Существуют, правда, лекарства, которые влияют на уровень сероводорода. Большинство из них используют для регуляции синтеза NO, например L-аргинин, который стимулирует образование H2S при легочной гипертонии (гипертонии, вызванной долгим пребыванием при пониженном давлении). Ацетилсалициловая кислота и нестероидные противовоспалительные лекарства ингибируют активность ЦС при заболеваниях слизистой желудка. Возможно, эффективными окажутся и некоторые препараты, традиционно назначаемые при болезнях сердечно-сосудистой системы.

Исследования идут полным ходом. Западные фармацевтические фирмы сейчас вовсю работают над тем, как приспособить сероводород для терапевтических целей и сотрудничают с ведущими специалистами. Ванг, например, работает над внедрением сероводородных групп в уже существующие лекарства, в том числе силденафил и обезболивающие аспирин и диклофенак. Другие исследователи пытаются найти иные переносчики сероводорода.

Наверное, усилия ученых в конце концов увенчаются успехом, но вряд ли они смогут предложить человечеству панацею. Далеко не все исследователи разделяют мнение Соломона Снайдера, который отводит сероводороду главную роль во внутриклеточной сигнализации. Многие полагают, что H2S — лишь один из регуляторов, роль которого особенно велика в тех тканях, где поврежден или отсутствует сосудистый эндотелий, а следовательно — оксид азота.

А если все-таки подышать?

Совершенно неожиданный эффект сероводорода обнаружили сотрудники лаборатории американского исследователя Марка Рота. Оказалось, что этот газ повергает животных в состояние, подобное летаргическому сну или начальному этапу зимней спячки. Исследователи помещали мышей в прохладную камеру, в атмосферу, содержащую 80 миллионных долей H2S. В первые же минуты животные стали засыпать и остывать, при этом потребление кислорода у них уменьшилось вполовину, а выделение CO2 — на 60%. Через шесть часов пребывания в камере температура поверхности мышиного тела была всего на два градуса выше внешней (15°C при 13°C в камере), а потребление кислорода и выделение углекислого газа при этом составляли только 10% от нормы. Частота дыхания тоже сократилась от 120 до 9–10 вдохов в минуту. Ученые обнаружили линейную зависимость между концентрацией сероводорода и температурой поверхности тела. Когда после шестичасовой экспозиции мышей возвращали в обычные условия, они постепенно приходили в норму. Длительное пребывание в атмосфере, содержащей ядовитый газ, не повлияло на их последующее поведение и не вызвало никаких функциональных нарушений. Причину «охлаждающего» эффекта сероводорода ученые видят в том, что этот газ специфически подавляет работу ферментативного комплекса цитохром-с-оксидазы, одного из важнейших ферментов клеточного дыхания. Но вряд ли H2S в естественных условиях принимает участие в регуляции зимней спячки или возникновении летаргического сна, поскольку концентрации газа, использованные в эксперименте, были слишком далеки от физиологических.

Состояние, в которое впадают мыши под действием H2S, интересует ученых с практической точки зрения. Возможность управлять этим процессом пригодилась бы при некоторых хирургических операциях и консервации органов. Так что исследования в этой области продолжаются. И безусловно, физиологи продолжат поиски других газов-регуляторов. Скорее всего, на очереди у них аммиак.

Что вам нужно знать о сероводороде

Газ образуется в результате бактериального разложения органических материалов в отсутствие кислорода. Этот бесцветный, легковоспламеняющийся, ядовитый и коррозийный H2S газ характеризуется запахом тухлых яиц.

При токсичности, схожей с оксидом углерода, который препятствует клеточному дыханию, мониторинг и раннее обнаружение H2S путем измерений может означать разницу между жизнью и смертью.

Последствия кратковременного воздействия сероводорода

Воздействие высоких уровней газа может мгновенно ослабить обоняние. Хотя запах H2S является характерной чертой, обоняние не является надежным индикатором присутствия H2S газа или индикатором увеличения концентрации газа.

H2S раздражает, среди прочего, слизистые оболочки организма и дыхательные пути. После воздействия, кратковременного или острого, симптомы могут включать головную боль, тошноту, конвульсии, раздражение глаз и кожи.

Травмы центральной нервной системы могут быть непосредственными и серьезными после воздействия. При высоких концентрациях требуется лишь несколько вдохов, чтобы вызвать потерю сознания, кому, паралич дыхания, судороги и даже смерть.

Последствия долговременного воздействия сероводорода

Дигидросульфид не накапливается в организме, однако многократное/длительное воздействие при умеренных уровнях может привести к понижению кровяного давления, головной боли, потере аппетита и потере веса. Длительное воздействие при низких концентрациях может вызвать болезненную кожную сыпь и раздражение глаз. Многократное воздействие с течением времени высокого уровня H2S может привести к конвульсиям, коме, повреждению мозга и сердца и даже к смерти.

Воздействие сероводорода на промышленные объекты

Дигидросульфид тяжелее воздуха, он накапливается на уровне земли в плохо вентилируемых помещениях. В нефтегазовой промышленности кислый газ (продукты, содержащие H2S газ) в присутствии воздуха и влаги может образовывать серную кислоту, способную вызывать коррозию металлов.

Оборудование и установки, в том числе внутренние поверхности различных компонентов, имеет пониженную износостойкость и ударную прочность, что может привести к преждевременному выходу из строя.

Помощь пострадавшим от воздействия сероводорода

Лица, подвергшиеся воздействию H2S газа, должны немедленно удалиться из токсичной среды. Спасатели должны проявлять осторожность при приближении к жертвам отравления, которые не могут эвакуироваться самостоятельно, чтобы не пострадать самим от воздействия H2S.

Рекомендуется защита органов дыхания при контакте с сульфидом водорода, из-за очень быстрого токсического воздействия газа.

Не существует доказанных антидотов к отравлению H2S газом, но побочные эффекты и симптомы можно лечить или устранять. В серьезных случаях может потребоваться госпитализация.

Рекомендуем вам позвонить врачу или обратиться к нему в экстренном случае, если в течение 24 часов после контакта с дигидросульфидом у вас возникнут какие-либо побочные эффекты или симптомы из перечисленных:

  • Кашель, хрипы, затрудненное дыхание, одышка.
  • Боль в груди.
  • Боль в животе.
  • Рвота.
  • Головная боль.
  • Покрасненение, боль или гной в области кожного ожога.

ПАМЯТКА по действиям населения при обнаружении сероводорода в атмосфере

ПАМЯТКА по действиям населения при обнаружении сероводорода в атмосфере

Сероводород H2S – бесцветный газ с запахом, напоминающим тухлые яйца. Будучи очень токсичным, H2S воздействует в первую очередь на нервную систему, вызывает сильные головные боли, судороги и может привести к коме. Смертельная концентрация сероводорода составляет примерно 1 000 мг/м 3 . При концентрации от 6 мг/м 3 начинаются головные боли, головокружения и тошнота.

Предельно-допустимая концентрация (ПДК)

ПДК сероводорода (H2S) в воздухе населенных мест - 0,008 мг/м 3 (Постановление Главного государственного санитарного врача РФ от 22 декабря 2017 г. № 165 "Об утверждении гигиенических нормативов ГН 2.1.6.3492-17 "Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе городских и сельских поселений").

Ощутимый запах сероводорода отмечается при концентрации сероводорода 1,4—2,3 мг/м 3 , значительный запах — при 4 мг/м 3 , тяжелый запах при 7—11 мг/м 3.

При обнаружении сероводорода в атмосфере

Всем гражданам, оказавшимся на улице, укрыться в зданиях, нельзя укрываться в подвалах и полуподвалах. Сероводород значительно тяжелее воздуха и имеет свойство накопления в понижениях рельефа: оврагах, балках, руслах рек, а в населенных пунктах - в подвалах, полуподвалах, погребах.

Если вы находитесь в помещении:

- закрыть входные двери, окна (в первую очередь с наветренной стороны);

- по возможности заклеить вентиляционные отверстия плотным материалом или бумагой; уплотнить двери мокрыми простынями, одеялами. Неплотности в оконных проемах заклеить скотчем, пластырем, бумагой или уплотнить ватой, поролоном и т. п.;

- подготовить индивидуальные средства защиты органов дыхания (ватно-марлевые повязки, смоченные в воде (2%-ном растворе питьевой соды), респираторы, противогазы);

Если вы находитесь вне населённых пунктов и почувствовали неприятный специфический запах «тухлых яиц» или просто запах газа, определите направление ветра. Далее двигайтесь перпендикулярно (поперёк) направлению ветра. Эти действия позволят вам максимально быстро покинуть зону загазованности и избежать токсического отравления.

Ватно-марлевая повязка состоит из обычной медицинской марли, сложенной в четыре слоя. Между слоями марли можно проложить вату. Количество ваты должно быть таким, чтобы повязка не слишком затрудняла дыхание. Стандартная повязка имеет прямоугольную форму и четыре завязки. Размеры должны быть такими, чтобы повязка закрывала рот и нос. Верхние углы марлевого прямоугольника должны доходить почти до ушей, а нижняя часть повязки должна закрывать подбородок. Две верхние завязки должны проходить над ушами и завязываться на затылке. Две нижние повязки должны проходить под ушами и завязываться также на затылке.

При возникновении чрезвычайных ситуаций осуществить вызов одной экстренной оперативной службы можно по отдельному номеру любого оператора сотовой связи: это номера 101 (служба пожарной охраны и реагирования на ЧС), 102 (служба полиции), 103 (служба скорой медицинской помощи), 104 (служба газовой сети)

Единый телефон доверия ГУ МЧС России по Оренбургской области (3532) 30-89-99

Источники выбросов сероводорода

загрязнение воды

Сероводород входит в состав окружающей среды; население в целом будет подвергаться воздействию сероводорода. Сероводород может выбрасываться в воздух, воду и почву в местах его производства или использования.

Отдельные группы людей могут подвергаться большему воздействию сероводорода, чем все население в целом, если они живут рядом с природными или промышленными источниками сероводорода, такими как фермы, резервуары для хранения навоза или целлюлозно-бумажные комбинаты. Однако уровни воздействия, которым они подвергаются, вряд ли приблизятся к тем, от которых заболевают люди на работе.

Источники выброса сероводорода в воздух

Наиболее распространенными антропогенными источниками выбросов H2S являются добыча и переработка нефти и природного газа. Он также образуется при бактериальном разложении отходов жизнедеятельности человека и животных и присутствует в выбросах очистных сооружений и свалок.

Сероводород также может выделяться из промышленных источников, таких как нефтеперерабатывающие заводы, заводы по производству природного газа, бумажные фабрики, установки по переработке навоза, очистные сооружения и кожевенные заводы. Для обеспечения безопасности работников такие предприятия заказывают измерения сероводорода в воздухе.

Концентрация сероводорода в воздухе из природных источников колеблется от 0,00011 до 0,00033 частей на миллион (ppm). В городских районах концентрация воздуха, как правило, составляет менее 0,001 ppm.

Сульфид водорода остается в атмосфере примерно 1-42 дня, в зависимости от сезона. В воздухе он может превращаться в диоксид серы и сульфаты.

Запах H2S чрезвычайно сильный и неприятный, он может вызвать слезотечение и симптомы, связанные с чрезмерной стимуляцией обоняния, включая головную боль, тошноту или рвоту. Запах H2S обнаруживается при малых концентрациях, но не ощущается при больших.

Источники выброса сероводорода в воду

Сероводород может попасть в воду в жидких отходах промышленного предприятия или в результате природных явлений. Он может естественным образом присутствовать в колодезной воде.

Концентрация сероводорода в поверхностных водах обычно очень низкая, так как он легко испаряется из воды. Он также может присутствовать в подземных водах.

Источники сероводорода в почве

Сероводород может попасть в почву в результате атмосферного выпадения или разливов. В почве сероводород потребляется бактериями, которые превращают его в серу.

Сероводород и здоровье

загрязнение атмосферного воздуха

Газообразный сероводород вызывает широкий спектр последствий для здоровья. Рабочие в первую очередь подвергаются воздействию сероводорода, вдыхая его. Эффект зависит от того, сколько сероводорода вы вдыхаете и как долго. Воздействие очень высоких концентраций может быстро привести к смерти.

В этой статье рассматривается, как сероводород попадает в организм и его потенциальное сероводорода на здоровье, обнаруженное в исследованиях на людях и животных.

Как сероводород попадает в организм

Сероводород поступает в организм в основном через воздух, которым вы дышите. Гораздо меньшее количество сероводорода может попасть в организм через кожу.

Как сероводород покидает ваше тело

В организме сероводород в первую очередь превращается в сульфат и выделяется в моче. Сероводород быстро выводится из организма.

Воздействие сероводорода на здоровье

Воздействие сероводорода на здоровье зависит от нескольких факторов, таких как количество сероводорода, которому Вы подвергаетесь, и длительность этого воздействия.

Исследования показывают, что наиболее чувствительными объектами токсического воздействия сероводорода являются дыхательные пути и нервная система. Никакого воздействия на здоровье людей, подвергшихся воздействию типичных для окружающей среды концентраций сероводорода (0,00011-0,00033 частей на миллион [ppm]), обнаружено не было.

Воздействие на дыхательные пути

Воздействие низких концентраций сероводорода может вызвать раздражение глаз, носа или горла. Это также может вызвать затруднение дыхания у некоторых астматиков.

У людей, подвергшихся воздействию очень высоких концентраций сероводорода, обнаружены проблемы с дыханием или остановка дыхания.

Воздействие на нервную систему

Воздействие низких концентраций сероводорода может вызвать головные боли, ухудшение памяти, усталость и проблемы с равновесием.

Кратковременное воздействие высоких концентраций сероводорода (более 500 ppm) может привести к потере сознания. В большинстве случаев человек, как представляется, приходит в сознание без каких-либо других последствий. Однако у некоторых людей могут наблюдаться постоянные или долговременные эффекты, такие как головные боли, нарушение внимания, ухудшение памяти и двигательных функций.

Сероводород и раковые заболевания

Не было доказано, что сульфид водорода вызывает рак у человека, и его возможная способность вызывать рак у животных не была тщательно изучена. Международное агентство по изучению рака (IARC) не относит сероводород к разряду канцерогенных веществ.

Читайте также: