Распределитель для теплого пола водяного тим

Обновлено: 25.04.2024

Распределитель для теплого пола водяного тим

Официальный представитель в России

Режим работы: Пн-Сб:10:00 - 18:00 Вс: выходной

141068, Московская область, г Королев, Микрорайон Текстильщик, ул Калининградская, д 24, корп 1

ВНИМАНИЕ! ДЛЯ ЗАКАЗОВ САМОВЫВОЗОМ ОБЯЗАТЕЛЬНО НУЖНО ПОЛУЧИТЬ ПОДТВЕРЖДЕНИЕ МЕНЕДЖЕРА ПО ТЕЛЕФОННОЙ СВЯЗИ. ОТПРАВЛЯЕМ ГРУЗ ПО ВСЕЙ РОССИИ И СНГ В ДЕНЬ ОПЛАТЫ СЧЕТА. ЦЕНЫ НА САЙТЕ УКАЗАНЫ С НДС, КОМПАНИЯ РАБОТАЕТ ЗА НАЛИЧНЫЙ И БЕЗНАЛИЧНЫЙ РАСЧЕТ. ПРЕДОСТАВЛЯЮТСЯ БОЛЬШИЕ СКИДКИ СТРОИТЕЛЬНЫМ КОМПАНИЯМ И ОПТОВЫМ ПОКУПАТЕЛЯМ.

Внимание! На сайте представлены мелкооптовые цены! ПОЛУЧИТЬ ОПТОВЫЙ ПРАЙС-ЛИСТ.

Трехходовые и термостатические смесительные клапаны TIM (ТИМ)

В нашем интернет-магазине ГлавТепло.ком, в широком ассортименте представлены Трехходовой и термостатический смесительный клапан TIM (ТИМ), которые можно заказать неотходя от компьютера, через корзину сайта или по телефону. Если Вам сложно сделать выбор, то обратитесь к нашим специалистам с просьбой проконсультировать Вас. Наши специалисты, помогут сделать правильный выбор, учитывая все Ваши пожелания. Трехходовой и термостатический смесительный клапан TIM (ТИМ) могут быть доставлены нашей курьерской службой в г. Москва и по области ( Хотьково, Чехов, Лобня) или транспортными компаниями в Саранск, Псков, Волгоград и др. регионы России в кратчайшие сроки: 1-3 дня. Оплатить Термостатический смесительный клапан TIM (ТИМ) Вы можете несколькими удобными для Вас способами: наличными, безналичным расчетом и электронным деньгами. Мы уверены, что сделав покупку у нас, Вы останитесь довольны и будете рекомендовать своим близким и знакомым. Специально для Вас была разработана система скидок для постоянных клиентов, которой Вы сможете воспользоваться после получения товара.

График работы

Пн. - Пт. : с 10:00 до 19:00
Сб. : с 10:00 до 14:00
Вс. : выходной

Наши контакты

Как настроить байпас смесительного узла TIM JH-1036

Насосно-смесительная группа TIM JH-1036 имеет регулируемый байпас. Есть шкала с градацией от 0 до 5, но что означают эти цифры уже невозможно узнать после установки байпаса. Сложно понять и зачем он нужен, ведь в других смесительных узлах для теплого пола нет подобного приспособления.

Мне же пришлось очень подробно изучить работу байпаса смесительного узла в результате неправильного подключения его ввода и вывода к системе отопления.

После предыдущей установки смесительного узла TIM JH-1036 настроить байпас не было возможности, поскольку нет инструкции по его настройке, а конструкцию перед установкой не изучил - не снимать же его. Теперь перед установкой изучил и сфоткал внутреннее устройство смесительного узла.

Что регулирует байпас смесительного узла TIM JH-1036.

Смесительный узел имеет условную камеру смешивания, через которую проходит контур отопления теплых полов и контур отопления котла.


Обычно смесительный узел теплого пола имеет один параметр регулировки - температура воды в контуре теплых полов. У смесительного узла TIM JH-1036 есть еще какой-то байпас, да еще и с возможностью регулировки. И это не тот перепускной балансировочный байпас, который срабатывает по излишнему напору, развиваемому насосом.

балансировочный байпас по давлению можно увидеть на фото - самая правая причиндаль.


Он мне нужен, поскольку возможно перекрытие всех направлений отопления теплого пола в результате автоматического регулирования. Кстати, как регулировать балансировочный байпас TIM M307-4 я так и не выяснил - может кто подскажет.

Что же касается байпаса камеры смешивания, то можно найти такое графическое пояснение работы байпаса смесительного узла:



Мало что понятно из этих схем.

Тем более не понятно что означают цифры на шкале и к чему привязано текущее значение. Все это можно выяснить только держа смесительный узел TIM JH-1036 в руках:


Оказывается, регулировочный винт крутит цилиндр, в котором есть прорезь, перекрываемая при повороте. Через эту прорезь вода может прокачиваться циркуляционным насосом, минуя условную камеру смешивания.

Нужно учитывать, что наклейка со шкалой от 0 до 5, может быть наклеена произвольно.

Максимальному открытию прорези (на фото выше) соответствует установка регулировочного винта в положение 5 (на фото ниже).


За условную точку считывания значения шкалы можно принять технологический уступ на корпусе камеры смешивания. При значении шкалы 0 щель максимально закрыта. В этом положении вся вода, прокачиваемая циркуляционным насосом по контурам теплого пола, проходит через камеру смешивания.

При полностью закрытом байпасе тепловая мощность отбора энергии смесительным узлом из системы отопления максимальна.

Если байпас полностью открыт, то часть воды циркулирует по контурам отопления, не попадая в камеру смешивания - и тепловая мощность отбора минимальна.

Но на практике выяснилось, что байпасом регулируется не только тепловая мощность.

Экспериментальное выяснение значения, установленное байпасом.

Перед установкой байпаса не мешало бы убедится какому значению соответствует полное открытие и закрытие байпаса.

Только осторожно - края щели острые, как лезвия.

Если смесительный узел уже установлен, а наклейка со шкалой 0-5 наклеена иначе - можно произвести эксперимент.

Вращая регулировочный винт ключом на 10 выяснить в каком положении шкалы максимальный и минимальный расход воды на расходомерах коллектора теплого пола.

Если нет коллектора или расходомеров, что очень зря, можно найти максимальную и минимальные температуры при ограниченной температуре теплоносителя в основной системе (на входе в смесительный узел) и максимально возможной установке термостатической головки смесителя.

Температуру теплоносителя на котле ограничивается так, чтобы смеситель не справлялся с установленной температурой.

Как работает байпас смесительного узла TIM JH-1036.

Казалось бы: устанавливаем тепловую мощность смесительного узла на максимум, полностью закрывая прорезь байпаса - и все.

Но расходомеры коллектора теплого пола позволяют узнать, что байпасом регулируется не только тепловая мощность. При закрытии байпаса полностью поплавки расходомеров резко всплывают.

Оказывается, что расход воды через контура отопления при полностью открытом байпасе более чем в два раза больше, чем при полностью закрытом.

Это не удивительно - прокачивание воды сквозь камеру смешения требует затрат мощности насоса, что сказывается на скорости потока воды.

При максимальной тепловой мощности смесительного узла скорость потока воды по контурам теплого пола минимальна. Для равномерного прогрева всего контура теплого пола может быть потребуется включение насоса на вторую скорость,что увеличит шум системы отопления.

Выяснилось, что в моей системе достаточно минимальной тепловой мощности смесительного узла, чтобы обеспечить на подающем коллекторе температуры теплоносителя 32 градуса при открытых всех направлениях отопления теплым полом даже при старте холодного теплого пола.

Но в других случаях может оказаться что потребуется увеличение мощности отбора.

Как влияет на систему отопления установка байпаса смесительного узла TIM JH-1036.

Внимательно изучить работу смесительного узла пришлось в результате неправильного подключения смесительного узла к системе отопления.

Разное положение регулировки байпаса приводило к тому, что теплым был разный из патрубков присоединения смесительного узла к контуру отопления.

То-есть подача и обратка смесительного узла менялась местами при изменении положения регулировки байпаса. Мистика.

Так я выяснил что подключение осуществил не правильно, перепутав подачу и обратку в смесительный узел.

Теоретически, циркуляционный насос смесительного узла теплого пола никак не должен был влиять на контур котла отопления - насос смесительного узла отдает воду в той же точке, откуда и берет. Цркуляционный насос смесительного узла качает воду по контурам теплого пола, а циркуляционный насос котла прокачивает воду через камеру смешивания смесительного узла.

Но невольные эксперименты позволили выяснить, что даже минимальной мощности насоса смесительного узла при закрытом байпасе достаточно, чтобы осуществлять дополнительную циркуляцию еще и в основном контуре отопления.

Это возможно, если предположить что эквивалентная схема (по аналогии с задачами по электротехнике) системы отопления со смесительным узлом TIM JH-1036 получается такая:


Где "R1" и "R2" - сопротивления в камере смешивания, регулируемые байпасом.

"Контур котла" - старая система отопления с батареями и котлом.

Не зря на смесительном узле четко указано - какой патрубок должен быть подающим. На фото уже правильно подключенный смесительный узел.


Тут я решил, что все-таки не мешало бы ознакомиться с теоретическими основами работы водяных теплых полов в результате чего завел страницу со ссылками на теорию.

В качестве шутки.

Материала еще много, поэтому предлагаю отдохнуть и развлечься - узел, подобный TIM JH-1036, на AliExpress по цене намного дороже, чем в местных магазинах.

Два насосно-смесительных узла теплого пола в одной системе отопления.

У меня получилось в одной системе отопления два смесителя теплого пола.

Смесительный узел TIM JH-1036 для теплого пола / tim3.jpg

Один я сделал сразу на первом этапе ремонта и установил его временно.

Пока это смеситель управлял одной веткой теплого пола. Потом предполагал перенести его по окончанию ремонта в других комнатах. Заложил трубы в пол, чтобы к смесителю в новом месте подключить эту ветку.

Но ничего не бывает более постоянного, чем временное.

И в новом месте установил еще один такой же смеситель.

Когда нибудь первый смесительный узел уберу - у коллектора второго смесительного узла присутствуют штуцера для подключения этой ветки и уже проложены трубы.

Обратите внимание на то, что смеситель на первом фото не способен обеспечить температуру подачи теплоносителя больше 25 градусов при температуре, установленной на котле, 50 градусов.

На фото видна температура теплоносителя 30 градусов, достигаемая при температуре на котле 60 градусов и установке термостатической головки смесителя на 40 градусов.

Это как раз понятно при таком то подключении.

Парадокс заключается в том, что этого (25 градусов) хватает, чтобы относительно быстро нагревать помещение на пару градусов, поддерживая установленную температуру.

Выбор значения 0-5 ргулировки байпаса в зависимости от ситуации.

На примере этих двух смесителей теперь можно показать в чем разница между разными регулировками байпаса смесительного узла TIM JH-1036.

Значение установки байпаса 0.

Первый смеситель работает в условиях, когда узким местом системы является подача тепла из системы.

Он подключен, как радиатор в однотрубную систему.

На всякий случай на участке подключения сделал утолщение с 25 до 32 диаметра и поставил кран, поскольку сомневался в затекании достаточного кол-ва воды и обеспечения достаточной мощности.

Эта локальная подсистема отопления построена, понятно, на одном смесительном узле без коллекторной группы.

Проблем же с циркуляцией по одному контуру быть не должно.

Поэтому значение болта регулировки байпаса устанавливаем в 0.

Мы циркуляцию сквозь контур теплого пола делаем минимальной, а циркуляцию сквозь камеру смешивания максимальной.

Выше было показано, что тут насос смесителя будет еще немного помогать циркуляции по системе отопления.

Значение установки байпаса 5.

В этом случае наоборот - смеситель теплого пола подключен сразу к котлу параллельно однотрубной системе с батареями.

Проблем с обеспечением подачи требуемой тепловой мощности на смеситель нет.

А вот крутить 4 контура отопления будет уже не так легко, как один.

Поэтому значение регулировки байпаса ставим в 5.

Мы циркуляцию сквозь контур теплого пола делаем максимальной, а циркуляцию сквозь камеру смешивания минимальной.

Кроме того, такой установкой мы еще ограничиваем влияние этого циркуляционного насоса на основную систему.

Обзор центральных блоков зонального управления водяным теплым полом

Для управления водяным теплым полом в каждом помещении установлен комнатный терморегулятор, который управляет соответствующей электрической моторизированной головкой направления на коллекторе теплого пола.

Если все направления теплых полов закрыты, то насос от работы в закрытый кран защитит наличие перепускающего байпаса на смесительном узле - насос просто будет работать вхолостую.

Казалось бы этого достаточно.

А вот чтобы исключить работу насоса смесительного узла вхолостую потребуется дополнительное устройство. Это устройство поможет также выключать котел отопления, когда во всех помещениях достигнута заданная терморегуляторами температура.

Чтобы вдруг заново не изобрести велосипед, как однажды пытался придумать коллектор теплого пола, изучим - что за центральные приборы управления теплыми полами уже имеется в продаже.

Забегая на перед, скажу, что себе для решения этой задачи выбрал Beok CCT-10, который и описал в отдельной статье: Тестирование контроллера теплых полов Beok CCT-10.

Необходим центральный блок управления теплыми полами, который будет на основании полученных от терморегуляторов сигналов, запускать котел и насос смесительного узла.

Алгоритм работы центрального устройства очень простой: сложение по схеме ИЛИ сигналов от комнатных терморегуляторов и выдача результирующего сигнала на насос и котел.


Оказалось что не у меня одного возникла такая задача и существуют приборы промышленного производства для ее решения.

Контролер управления зонами отопления COMPUTHERM Q4Z.

Есть беспроводной аналог.



Это замечательное устройство и в нем реализовано даже больше, чем мог придумать я: три, суммирующих разные зоны, выхода и возможность ручного управления зонами.

Такой контроллер мне бы подошел если бы не одно но.

К контроллеру зон можно подключить любой комнатный термостат переключения. Так написано в паспорте и это можно понять, что термостат должен иметь нормально разомкнутые контакты.

Так уж исторически сложилось, но большинство терморегуляторов у меня оказалось более подходящих для управления электрическим теплым полом. Они выдают управляющий сигнал в виде 220В.

Вот классическая схема подключений терморегуляторов для отопления теплыми полами:


Этот сигнал, кроме управления обогревателем, можно использовать для управления насосом или моторизированными головками. Для логических операций с полученными сигналами такого вида уже нельзя применить это устройство.

Не понимаю зачем так делается и почему бы не вывести просто контакты реле - это был бы универсальный способ. Хотя с другой стороны монтаж удобнее без лишних перемычек в установочной коробке - приходящий провод 220В и уходящий провод на теплый пол садятся на соответствующие клеммы без дополнительных соединений. Тут помогли бы два дополнительных контакта на терморегуляторе чтобы можно было снять или поставить перемычку.

Есть еще один фактор - цена в России, которая составляет 8000р. Как цена 1547грн на Украине превращается в цену 8000р в России?

Но нашел бы кому привести его с Барабашово, будь он мне нужен.

Мне не подойдет, поскольку требует только контакты реле.

Контроллер для управления водяным теплым полом Tech L-5.

Tech L-5 - это очень интересный прибор.

Стоит 5238р.


Предназначен для управления термостатическими приводами клапанов с помощью проводки, для сбора и обработки информации, полученной от компонентов сиcтемы, а также для передачи им управляющих команд.

Это самая простая модель с урезанным функционалом и существуют более сложные устройства: с радиотермостатами, WiFi, облачным сервисом и пошло поехало.

Позволяет контролировать температуру в восьми различных отопительных зонах.

Возможность управления 22 термостатических сервоприводов с помощью 8 комнатных регуляторов:

– 3 комнатных регулятора дают возможность обслуживать до 12 сервоприводов;

– 5 комнатных регулятора дают возможность обслуживать до 10 сервоприводов.

Один выход 230V на насос.

Выход сухой контакт для управления дополнительным нагревательным устройством.


Цена 5-6 тысяч за такое устройство не кажется большой.

Вот только входные сигналы для этого контроллера тоже должны быть контактами реле.

Красивый. Клеммы подключения скрыты. Мне не подойдет, поскольку требует только контакты реле. Очень жаль.

Проводной центр коммутации Salus KL06.

Стоит 4281р.



Контроллер KL06 предназначен для соединения термостатов и исполнительных приводов в единый коммутационный узел. Есть индикация состояния сервоприводов.

Управление насосом и котлом возможно только после подключения дополнительных модулей Salus PL06 или PL07 (1700р и 2800р).

Если внимательно почитать инструкцию Salus KL06, то можно выяснить что это более хитрое устройство, чем может показаться.

Полнофункционально работает с терморегуляторами Salus.

СИСТЕМЫ PWM, VP, NSB

Системы, применяемые в терморегуляторах Salus серии ERT, обеспечивают более эффективное управление половым отоплением.

В связи с большой инерцией полового отопления, применение системы PWM у контроллеров серии ERT гарантирует нам четкое поддерживание постоянной температуры в помещениях. Система PWM контролирует рабочее время, а также частоту открытия и закрытия использованных сервомоторов по отношению к росту температуры в помещении. Результатом чего является добавочная экономия, комфорт, а также отсутствие перенагрева помещения.

Это система, которая защищает и удлиняет срок работы сервомоторов. Один раз в неделю открывает и закрывает сервомотор, даже если система в данный момент не работает (время вне отопительного сезона).

Функция снижения температуры - NSB (Night Set Back). Система предоставляет возможность влиять на температуру в зависимости от времени дня, что гарантирует эффективное управление системой отопления. Функция снижения температуры дает возможность снижать ее на 4°С, без регулирования термостата, даже при применении непрограммируемых регуляторов в большинстве зон.

Функция NSB в регуляторах активируется посредством внешнего сигнала, передаваемого планке Salus KL06 при помощи недельного терморегулятора Salus ERT50. Этот регулятор должен быть подключен к полю, обозначенному номером 1.

Все регуляторы должны быть подключены при помощи 4-х жильного провода, согласно схеме номер 1.

Если Вы не подключите поле, обозначенное часами, то функция MSB не будет активна, но остальные функции регулятора (PWM и VP) будут работать.

Вот эти схемы подключения терморегуляторов.



Схема подсоединения терморегулятора ST320 необычна - посмотрим что в паспорте этого терморегулятора.


Похоже, терморегулятор управляет именно 220В, пропуская или не пропуская через себя. Если так, то контроллер Salus KL06 может и подойти для работы с терморегуляторами, выдающими 220В на управление нагрузкой.

Мне он не нравится визуально, и с модулем подключения насоса и котла стоит уже дороже 6000р и имеет открытые клеммы. терморегуляторов Salus у меня не будет, поэтому "умные" функции недоступны.

Модуль управляющий Watts WFHC-BAS.

Watts WFHC-BAS на 6 зон, 220В, нормально закрытых сервоприводов стоит 5650р.



Модуль можно применять как самостоятельное устройство и как компонент системы автоматизации. Есть варианты расширения и применения радиомодулей.

Если применять модуль с функцией программирования и родные термостаты, то можно программировать все термостаты с одного модуля.

Рассмотрим схемы соединения из этого паспорта.



Похоже это именно то что мне надо. Возможно подключение терморегуляторов, выдающих 220В! К тому же клеммы подключения скрыты и по фото видно, что качественный продукт.

Теплоконтроллер Teplocom TC-8Z.

Нашел этот прибор в неожиданном месте - у производителя Бастион, который известен резервными источниками питания для сигнализации.

Стоит 3900р - рекомендованная цена на сайте производителя.



Из паспорта выясняем схемы подключения.


Ка понять фразу "подключите термостаты 220В"?

Нам поможет изучение термостатов, рекомендуемых к использованию с этим теплоконтроллером.

Часть этих термостатов выдает напряжение 220В при включении и нет контактов реле.

Этот термоконтроллер подойдет для моих теплых полов, да еще знакомого производителя и самый дешевый. Можно закрыть глаза на то что имеет открытые клеммы и придется приобрести стандартный бокс под него.

Теплоконтроллер для лучевой системы отопления Teplocom Луч TC-5Z LUX

Стоит 4920р.




Контроллер-концентратор Beok CCT-10 на 8 каналов.

Стоит 2117р.



Есть также в ассортименте магазина подобный концентратор, но с возможностью подключить радио-терморегуляторы.

Модели-близнецы: такое же устройство, но безымянное в магазине Side-To-Side и TWC-08 за 1700р, но без отзывов и заказов.

И безымянная модель на 30% дешевле, но с множеством положительных отзывов в магазине Guangdong Store.


Изучим в паспорте схемы соединений.


Не совсем понятно - подойдет ли для терморегуляторов, которые выдают 220В. Но цена - дешевле чем сделать самому - стимулирует эксперименты.

PS. Это устройство в итоге я и заказал для своей задачи. Обзор и тестирование в статье: Тестирование контроллера теплых полов Beok CCT-10.

Lieve.

2 900р.



Центр управления напольным отоплением Saswell SCU209.



Радио-вариант на 5 зон стоит 4700р.

Проводной вариант должен стоить 3600р (на Amazon 44 евро).

К сожалению сейчас в этом магазине на AliExpress только вариант с подключением комнатных терморегуляторов по радио.

Но есть в другом магазине точно такой же безымянный гаджет за 2600р в магазине Homeimprove Store.

Этот центральный блок по рисунку платы (фото нет) очень похож на Beok, который я купил.

Стоит 2800р (правда сейчас распродажа).





У этого центрального блока три выходных реле.

Но нет регулировки времени задержки.

Тоже интересный вариант.

FH901.



Стоит 2740р + 560р доставка.

Если бы не Beok CCT-10, то был бы куплен этот контроллер.

Блок коммутации AURATON 8D PRO.

Стоит 5355р.

Предназначен для управления сервоприводами, установленными на коллекторе теплого водяного пола. Крепление блока предусмотрено на DIN-рейку. Встроенный модуль управления насосом и котлом.


Заслуживающее внимание устройство но мало присутствует на рынке в России

Uponor Base X25.

Модульные системы управления поверхностным отоплением Uponor заслуживают внимание - это один из вариантов идеальной системы управления теплыми полами.

Рассмотрим самый простой проводной контроллер Uponor Base X25 с реле насоса.



Стоит это устройство более 9400р.

- Поворотный селектор каналов для удобной регистрации исполнительных механизмов;

- Защита от перегрузки;

- 6 каналов (термостатов);

- 12 исполнительных механизмов.

Дорогое устройство, но линейка устройств Uponor достойна изучения.

Elsen EKK 230/24В.

Стоит 6000р.



Качественное устройство. Тут есть какие-то функции ограничения температуры и системные часы, но разбираться неохота.

Uni-Fitt 380M.

Коммутационная коробка Uni-Fitt 380M на 6 каналов 230В стоит 5600р.


Это близнец Elsen EKK.

Kermi x-net.

Модульный центральный узел Kermi x-net на 6 каналов 230В Стоит 5800р.

Возможно расширение функций, посредством простого крепления дополнительных модулей и нам потребуется дополнительный модуль отключения насоса за 4800р.


Дорого будет, если вместе с модулем управления насосом.

REHAU.

Raumatic M 230 стоит 4700р.


Это близнец Kermi x-net.

Valtec VT.ZC.

Коммутационная коробка Valtec VT.ZC на 8 каналов 220В стоит 6000р.

Неyжели нельзя было что-то интересное придумать? Или думают что налепили "Сделано в России" и схавают?

Изучение паспорта показало, что в этом контроллере есть всякие разные переключатели, позволяющие группировать выходы и настраивать каскадное управление. Возможно наличие переключателей и повлияло так на цену.

1500р ему цена. Да и термостаты ему нужны только с контактами.

Контроллер управления сервоприводами радиаторов отопления SMART CHR-08.

Стоит 7950р.

В линейке оборудования почему-то такого контроллера на 220В нет. Поэтому рассмотрим контроллер SMART CHR-08, который управляет сервоприводами на 24В.



Непонятно зачем это устройство нужно за такие деньги, ведь это по сути клеммник с лампочками.

Insolo.

Зональный коммуникатор Insolo Pro Aqua стоит 14135р.



Это устройство явно больше чем клеммная коробка. Коммуникатор может регулировать температуру подающего теплоносителя напольного отопления, в зависимости от температуры наружного воздуха, а также контролировать и исключать его перегрев выше 55 °С, путём регулирования сервопривода смесительного клапана, с использованием дополнительного датчика температуры наружного воздуха.

Коммуникатор имеет релейные выходы для управления работой котла и циркуляционного насоса.

Режим ночного понижения температуры теплоносителя. Защита от отсутствия теплоносителя.

ЖК дисплей, отображающий состояние входов и выходов. Программирование с панели коммуникатора.

Есть модель без дисплея и кнопок, но с Wi-Fi.

В принципе, задан уровень, к которому надо стремиться производителям подобных устройств.

Многоканальный температурный регулятор.

Стоимость таких устройств 3500-5500р.

Внедрение такого способа зонального регулирования температуры будет не очень удобным.

Релейная логика.

Мне с моими терморегуляторами подойдет простая релейная логика. Можно собрать контроллер отопления самому, тем более что это будет очень просто.

Для пяти направлений понадобится 6 реле.

Катушки 5-ти реле будут подключены параллельно приводам клапанов. Их замыкающиеся контакты будут соединены параллельно для включения насоса смесительного узла, если включено хотя бы одно направление.

Шестое реле будет управлять котлом и предназначено, чтобы удалить высокое напряжение с контактной группы. Катушка этого реле будет подключена параллельно насосу смесительного узла.

Получится система управления с дополнительными выходами - групп контактов у реле ведь несколько. Можно использовать эти контакты для построения системы удаленного мониторинга и сбора статистики.

Самое дешевое реле с гнездом будет стоить 200р.

Плюс еще бокс с din-рейкой 200р.

Итого: 6*200 + 200 = 1400р.

Ну что же еще надо?

Что еще хотелось нам.

1. Возможность управления скоростью насоса в зависимости от количества включенных направлений. Практика показывает, что при включении больше двух направлений не мешало бы перевести насос смесительной группы на вторую скорость.

2. Возможность выключать насос при падении температуры теплоносителя на входе подачи в смесительный узел. Например, при длительном принятии ванны с двухконтурным котлом.

3. Наличие дополнительных сигнальных выходов "сухой контакт" при включении направлений. Это понадобится для мониторинга работы теплых полов, например при помощи Arduino.

4. Ручного надежного управления, как в первом устройстве из обзора.

Например, если исчезнет сеть 220В, чтобы замкнуть управляющие контакты на котел вручную.

Или принудительно включить сервопривод на одно из направлений ручным способом.

В следующей статье рассмотрим способы организации зонального управления теплым полом на менее профильном оборудовании: Универсальный контроллер для зонального управления водяным теплым полом.

Как я приспособил смесительный узел TIM JH-1036 для теплого пола.

Хочу поделиться своей находкой - смесительный узел для теплого пола TIM JH-1036.

Расскажу как я приспособил этот смесительный узел для работы в своей системе и какие неожиданные проблемы при этом возникли.

Подключение теплых полов к однотрубной системе отопления.

У меня уже имелась основная (первичная) однотрубная система отопления с радиаторами и к ней требуется поключить воричную систему отопления с теплыми полами.

Брать теплоноситель в теплые полы из основной системы отопления не рекомендуется - вода в теплых полах не должна превышать 45 градусов, поэтому подключение теплых полов производят посредством смесительного узла.

Размещение смесительного узла - под мойкой в кухне, где и спаял штуцера подключения.

Смесительный узел TIM JH-1036 для теплого пола / tim1.jpg

Т-образное подключение одной системы отопления в другую.

Основная система отопления у меня однотрубная, что накладывает трудности на подключение теплых полов.

Т-образным подключением называю врезку одной петли отопления в другую на небольшом расстоянии точек врезки так, что движение воды одной петли минимально влияет на движение в другой.

Между точками врезки впаиваю утолщенный участок трубы чтобы взаимное влияние движения воды было минимальное и происходило лучше смешивание.

Между точками врезки впаял также кран на всякий случай.

Смесительный узел TIM JH-1036 для теплого пола / tim2.jpg

Смесительный узел для теплых полов: своими руками или готовый.

Собирался сделать смесительный узел своими руками на основе трехходового термостатического клапана.

Трехходовой клапан регулирует ток во второстепенном контуре либо по второстепенному кругу либо с заходом в основную систему.

Теплоноситель из основного контура отопления втягивается насосом второстепенного контура в одной точке подключения и возвращается во вторую точку подключения. Смешение теплоносителя первичного контура с теплоносителем вторичного контура происходит в отрезке трубы между точками подключения.

Короткий и толстый отрезок между точками подключения способствует минимальному влиянию насоса вторичного контура на первичный.

Но трехходовой клапан купить не пришлось.

Цена только одного трехходового термостатического клапана свыше 3500р.

А оказалось, что имеется в продаже готовый смесительный узел для теплого пола TIM JH-1036 менее чем за 4000р.

Его и приобрел не задумываясь.

Хотя понимал что не факт что этот смесительный узел рассчитан на использование в однотрубной системе отопления.

Как подключить смесительный узел TIM JH-1036 в однотрубную систему отопления.

Конечно же при подключении смесительного узла возникли неожиданные проблемы.

1. Затекание.

Эту проблему предполагал.

Оказалось что смесительный узел устроен так, что его насос не осуществляет принудительный обмен воды между основной и вторичной системами отопления. В смесительном узле уже имеется смесительный байпас в который теплая вода из первичной системе отопления для подмешивания к воде вторичной системы должна попадать внешними усилиями.

Этот байпас оказался у меня в итоге подключенным параллельно моему отрезку толстой трубы.

Смесительный узел TIM JH-1036 для теплого пола / tim5.jpg

Циркуляция воды между системами должна осуществляться при помощи избытка давления, создаваемой насосом первичной системы отопления, а не насосом вторичной системы, как должно было быть у меня.

Влияние же систем отопления друг на друга предполагалось минимальное для чего и участок трубы между точками подключения короткий.

Подумал что ничего страшного - на всякий случай впаял кран и если что краном можно придушить поток воды, направив его частично в смесительный узел.

Эксплуатация же показала что прикрывать кран не нужно.

В смесительный узел попадает достаточно тепла: то-ли естественной циркуляцией, то-ли флуктуациями.

2. Подключение.

Следующей проблемой оказалось подключить смесительный узел к системе отопления.

Штуцера подключения смесительного узла оказались на небольшом расстоянии и немного смещены относительно штуцеров основной системы отопления.

Невозможно было решить проблему ни при помощи пайки ни при помощи металлопластика - слишком уж короткие отрезки патрубков подключения: ни согнуть ни спаять.

Пригодились завалявшиеся куски стальной гофротрубы, которая обычно используется для гибких подводов к спринклерам пожаротушения. Гофротруба вообще универсальная и штуцера для ее подключения очень удобные, но ее цена свыше 100р/м не способствует применению.

Смесительный узел TIM JH-1036 для теплого пола / tim6.jpg

3. Ориентация.

На этом проблемы не закончились.

Штуцера для подключения в основную систему отопления находились у правой стенки. Трубы теплого пола подведены сзади.

Смесительный узел был собран так, что его можно разместить только на левую стенку внутри тумбочки мойки при подводе труб теплого пола сзади.

Переделал крепеж смесителя так, чтобы его можно было прикрепить на правую стенку.

Смесительный узел TIM JH-1036 для теплого пола / tim3.jpg

Просто перевернул крепеж, прикрутил саморезами к стенке тумбочки мойки - и ничего страшного.

4. Направление потока.

Оказалось что по направлению движения воды в трубе основной системе отопления можно предположить что имеется выходной (второй по току воды) штуцер и входной (первый по току воды).

Смесительный узел тоже имеет фиксированный вход и выход теплоносителя.

И получилось что напротив выходного штуцера основной системы находится выходной штуцер смесителя.

Решил что не особо важно - какой из штуцеров смесителя использовать как входной, а какой - выходной. Тем более выхода не было.

В случае Т-образного подключения конечно нужно было бы проследить чтобы ток воды, наводимый насосом вторичной системой на первичную, совпадал по направлению с током воды в первичной системой.

А тут - какая разница?

Смесительный узел TIM JH-1036 для теплого пола / tim4.jpg

В последствии оказалось что это не так - все таки выход и вход смесительного узла фиксирован. И проявилось это в момент закрытия термостатического клапана смесительного узла. Клапан почти закрыт, а ток воды идет в направлении приоткрытия и происходит дребезг резинки.

Поначалу не мог понять - что за тарахтение.

Хорошо что происходит это явление редко и длится короткий промежуток времени именно в момент закрытия резинкой седла. Да и не сильно слышно, если дверь тумбочки закрыта.

Хотя пока морозов нет и котел настроен на 55 градусов - термостатическая головка смесительного узла не срабатывает на полное закрытие.

Коллекторы для теплых полов TIM

Коллекторные группы с расходомерами для тёплого пола предназначены для распределения теплоносителя по петлям (контурам) водяного теплого пола, либо к любым другим отопительным приборам (радиаторам отопления, внутрипольным конвекторам (встраиваемыми в пол) или к любым другим потребителям тепла.).
Основная цель - на расходомерах видеть скорость протока литров в минуту в каждом контуре, так как чаще всего необходимо подать разное количество тепла.

Состав коллекторной группы теплого пола с расходомерами

Комплект коллектора подачи (с расходомерами) и коллектора обратки (с кранами) вместе с настенными креплениями и дренажными кранами и ручными либо автоматическими воздухоотделителями и называют коллекторной группой.

Из каких материалов состоят коллекторы теплого пола

Подразделяются на коллекторы из латуни, нержавейки или пластика.
Пластиковые коллекторы распространены слабо из-за высокой стоимости и мнения, что металл всегда лучше, чем пластик.
В основном на рынке присутствуют коллекторы из латуни и коллекторы из нержавейки.

Коллекторы с расходомерами и без расходомеров

В свою очередь, все коллекторные блоки подразделяются на те, в которых нет расходомеров и присутствуют только настроечные клапаны, и коллекторные блоки с расходомерами.

Для чего необходим расходомер у коллектора?

Как бы нам ни хотелось, но петли теплого пола получаются разной длины - есть петли короткие и есть петли более длинные.
Вода потечёт по пути наименьшего сопротивления - в короткие петли с наименьшим гидравлическим сопротивлением, а длинные петли она проигнорирует.
Отсюда возникает неравномерный прогрев пола и жалобы, что на теплый пол потратили деньги и время, а он не работает. А всё дело в несбалансированности петель между собой.
Расходомер позволяет заузить условный проход для короткой петли и прибавить ей гидравлическое сопротивление. Для длинных петель проход увеличивается. Тем самым теплоноситель более равномерно распределяется по всем петлям тёплого пола.
Расходомеры у разных производителей бывают разной конструкции, но принцип действия и функциональное предназначение у всех абсолютно одинаково. Это гидравлическая балансировка петель тёплого пола между собой и равномерное распределение теплоносителя по петлям.Исходя из этого, вытекает вывод, что для теплого пола необходимо использовать коллектор именно с расходомерами. Коллекторы без расходомеров можно использовать для радиаторных систем отопления с лучевой разводкой.

Различие в стоимости коллекторов из латуни и нержавейки

Коллекторные блоки из латуни и из нержавеющей стали различаются по цене. И это становится проблемой при выборе коллектора. При практически одинаковых характеристиках у одного и того же производителя нержавеющие коллекторы, как правило, дешевле.
Рассмотрим сравнительную таблицу.

Коллекторы для теплых полов

Коллекторные группы с расходомерами для тёплого пола предназначены для распределения теплоносителя по петлям (контурам) водяного теплого пола, либо к любым другим отопительным приборам (радиаторам отопления, внутрипольным конвекторам (встраиваемыми в пол) или к любым другим потребителям тепла.).
Основная цель - на расходомерах видеть скорость протока литров в минуту в каждом контуре, так как чаще всего необходимо подать разное количество тепла.

Состав коллекторной группы теплого пола с расходомерами

Комплект коллектора подачи (с расходомерами) и коллектора обратки (с кранами) вместе с настенными креплениями и дренажными кранами и ручными либо автоматическими воздухоотделителями и называют коллекторной группой.

Из каких материалов состоят коллекторы теплого пола

Подразделяются на коллекторы из латуни, нержавейки или пластика.
Пластиковые коллекторы распространены слабо из-за высокой стоимости и мнения, что металл всегда лучше, чем пластик.
В основном на рынке присутствуют коллекторы из латуни и коллекторы из нержавейки.

Коллекторы с расходомерами и без расходомеров

В свою очередь, все коллекторные блоки подразделяются на те, в которых нет расходомеров и присутствуют только настроечные клапаны, и коллекторные блоки с расходомерами.

Для чего необходим расходомер у коллектора?

Как бы нам ни хотелось, но петли теплого пола получаются разной длины - есть петли короткие и есть петли более длинные.
Вода потечёт по пути наименьшего сопротивления - в короткие петли с наименьшим гидравлическим сопротивлением, а длинные петли она проигнорирует.
Отсюда возникает неравномерный прогрев пола и жалобы, что на теплый пол потратили деньги и время, а он не работает. А всё дело в несбалансированности петель между собой.
Расходомер позволяет заузить условный проход для короткой петли и прибавить ей гидравлическое сопротивление. Для длинных петель проход увеличивается. Тем самым теплоноситель более равномерно распределяется по всем петлям тёплого пола.
Расходомеры у разных производителей бывают разной конструкции, но принцип действия и функциональное предназначение у всех абсолютно одинаково. Это гидравлическая балансировка петель тёплого пола между собой и равномерное распределение теплоносителя по петлям.Исходя из этого, вытекает вывод, что для теплого пола необходимо использовать коллектор именно с расходомерами. Коллекторы без расходомеров можно использовать для радиаторных систем отопления с лучевой разводкой.

Различие в стоимости коллекторов из латуни и нержавейки

Коллекторные блоки из латуни и из нержавеющей стали различаются по цене. И это становится проблемой при выборе коллектора. При практически одинаковых характеристиках у одного и того же производителя нержавеющие коллекторы, как правило, дешевле.
Рассмотрим сравнительную таблицу.

Коллекторные группы для теплого пола и отопления TIM

Коллектор из нержавеющей стали с межосевым расстоянием выходов 100 мм 1*1/2 (6 выходов) TIM MS0310-06

Коллекторная группа предназначена для распределения потока транспортируемой среды по потребителям, обеспечивает сбалансированную подачу теплоносителя к потребителям - радиаторам или контурам "теплого пола".

Коллекторная группа представляет собой 2 коллектора, закреплённых на кронштейнах. В комплект коллекторных групп могут входить автоматические воздухоотводчики и сливные краны, отсечные шаровые краны, термометры. Патрубки коллекторных групп могут быть оснащены расходомерами, позволяющими более точно сбалансировать систему, и вентилями, на которые можно установить управляющие головки.

Назначение и область

Коллекторы распределительные для систем водяного отопления и теплого пола TIM используются для контрол и распределения теплоносителя в системе отопления. Каждая труба отопительной системы водяного отопления или тёплого водяного пола подключается к коллектору, что позволяет осуществить контроль потока теплоносителя индивидуально в каждом циркуляционном кольце. Распределительный коллектор состоит из подающей и обратной гребёнок. Подающая гребёнка имеет возможность отключения (перекрытия) каждого отдельного контура системы отопления, опционно оснащается расходомерами. Обратная гребёнка оборудуется интегрированными терморегулирующими клапанами с предварительной настройкой пропускной способности. Терморегулирующие клапаны могут быть автоматизированы с помощью термоэлектрических приводов; для ограничения расхода теплоносителя на каждый отвод используется предварительная настройка пропускной способности.

Распределительные коллекторы для тёплого пола состоят из двух гребёнок, каждая из которых имеет от 2 до 12 выходов. Коллекторы опционно оснащаются переходниками для соеденения нескольких гребёнок каскадом ;

Коллекторы могут быть укомплектованы шаровыми кранами для отключения о системы отопления, а также опционно оснащаются автоматическими или ручными воздушными клапанами TIM, устанавливаемыми в конце коллектора.

Общие характеристики

Применения используются как основные составные части модульных коллекторных блоков, присоединяющие отводы от отдельных потребителей к общим питающим трубопроводам при монтаже проводки отопления и водоснабжения внутри зданий и сооружений различного назначения. Коллекторы в сборе изготавливаются из латуни с низким содержанием свинца CW 614(EN 12168), нормализованной после механической обработки. Коллекторы являются идеальным решением для лучистых панельных систем отопления и имеются в различных конфигурациях в зависимости от характеристик системы. С помощью соответсвующих переходников возможно присоединение медных, PEX или металлопластиковых труб.

Читайте также: