Нагрузки на жб пол склада готовой продукции дефектовка

Обновлено: 03.05.2024

28.3. Контроль качества железобетонных изделий и особенности организации склада готовых изделий

Контроль качества железобетонных изделий организуется на всех этапах производства, начиная со склада сырья и кончая готовой продукцией. На заводах в контроль входит: проверка качества материалов, поступающих на завод; проверка установленных на заводе технологических режимов; периодическая проверка технологического оборудования и контрольно-измерительных приборов.

Во время приемки поступающих на завод материалов проверяют наличие документов (паспортов на сталь и цемент, актов испытаний заполнителей и т.д.), прибывших вместе с материалами.

Проверка качества материалов (цемента, заполнителей, арматуры, добавок, вводимых в смесь) производится в заводской лаборатории. Каждая партия цемента должна сопровождаться паспортом, в котором указываются номер паспорта, дата выдачи, завод-изготовитель, наименование и марка цемента, номер партии и вагонов, дата изготовления и т.д. Каждая партия цемента, поступающая на завод, а также цемент, хранящийся на заводе более трех месяцев, проходит испытания в соответствии с действующими ГОСТами. Для лабораторных испытаний от каждой партии цемента отбирают пробу в количестве 20 кг.

Проверка качества заполнителей состоит в контроле физико-механических свойств материала и чистоты каждой поступающей на завод партии. Из каждой партии щебня, песка (200 м 3 ) отбирают из пяти мест пробу по 5 кг.


Рис. 28.6. Технологическая схема изготовления конструкций на стендах;

а - зона хранения и обработки сырья; б - зона приготовления бетона; в - зона изготовления арматурных элементов; г - зона формования и обработки изделий; д - зона хранения и выдачи конструкций; 1 - пост разгрузки заполнителей; 2,8 - приемные бункеры; 3 - склады каменных материалов; 4 - транспортерная галерея; 5 - расходные бункеры; 6 - пост приготовления бетона; 7 - пост разгрузки цемента; 9 - склад цемента; 10 - стенд; 11 - склад готовой продукции

Контрольные испытания арматуры производятся при отсутствии на нее сертификата или при наличии соответствующего указания на рабочих чертежах. Для испытания арматуры на растяжение и изгиб из каждой партии (60 т) отбирают образцы. При поступлении арматуры в прутках количество образцов для каждого вида испытаний должно быть не менее пяти, отрезанных от различных стержней. При хранении необходимо предусмотреть мероприятия, предотвращающие коррозию и загрязнение арматурной стали.

Проверка химических добавок производится только при отсутствии на них заводского паспорта или при сомнении в его точности.

При приготовлении бетонной смеси необходимо контролировать дозирование компонентов смеси; режим и время перемешивания; качество бетонной смеси (удобоукладываемость, испытание образцов-кубиков на сжатие).

Контроль изготовления сварных сеток и каркасов арматуры состоит из проверки правильности режимов сварки; контроля качества и прочности сварных соединений, для которых одновременно с изготовлением партии однотипных сварных сеток или каркасов, а также партии стыкованных стержней изготавливают из тех же материалов и при тех же режимах сварки три контрольных образца и испытывают их; внешнего осмотра и обмера сварных сеток и каркасов; проверки точности изготовления кондукторов.

В контроль формования изделий входит проверка надлежащей очистки и смазки форм; правильность положения арматуры и закладных частей в формуемом изделии; процесс уплотнения бетонной смеси (крепление форм к виброплощадке, правильность укладки бетонной смеси в формы, соблюдение режима уплотнения, правильность расстояний между последовательными положениями переносных вибраторов); правильность производства немедленной распалубки; качество открытых отформованных поверхностей.

В контроль твердения изделий входит проверка соблюдения режима термообработки изделий, включая выдержку изделий до их пропаривания, и проверка соблюдения влажностного режима хранения изделий на складе готовой продукции.

В контроль распалубки изделий входит проверка правильности применяемых способов распалубки и недопущения повреждения изделий после распалубки. Качество готовой продукции проверяет ОТК завода в соответствии с требованиями действующих стандартов и технических условий. Главнейшими показателями качества железобетонных изделий являются прочность бетона и стали, качество сварки, толщина защитного слоя.

Хранение готовых железобетонных изделий осуществляют на открытых площадках, расположенных рядом с цехом пропаривания и оборудованных соответствующими механизмами для погрузо-разгрузочных работ.

Поверхность площадки должна иметь уклоны для стока атмосферных вод. На складе небольшой ширины необходимо между штабелями складируемых изделий оставлять проходы шириной 0,7-0,8 м, а при широких складах устраиваются дополнительно поперечные проезды для автотранспорта.

Площадь склада определяется в зависимости от времени выдерживания на ней готовых изделий, прошедших термообработку, до достижения бетоном 100 % проектной прочности, а также из расчета 10-15 % дневной выработки завода.

Железобетонные изделия хранят по типоразмерам и назначению. Короткие изделия укладывают в штабели горизонтально, опирают на деревянные инвентарные прокладки и подкладки толщиной не менее 25 мм, а при наличии в изделии выступающих частей - не менее их высоты. Каждый штабель должен иметь таблички с указанием количества и типоразмера изделий.

Плиты, настилы, панели перекрытий, колонны, фундаментные блоки хранятся в штабелях в горизонтальном положении, а балки и фермы устанавливаются на ребро. Изделия укладываются в штабеля в несколько рядов. Первый (нижний) ряд укладывается на деревянные брусья сечением 20×20 см, между рядами изделий прокладываются деревянные прокладки толщиной 5-6 см.

Для предохранения изделий, имеющих обработанные поверхности, от атмосферных воздействий их накрывают легкими переносными щитами, обшитыми сверху толем или рубероидом. В зимнее время изделия, вывозимые на склад готовой продукции прямо после распалубки, должны быть накрыты брезентом на все время их хранения.

Выбор механизмов для погрузо-разгрузочных работ производится в зависимости от размера склада и от вида и размеров изделий, изготавливаемых на заводе. Для механизации погрузо-разгрузочных работ применяются мостовые краны, вилочные автопогрузчики, козловые или башенные самоходные краны. Погрузка изделий со склада на автотранспорт производится краном с помощью траверса.

Какова нагрузка на пол в складских помещениях?

Основная нагрузка на любом складе, в первую очередь приходится именно на полы. Оно и немудрено – как бы высоко ни располагались товары, какие бы конструкции полок и стеллажей не изобретались, в итоге их вес всё равно принимает пол. Причём, нагрузки не являются единственным видом отрицательного воздействия – следует учитывать ещё и механические повреждения, мгновенные и долговременные (такие как истирание), воздействия температуры, влажности и.т.д. К счастью, в наши дни все эти проблемы вполне решаемы и не требуют каких-то космических вложений. Давайте в первую очередь определимся с нагрузкой.

Содержание статьи
  • По каким критериям выбирают пол для склада?
  • Характеристика складов по уровню допустимой нагрузки

Нагрузка на пол

По каким критериям выбирают пол для склада?

Борис Дамчук

Как известно, лучшей основой для здания любых габаритов является бетонный пол. Однако, говоря о складе, следует знать, что только им ограничиваться не стоит – бетонное покрытие довольно быстро придёт в неудовлетворительное состояние, если его не обработать соответствующим образом. Обработка эта заключается в нанесении специального слоя из более плотного бетона или полимеров, при затвердевании которых образуется твёрдая поверхность, стойкая к ударным и деформационным воздействиям, а также предотвращающая возникновение бетонной пыли.

Нагрузка на пол

Такое покрытие можно сделать самому, либо указать в условиях строительства. В таком случае, следует обратить внимание на ряд параметров, соответствие которым гарантирует длительное использование складского пола с максимально возможным уровнем комфорта. Список этих параметров приведён ниже.

  1. Быспыльность, или устойчивость к истирающим воздействиям. Да, такая мелочь, как пыль, может доставить множество неприятностей как для работы механизмов функционирующей на складе техники, так и для здоровья персонала – вдыхаемая бетонная пыль точно не окажет благотворного влияния на организм. Постоянная работа в слишком запылённом помещении может привести к возникновению и развитию астмы. Также пылевые взвеси могут оказать негативное влияние на размещённые на складе товары, если их упаковка негерметична. Наиболее уязвима продуктовая и фармакологическая продукция.
  2. Целостность покрытия. Важно проследить за тем, чтобы на полу не было трещин, сколов, зазубрин и прочих шероховатостей. Это приведёт как к дополнительному накоплению пыли, вредное воздействие которой было описано выше, так и к увеличению износа колёс рабочей техники и даже подошв обуви сотрудников. Недопустимы даже малые трещины, которые имеет тенденцию расширяться под действием нагрузки, влаги или просто с течением времени. А широкие трещины могут привести к даже стопору малогабаритной техники – например, рабочих тележек для перевозки малых объёмов грузов.
  3. Ровность пола. Если функциональные особенности использования склада не предполагают наличие наклона, то отклонение от нормы даже в два-три градуса совершенно недопустимо; это может привести как к неправильной работе стационарной техники, так и к непреднамеренному движению техники мобильной. Избежать этого можно, проведя правильный монтаж пола с учётом всех условий местности, в том числе климатических, замером и подготовкой подосновы, расчёта арматурного каркаса и соответствующей толщиной бетонной плиты.
  4. Устойчивость к механической нагрузке. Пожалуй, основной показатель, от которого напрямую зависит допустимая нагрузка на пол в складских помещениях (точнее, на каждый квадратный метр пола). Благодаря нему можно без труда определить как возможный вес груза, так и виды рабочей техники, которая может использоваться в данном помещении. Идеальный показатель нагрузки на квадратный метр – 5-6 тонн.
  5. Устойчивость к внешним повреждениям и деформациям. Говоря коротко, чем выше данный показатель, тем более тяжёлый предмет можно уронить на пол, не опасаясь серьёзных последствий (во всяком случае, для пола). Так как подобные падения неизбежны при работе на складе, к нему следует отнестись со всей серьёзностью.
  6. Невосприимчивость к агрессивным химическим соединениям. Показатель, крайне важный для складов нефтяной и химической продукции. Так как определённый уровень загрязнения пола в подобных помещениях присутствует всегда, важно учесть, чтобы он не оказывал на покрытие разрушающее или разъедающее воздействие. В первую очередь это касается различных кислот, солей, щелочей и.т.д.
  7. Невосприимчивость к температурным перепадам. Особенно важно при строительстве складов в суровых климатических условиях, а также для морозильных камер, металлургических цехов и пр.
  8. Также учитывается влагостойкость – так как любой пол нуждается во влажной уборке, важно, чтобы вода не оказывала на него какого-либо вредного воздействия даже с течением долгого времени.
  9. Определённая степень «шершавости» пола (при этом следует помнить о том, что поверхность должна быть ровной). И в сухости, и во влажности пол должен быть устойчивым, а уровень скольжения – минимальным, чтобы избежать возможных травм среди персонала и аварий при использовании пустой или нагруженной рабочей техники.
Ещё по теме: Как проводят покраску пола на складе? Рекомендуем купить

Характеристика складов по уровню допустимой нагрузки

Каждый день и в нашей стране, и во всём мире появляется огромное множество новых предприятий, большая часть которых взаимодействует с определёнными массивами грузов и, соответственно, нуждается в постройке или приобретении складских помещений. Чтобы иметь возможность различать их по характеристикам и функциональным особенностям (особенно покупателям, не имеющим большого опыта в строительстве), введена определённая классификация складов, которая также включает в себя показатель нагрузки на пол в складских помещениях. Всего этих классов четыре:

  • склад класса «A» представляет из себя наиболее оптимальное для любой сферы деятельности и хранения грузов любых разновидностей здание – которое, к сожалению, по карману не всякой фирме. Да и использование его не всегда целесообразно. Итак, данный склад представляет из себя одноэтажное здание с высотой потолка не менее восьми метров, обязательным наличием естественного освещения, вентиляции, кондиционирования, отопления и электропроводки. Пол имеет показатель нагрузки до 6 тонн на квадратный метр, что позволяет разместить в помещении самые тяжёлые и крупногабаритные грузы; при этом к нему обязательно предъявляются все указанные выше требования;
  • строения класса «B» подразумевают наличие нескольких этажей (до трёх) с общим показателем высоты 4,5-8 метров. Данные склады используются в умеренном климате, так как обеспечивают температурный режим в диапазоне от +10 С до +18 С. Полы, использующиеся в них, изготавливаются из асфальта или бетона и не имеют никакого специального покрытия, вследствие чего максимальная нагрузка, которую они в состоянии выдержать, снижена до 3-4 тонн на метр квадратный;
  • склад класса «C» представляет из себя крупногабаритное промышленное здание или ангар высотой от 3,5 до 18 метров с центральным отоплением (зимой до +12 С). В помещении используются плиточные, бетонные и асфальтовые полы без какого-либо дополнительного покрытия, грузоподъёмность которых составляет 1-2 тонны на квадратный метр. Данный параметр необходимо учитывать при заезде внутрь склада рабочей техники;
  • класс «D» имеет наиболее низкие требования из всех и включает в себя небольшие производственные здания без центрального отопления, малые ангары, подвальные помещения, а также укрытия и прочие объекты гражданской обороны. Полы стандартные, бетонные, без покрытия; допустимая нагрузка на квадратный метр – от одной тонны и ниже.
Ещё по теме: Разновидности наливных полов для склада

Нагрузка на пол

Точное определение возможной грузоподъёмности значительно упрощает жизнь проектировщикам склада, определяющим, где и как будет располагаться товар. Так, например, в складе класса «А» наиболее приемлемо использовать для данных целей четырёх- и пятиэтажные стеллажи с нагрузкой на каждый этаж в одну тонну. Схожим принципом пользуются и при размещении грузов на паллетах и прочих видах тары.

Подводя итог, можно ещё раз сказать, что выбор пола для склада является важнейшим этапом в строительстве подобного здания. Подойдите к нему со всей ответственностью, воспользуйтесь помощью специалистов, тщательно составьте расчёты загрузки склада – и ни в коем случае не экономьте на качественной работе. Тогда и пол, и сам склад верно прослужат Вам много десятков лет без каких-либо неприятностей и, тем более, аварийных ситуаций.

Необходимо запроектировать пол склада

Тогда остановлюсь на фибробетоне толщиной 180 мм с затиркой поверхности и никакого армирования и покрытия?

3 мин. -----
И еще. Если пол делается на уровне +0,7м от земли, то необходим ж/б пояс по периметру (вместо стенок котлована)?

Что имеется ввиду под стенками котлована? Новосибирск Вы пытаетесь угадать что ли?
Силовой пол - такая же несущая железобетонная конструкция, как и все остальные, требует расчета и подбора арматуры. Разумеется проще всего это делать в программах, где реализованы подвижные нагрузки.

Если руководствоваться "Материалы для проектирования подстилающих слоев силовых подготовок под полы при к-те жесткости основания К=6.5 кгс кв.см" то армирование в моем случае вообще не нужно.

В моём случае можно использовать бетон B22.5 толщина 150мм, без всякого армирования.

Как правильно определить нагрузку на пол кг/м2

Еше раз формулы такой нет но есть логика инженера Я делал токое мероприятия из за этого вас спросил данные.
При установке стелажа на перекрытие делал лапки из швеллера №14 ложил швел. поперек перекрытию, если перекрытие 1,0 метр шириной швелл. длиной 2,0-2,2м. укладывал тем самым передавая нагрузку на соседнее перекрытие (Эта идея конечна чисто теоретически пришла на тот момен в голову)
У меня нагрузка от одной стойки от стелажа 740к/м2 с учетом нагрузки от пола так что примерно 1,0м2 несущей плиты перек. 800кг/м2 конечно сосредоточенную нагрузку нельзя прикладывать на плиту перек. следовательно сделал лапки.

Но научно мое действие думаю недоказано (на мой взгляд) соответственно включил логику ну славо Богу стоит уже 5 лет заначит все нормально. И заказчик был частник в экспертизу не кому не обращался (так одблагодарил меня). если бы отдал кокому небудь эксперту не знаю как бы доказывал ему?? по логике может быть несошлись

Да и еще несущ. способность плиты должна быть везде одинаково подънемите старый проект и посмотрите должны быть одинаковые марки плит.

Еше раз формулы такой нет но есть логика инженера Я делал токое мероприятия из за этого вас спросил данные.
При установке стелажа на перекрытие делал лапки из швеллера №14 ложил швел. поперек перекрытию, если перекрытие 1,0 метр шириной швелл. длиной 2,0-2,2м. укладывал тем самым передавая нагрузку на соседнее перекрытие (Эта идея конечна чисто теоретически пришла на тот момен в голову)
У меня нагрузка от одной стойки от стелажа 740к/м2 с учетом нагрузки от пола так что примерно 1,0м2 несущей плиты перек. 800кг/м2 конечно сосредоточенную нагрузку нельзя прикладывать на плиту перек. следовательно сделал лапки.
Но научно мое действие думаю недоказано (на мой взгляд) соответственно включил логику ну славо Богу стоит уже 5 лет заначит все нормально. И заказчик был частник в экспертизу не кому не обращался (так одблагодарил меня). если бы отдал кокому небудь эксперту не знаю как бы доказывал ему?? по логике может быть несошлись
Да и еще несущ. способность плиты должна быть везде одинаково подънемите старый проект и посмотрите должны быть одинаковые марки плит. Возможно я не очень внятно изложил проблему.
Я делаю типовое ТЗ на ремонт магазина под наши стандарты, работаю в службе Заказчика сети гипермаркетов. У нас в гипермаркетах нет склада, а есть надстеллажное хранение. То есть, на стеллаж с товаром сверху еще складируется товар. При чем, через какое-то время, стеллажи переставляются туда-сюда. Отсюда проблема - не ясно какой должна быть минимальная несущая способность пола, чтобы не было какой-либо деформации при длительной эксплуатации.
Решение я вижу такое - взять самый тяжело нагруженный стеллаж и высчитать силу давления его на пол и перевести эту величину в формат кг/м2, которую и зафиксирую в ТЗ. Таким образом, когда появляются новые объекты и проводится ревизия пола в помещении - будем просто сравнивать эту несущую способность пола с этой цифрой - и если способность меньше, то необходимо будет усиливать пол топпингом.
Стеллаж стоит на ногах - как высчитать силу давления массы стеллажа через эти 4 ноги на пол? Central Asia Решение я вижу такое - взять самый тяжело нагруженный стеллаж и высчитать силу давления его на пол и перевести эту величину в формат кг/м2, которую и зафиксирую в ТЗ.

Думаю будет не правильно, как вы излогаете (НЕВОЗМОЖНО) дать нагрузку на 1,0м2 от сосредоточенной.
Лучше Вы изложите что нагрузка от стелажа столькото кг. дайте схему стелажа (чертеж, сам стелаж сколько весит) и сколько у него ножек будет (мне технолог так и представлял данные. )
Потом у вас нет техлология магазина (новая) с растоновкой какой стелаж в каком месте будет .

Как сделать ремонт бетонного пола на складе?

Использование бетонных полов на складе, конечно же, сопряжено с огромными нагрузками – это касается как грузов, которые располагаются на многоярусных стеллажах, тем самым воздействуя на половое покрытие с огромной силой тяжести, так и погрузочной техники, которая множество раз за день пересекает рабочую поверхность пола, оказывая на него не меньшее – а иногда и большее – напряжение.

Содержание статьи
  • Как определить степень изношенности бетонного пола?
  • Ремонт бетонного пола на складе

Ремонт бетонного пола на складе

Ремонт бетонного пола на складе

Учитывая всё это, можно с уверенностью сказать, что даже самый прочный пол рано или поздно придёт в негодность. Происходит это постепенно – с незначительных истираний, появления цементной крошки (которая, кстати, очень опасна для здоровья человека при долгом вдыхании), сколов, ямок, маленьких трещин, которые со временем будут становиться всё больше и больше. В конце концов, это приводит к фундаментальному разрушению конструкции пола, что делает его дальнейшую эксплуатацию абсолютно невозможной.

Избежать этого поможет обычная внимательность. Конечно же, заметить одну-две трещинки на огромной поверхности пола практически невозможно (да и «ремонтировать» их бессмысленно) – однако если такие или подобные им нарушения целостности конструкции начнут принимать постоянный характер, пора бить тревогу. Своевременный ремонт бетонного пола поможет Вам избежать значительно более серьёзных последствий; при фундаментальных деформациях плиты ремонт пола может занять от нескольких недель до нескольких месяцев, в течение которых склад будет простаивать впустую, «съедая» Ваше время и деньги.

Определить уровень повреждения бетонного пола, необходимость проведения ремонтных работ, а также узнать о технологию их выполнения Вы сможете в данной статье.

Ещё по теме: Разновидности наливных полов для склада

Как определить степень изношенности бетонного пола?

Чтобы иметь возможность наиболее точно говорить о сохранности или изношенности пола, в первую очередь необходимо провести его тщательную чистку. На полу не должно находиться никаких предметов – техники, конструкций, коробок и контейнеров, элементов покрытия или обёртки грузов, мусора и посторонних вещей и.т.д.

После этого бетон очищается от всех видов покрытий – наливных и полимерных, лаков, красок и клеев – и тщательно обрабатывается промышленным пылесосом. После этого все дефекты, на которые следует обратить внимание, можно будет заметить невооружённым взглядом.

Чтобы определить наличие или отсутствие пустот в бетонной плите, поверхность пола следует простучать деревянным бруском. Если звук глухой, пустоты присутствуют, если звонкий – нет.

ПРЕДИСЛОВИЕ

В 1981 г. Госстроем СССР введены «Правила учета степени ответственности зданий и сооружений при проектировании конструкций». Согласно этим правилам все сооружения по степени их ответственности разделяются на 3 группы, а все бетонные и железобетонные конструкции для каждого сооружения рассчитываются на прочность по одним и тем же расчетным сопротивлениям арматуры и бетона, определенным с учетом коэффициента надежности для данного сооружения. В развитие этого положения целесообразно осуществить дифференцированный подход к надежности элементов и конструкций одного и того же сооружения в зависимости от их функционального назначения и степени ответственности. В первую очередь это относится к конструкциям с экономической ответственностью, в которых достижение предельного состояния по прочности арматуры и бетона не приводит к аварийным ситуациям или к серьезным нарушениям технологического процесса. Расчет таких конструкций проводится по заданному уровню надежности, определенному исходя из минимума приведенной стоимости, включающей первоначальную стоимость конструкции, затраты на ее поддержание в эксплуатационном состоянии, а также стоимость ущерба от возможных нарушений технологии. Такой подход наиболее эффективен для полов производственных зданий, которые можно рассчитывать с заданным уровнем надежности, определенным в зависимости от условий эксплуатации. Исследования ЦНИИпромзданий показали, что принятый в настоящее время уровень надежности проектируемых подстилающих слоев представляется излишне высоким и в ряде случаев даже превышает уровень надежности типовых несущих конструкций повышенной ответственности. Переход к расчету бетонных подстилающих слоев с учетом требуемого уровня надежности позволит в значительном числе случаев уменьшить толщину пола на 20 - 30 %.

Использование Рекомендаций в практике проектирования позволит снизить стоимость 1 м 2 пола на 1,2 - 2 руб. при сокращении трудозатрат на 0,2 - 0,3 чел.-ч и экономии 8 кг цемента.

Предложения и замечания по содержанию настоящих Рекомендаций направлять в лабораторию полов ЦНИИпромзданий по адресу: 127238, Москва, Дмитровское шоссе, 46.

1. ОБЩАЯ ЧАСТЬ

1.1 . Настоящие Рекомендации применяются при проектировании сплошных бетонных подстилающих слоев полов промышленных зданий из тяжелого бетона на грунте и на теплоизоляционном слое из сыпучих материалов, уложенных на плитах перекрытий, в тех случаях, когда по условиям эксплуатации не требуется гидроизоляция пола.

1.2 . При учете экономической ответственности при проектировании следует иметь в виду, что выход какого-либо участка пола из строя (отказ пола) носит вероятностный характер, не создает угрозы человеческой жизни, а допустимость затрат, связанных с устранением его последствий, может быть оценена экономически.

1.3 . При расчете подстилающих слоев с учетом экономической ответственности первоначальная экономия от устройства пола должна быть не меньше суммы затрат на необходимый ремонт и на восстановление ущерба от нарушений технологии, возникшего в случае возможного отказа пола.

1.4 . При расчете с учетом экономической ответственности полы промышленных зданий условно разделяются на следующие группы:

I - полы, на которые не устанавливается стационарное технологическое оборудование (для технологического оборудования устраиваются специальные фундаменты, а полы воспринимают нагрузки при движении людей и от воздействия транспортных средств, складируемых материалов);

II - полы, на которые устанавливается стационарное оборудование, эксплуатация которого не связана с особыми требованиями к деформациям основания (возникновение остаточных деформаций или трещин в подстилающем слое пола не приводит к нарушению нормальной эксплуатации стационарного оборудования, а при необходимости ремонта пола допускается временное перемещение этого оборудования на другой участок);

III - полы, на которые устанавливаются станки, насосы и другое не связанное в единые комплексные линии оборудование с особыми требованиями к основанию;

IV - полы, на которые устанавливаются: автоматизированные линии, гибкие системы и т.д.

Определение группы пола промышленных зданий производится ведущей проектной организацией данного объекта.

Модуль упругости, МПа

Расчетные сопротивления растяжению R s t , МПа

1 . ОБЩИЕ ПОЛОЖЕНИЯ

1.1 . Настоящие Нормы распространяются на проектирование предприятий , цехов , изготавливающих сборные армированные и неармированные изделия из тяжелых и легких бетонов , а также на проектирование отдельных производств , самостоятельных бетоносмесительных и растворосмесительных цехов и отделений .

Примечания : 1. При проектировании предприятий следует учитывать требования СНиП 3.09.01-85 « Производство сборных железобетонных конструкций и изделий» . 2. Нормы не распространяются на проектирование предприятий и цехов , в которых : формование изделий осуществляется методами центрифугирования , виброгидропрессования , вибропроката ; изготовляются изделия и конструкции , к которым предъявляются особые требования по долговечности , морозостойкости и водонепроницаемости ( например шпалы , мостовые конструкции , трубы ). 3. При проектировании производств , указанных в примечании 1, следует руководствоваться требованиями , содержащимися в специальных Нормах или технологических регламентах , разработанных научно - исследовательскими организациями .

1.2 . Проектирование производств с использованием новых технологий и оборудования следует осуществлять после их опытной проверки по рекомендациям научно - исследовательских или опытно - конструкторских организаций , утвержденным министерствами и ведомствами в составе задания на проектирование предприятия .

1.3 . Нормативные технологические параметры и показатели даны для типовых проектов ; при разработке проектов конкретных предприятий параметры и показатели уточняются в зависимости от номенклатуры изделий , применяемых материалов и других местных условий , но они не должны быть ниже ( хуже ), чем регламентированные настоящими Нормами .

1.4 . При определении режима работы предприятия следует принимать

номинальное количество рабочих суток в году . 260

то же , по выгрузке сырья и материалов с

железнодорожного транспорта . 365

количество рабочих смен в сутки

( без тепловой обработки ) . 2

количество рабочих смен в сутки для тепловой обработки . 3

количество рабочих смен в сутки по приему

сырья и материалов :

железнодорожным транспортом . 3

автотранспортом . 2 или 3

продолжительность рабочей смены , ч . 8

1.5 . Расчетное количество рабочих суток в году для полигонов в типовых проектах следует принимать :

при ускоренном твердении изделий - по табл . 1 ;

при естественном твердении изделий - 150.

При проектировании полигонов на конкретных предприятиях и при естественном твердении изделий годовое количество суток работы определяется заданием на проектирование в зависимости от климатических и других местных условий .

1.6 . Продолжительность плановых остановок и расчетное количество рабочих суток ( годовой фонд времени работы основного технологического оборудования ) принимается по табл . 1 .

Технологические линии и основное технологическое оборудование

Длительность плановых остановок на ремонты , сут

Расчетное количество рабочих суток в году

Агрегатно - поточные и стендовые линии , кассетные установки

Цехи и установки по приготовлению бетона и раствора

Примечания : 1. Для бетоносмесительных , арматурных и вспомогательных цехов ( ремонтно - механического , зарядной и др .) принимаются максимальные параметры работы формовочных линий , входящих в состав производства . 2. Производительность плановых остановок при 2- х сменной работе включает переналадку и замену форм , осуществляемую в течение смены ; для переоснастки кассет расчетное количество рабочих суток уменьшается на 3. 3. Для производств , расположенных на полигонах круглогодичного действия , продолжительность плановых остановок принимается по табл . 1 с увеличением на 20 %. Для полигонных производств сезонного действия плановые остановки не учитываются .

1.7 . Производственная мощность предприятий должна определяться в соответствии с « Инструкцией по определению производственной мощности предприятий сборного железобетона» , утвержденной Министерством промышленности строительных материалов СССР .

1.8 . При составлении циклограмм и распределении операций на технологических постах и линиях необходимо учитывать регламентированные затраты времени ( перерывы ) в размере 10 - 15 % от продолжительности смены с учетом действующих нормативов , рекомендованных НИИтруда .

2 . НОРМЫ РАСХОДА ЦЕМЕНТА, ЗАПОЛНИТЕЛЕЙ И ДРУГИХ МАТЕРИАЛОВ

2.1 . Расходы портландцемента ( или шлакопортландцемента ) на 1 м 3 бетона сборных железобетонных изделий для основных технологических и технико - экономических расчетов принимаются по СНиП 5.01.23-83 « Типовые нормы расхода цемента для приготовления бетонов сборных и монолитных бетонных, железобетонных изделий и конструкций» .

Для расчетов емкостей складов и бункеров допускается принимать укрупненные расходы цемента по табл . 2 .

Разъяснения по вопросу сбора нагрузок и составлению технического задания на проектирование полов в складских помещениях, оборудованных многоярусными сборными стеллажами

А. Горб, директор ЗАО «СК Конкрит Инжиниринг»

В последнее время для расчета плит полов необоснованно применяют компьютерные программы для расчета фундаментных плит, не учитывающие значимые при расчете пола исходные параметры. Это служит причиной применения в строительстве ошибочных решений, приводящих к разрушению пола при эксплуатации или значительному перерасходу средств на создание пола с излишним запасом прочности.

Часто в технических заданиях на проектирование полов в качестве расчетного параметра необоснованно приводится значение «нормативной эквивалентной равномерно-распределенной нагрузки». Так, согласно требованиям п. 2.3 нормативного документа «Полы. Технические требования и правила проектирования, устройства, приемки, эксплуатации и ремонта», «…собственный вес пола, а также нагрузки, равномерно-распределенные по площади, при расчете не учитываются…». То есть практически любое значение этой нагрузки – 5, 10 или 20 т/м 2 – никак не влияет на параметры конструкции плиты пола.

Примером истинной равномерно-распределенной нагрузки величиной 5 т/м 2 является слой песка толщиной около 3,2 м, насыпанного по всей площади пола. При данном характере нагружения в конструкции пола не возникает изгибающих моментов, и его толщина принимается конструктивно, например 120 мм (пол из неармированного бетона класса В22,5).

Условно в качестве равномерно-распределенной нагрузки величиной 5 т/м 2 можно рассматривать нагрузку, создаваемую 5-тонным погрузчиком, габариты осей колес которого составляют приблизительно 1х1 м, складированные в 5-ярусные штабеля паллеты размером 0,8х1,2 м, весом 1 т каждая или рулоны бумаги, установленные в четыре уровня хранения. Во всех этих случаях величина условной равномерно-распределенной нагрузки одинакова, но конструкция пола будет разной по причине того, что величина и характер приложения сосредоточенных нагрузок различаются.

Только исходные данные о сосредоточенных нагрузках могут служить законным основанием для проектирования плиты пола по грунту. Согласно СНиП 2.01.07-85* «Нагрузки и воздействия», при составлении задания на проектирование пола, на который действуют нагрузки от оборудования и складируемых материалов, необходимо учитывать данные о местах расположения и величине нагрузок, габаритах опор оборудования. Замена фактически действующих сосредоточенных нагрузок на эквивалентные равномерно-распределенные может быть осуществлена только при проектировании конструкций междуэтажных перекрытий. Для полов, опирающихся на грунт, такая замена недопустима. В СНиПе 2.03.13-88 «Полы» и прочих используемых при расчете полов нормативных документах прописаны такие же требования к содержанию технических заданий. Так, п. 2.3. норматива «Полы. Технические требования и правила проектирования, устройства, приемки, эксплуатации и ремонта» гласит: «… на схеме нагрузок в плане должна быть указана их наибольшая величина, размеры и форма следов опирания на пол и наименьшие расстояния между этими следами…»

Требования нормативных документов основаны на том, что при расчете полов решаются только две основные задачи с точки зрения теории упругости:

• задача № 1 – «О расчете круглой плиты неограниченных размеров при нагрузке распределенной по малой площади» для нагрузок, удаленных от краев;

• задача № 2 – «О расчете прямоугольной плиты при нагрузке, близкой к сосредоточенной» для нагрузок у краевых и угловых участков плиты.

К проектированию полов задача о равномерной нагрузке, распределенной по всей площади плиты, не имеет никакого отношения и решается только для плит конечного размера и жесткости. Таким образом, техническое задание, содержащее даже упоминание об использовании в расчетах значения эквивалентной равномерно-распределенной нагрузки, является некорректным с точки зрения основания для проектирования.


Однако возникает резонный вопрос: почему же при обсуждении проектов складских комплексов фактически встречается параметр «допустимая нагрузка до 5 (6) т/м 2 »? При массовом строительстве складских комплексов в последние годы возникла необходимость каким-то образом классифицировать склады по параметрам, отражающим их инвестиционную привлекательность, а также для удобства общения девелоперов, арендаторов, покупателей и строителей складов. Так появилась классификация складов на типы А, В, С и т. п., которая предполагает различный уровень допустимых нагрузок на полы. Определение «склад класса А» предполагает значение равномерно-распределенной нагрузки, как правило, 5 или 6 т/м 2 , что позволяет инвесторам, проектировщикам и арендаторам иметь единое представление о параметрах склада – возможности размещения на полу стандартных сборно-разборных стеллажей с 5-ярусным хранением грузов на европаллетах полной массой до 1 т. Как правило, на складе используются фронтальные стеллажи с общепринятыми расстояниями между вертикальными стойками 1,05 х 2,75 м. Связью с предполагаемыми параметрами склада и ограничивается функциональность условного показателя «равномерно-распределенной нагрузки», способствующего пониманию сути пожеланий инвесторов, заказчиков и арендаторов, но бесполезного и недопустимого для инженерного расчета конструкции плиты пола.

Рассмотрим алгоритм приведения величины реально действующих сосредоточенных нагрузок на пол к значению условного показателя равномерно-распределенной нагрузки.

Пусть высота склада в свету (т. е. расстояние от поверхности пола до нижней поверхности балки покрытия) равна 12 м, а вес одной единицы груза (паллеты) – 1 т. Для предварительных расчетов плиты пола этих данных вполне достаточно. Определим количество ярусов хранения. При стандартной упаковке высота паллеты составляет 1,6–1,8 м. Добавив к ней зазоры и высоту балок рамы стеллажа, получим, что высота одного яруса примерно равна 2 м. Исходя из этого рассчитываем максимально возможное количество ярусов хранения: 12 : 2 = 6.

Предполагается, что хранение будет осуществляться на стандартных фронтальных стеллажах с размерами между осями стоек (в плане) 2,75 х 1,05 м, что допускает хранение до трех европаллет размером 0,8 х 1,2 м в каждой стеллажной ячейке.

Рассматриваемый вариант сбора нагрузок на опору стойки стеллажа предполагает напольное хранение грузов первого яруса. Размещение таких грузов на балке, передающей дополнительную нагрузку на стойки стеллажа, однозначно неприемлемо, поскольку приводит к дополнительным расходам за счет увеличения общего количества балок и роста (до 20%) нагрузок на стойки стеллажа. Поэтому в большинстве случаев используется напольное хранение грузов 1-го яруса. В случае использования узкопроходной техники, перемещающейся по направляющим упорам (без индукционного управления), параллельно балкам основной конструкции стеллажа с креплением к полу применяется установка опорных балок (прямоугольных стальных профилей размером более высоты направляющего упора) для укладки паллет нижнего яруса. В результате на стойки стеллажа оказывается косвенное, не очень большое воздействие, поскольку нагрузка распределена по относительно большой площади.

На основании исходных данных получаем формулу для расчета нагрузки на среднюю одиночную стойку стеллажа с учетом напольного хранения грузов первого яруса:

P = (Рпал · М · N1) / 2, (1)

где Р – рассчитываемая нагрузка на одиночную стойку стеллажа, т;
Рпал – усредненный вес паллеты, т;
М – количество паллет на одном ярусе хранения (в случае применения стандартных стеллажей размером в плане 1,05 х 2,75 м оно равно 3);
N1 – количество ярусов хранения на раме стеллажа.

Подставляя в формулу (1) предварительно заданные исходные данные, получаем:

Р = (1 т · 3 · 5) / 2 = 7,5 т.

Таким образом, нагрузка на одиночную стойку стеллажа при шестиярусном хранении и напольном хранении грузов первого яруса составляет 7,5 т.

В случая хранения всех паллет на раме стеллажа (без напольного хранения) получаем:

P = (Рпал · М · N) / 2, (2)

где N – общее количество ярусов хранения.

Подставляя исходные данные, получаем, что

Р = (1 т · 3 · 6) / 2 = 9 т.


Для приведения данного сочетания нагрузок к эквивалентной равномерно-распределенной необходимо произвести деление нагрузки, действующей в пределах нагруженной стеллажной ячейки, на условно принятую грузовую площадь, определенную габаритными размерами стоек стеллажа:

Рэкв = (Pпал · M · N) / S, (3)

где S – грузовая площадь (2,75 · 1,05 = 2,8875 м 2 ).

Рэкв = (1 т · 6 · 3) / 2,8875 м 2 = 6,23 т/м 2 .

В результате мы привели реально действующие нагрузки от грузов, расположенных на стеллажах, к условному значению равномерно-распределенной нагрузки.

Таким образом, при одинаковом значении равномерно-распределенной нагрузки (6,23 т/м 2 ) мы имеем различные величины нагрузок на стойки стеллажей (7,5 и 9 т), различающиеся по значению почти на 20%, что подтверждает недопустимость использования равномерно-распределенной нагрузки как расчетного параметра при проектировании полов.

Здесь приводятся таблицы ориентировочного соотношения между различными видами нагрузок при разном весе единиц грузов (паллет) при использовании стандартных фронтальных стеллажей размером в плане 2,75 х 1,05 м.

Читайте также: