Гидравлическое сопротивление теплого пола

Обновлено: 18.05.2024

Подбор циркуляционного насоса для водяного теплого пола. (1)

Статья предназначена для специалистов работающих в области ТГВ и студентов.

Рассматриваем пример гидравлического расчета.

Контур теплых полов, состоит из насосной группы со смесительным клапаном, коллектора на 8 групп, и 8 контуров.

Подбор циркуляционного насоса для водяного теплого пола. (1) Подбор циркуляционного насоса для водяного теплого пола. (1)

Данная схема разбирается подробно, чтобы внести ясность.

Алгоритм следующий.

1. Необходимо определить теплоотдачу каждого контура. Для простоты расчета принимается теплоотдача 80 Вт с 1 м2 занятого теплым при шаге раскладки 150 мм. В последующем, возможно, выполню статью по этому расчету.

Подбор циркуляционного насоса для водяного теплого пола. (1)

2. Необходимо узнать длину каждого контура, длину трубопроводов от теплогенераторной до коллектора теплого пола. Далее, необходимо выбрать диаметры трубопроводов. Диаметры выбираются исходя из оптимальной скорости (максимум 0.7-0.8 м/с). Про это подробно расписано в статье .

В теплом полу применены металлопластиковые трубы Ф 16х2. Далее, выполняем, нумерацию участков начиная, от источника теплоснабжения. Точкой ноль будет присоединение к коллектору. Разбираем подробно.

Подбор циркуляционного насоса для водяного теплого пола. (1)

0-1 тепловая нагрузка 3750 Вт (общая тепловая нагрузка на коллектор) Двн=26мм

собираем КМС: тройник на разделение, кран шаровой, сужение у насосов, кран шаровой, отводов 5 шт, расширение (вход в коллектор), тройник на слияние. Значение КМС приведены на чертеже.

Клапан смесительный (учитываем готовыми потерями – принимаем 1.5 м.в.ст (15 000Па) принимается по паспортным данным или рассчитается, про это возможно будет отдельная статья.

Для поиска значений КМС рекомендую пользоваться следующим каталогом Валтек.

Подбор циркуляционного насоса для водяного теплого пола. (1)

Далее идут участки коллектора длиной по 0.1 м – расстояния между ответвлениями от коллектора, с КМС тройник на проход.

Причем, как показывает практика, потерями именно в коллекторе, при небольших скоростях в нем (до 0,5-0,6 м/с) , можно пренебречь, наглядно это видно в расчете, если просуммировать потери на участках 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8 (подающий коллектор) + 8*-7*, 7*-6*, 6*-5*, 5*-4*, 4*-3*,3*-2*, 2*-1* то получается величина около 600 Па, а это 0.06 м.в.ст.

Подбор циркуляционного насоса для водяного теплого пола. (1)

Ради примера, в расчете, если коллекторе на всех его участках принять скорость 0.8 м/с, то суммарные потери в подающем и обратном коллекторах будут по 0.41 м.в.ст.

Подбор циркуляционного насоса для водяного теплого пола. (1)

Понятно, что запорно-регулирующая арматура на ответвлениях не учитывается. Ее учет уже ведется на контурах (петлях).

Т.о. задачу можно упростить, оставив только участки 0-1, 1*-0* (подводящие трубопроводы к коллектору) и сами петли.

Подбор циркуляционного насоса для водяного теплого пола. (1)

Участок петля теплого пола - на ней находятся кран шаровой, отводы (калачи), тройник на разделение, вентиль, тройник на слияние. Значения КМС подписаны на схеме.

Подбор циркуляционного насоса для водяного теплого пола. (1) Подбор циркуляционного насоса для водяного теплого пола. (1)

1*-0* расширение, 5 отводов, кран шаровой, клапан обратный, тройник на проход, вентиль (учитываем готовыми потерями – принимаем 1.5 м.в.ст (15 000Па), тройник на слияние. По вопросу, откуда взялось 1.5. м.в.ст. Данная цифра взята ради примера, т.к. данный клапан является балансировочным. Соответственно его настройку также необходимо считать, как и любого балансировочного клапана (см. ниже п.3) совместно с другими контурами идущими от котлового коллектора, выполняя невязку.

3. Расчет Kv балансировочного клапана Kvs клапана - характеристика пропускной способности клапана, есть условный объемный расход воды через полностью открытый клапан, м3/час при перепаде давлений 1 Бар (10 м.вод.ст) при нормальных условиях. Указанная величина является основной характеристикой клапана. Зависимость перепада давлений на клапане, объемного расхода жидкости через регулирующий клапан, и условный объемный расход (Kv) описывается следующим соотношением:

G=Kv х (∆P)^0,5 (степень 0.5 - означает корень квадратный)

G - массовый расход жидкости, м3/час

∆P - перепад давления на полностью открытом клапане, бар.

При уравнивании петель, известно какое сопротивление должен создать клапан, чтобы все петли были одинаковые по сопротивлению при расчетных расходах.

Часто задаваемый вопрос, из каких соображений принимается потеря на балансировочном клапане самого нагруженного контура.

Ответ тут такой: любой клапан не может обладать нулевым сопротивлением, и его сопротивление нужно для того, чтобы не получилось так, что контур с малым сопротивлением придется «зажимать» так, что его конструкция не сможет это обеспечить.

Иными словами клапан будет вне диапазона регулировки. В екселе это наглядно видно, в данном случае методом подбора сопротивления, на клапане принята потеря 1500 Па (0.15 м.в.ст.).

Калькулятор расчета водяного теплого пола

О нлайн калькулятор водяного теплого пола предназначен для расчета основных тепловых и гидравлических параметров системы, расчета диаметра и длины трубы. Калькулятор предоставляет возможность осуществить расчет теплого пола, реализованного «мокрым» способом с обустройством монолитного пола из цементно-песчаного раствора или бетона, а также с реализацией «сухим» методом, с использованием тепло-распределяющих пластин. Устройство системы ТП «сухим» методом предпочтительно для деревянных полов и перекрытий.

При завышении предельно допустимых значений основных параметров, калькулятор укажет на ошибки.

Расчет теплого пола

Т епловые потоки, направленные снизу-вверх, являются наиболее предпочтительными и комфортными для человеческого восприятия. Именно поэтому обогрев помещений теплыми полами становится наиболее популярным решением по сравнению с настенными источниками тепла. Нагревательные элементы такой системы не занимают дополнительного места в отличие от настенных радиаторов.

П равильно спроектированные и реализованные системы теплого пола являются современным и комфортным источником обогрева помещений. Использование современных и качественных материалов, а также правильных расчетов, позволяет создать эффективную и надежную систему отопления со сроком службы не менее 50 лет.

С истема теплого пола может выступать единственным источником обогрева помещения только в регионах с теплым климатом и с использованием энерго-эффективных материалов. При недостаточном тепловом потоке обязательно применение дополнительных источников тепла.

П олученные расчеты будут особенно полезны тем, кто планирует реализовать систему отопления теплого пола своими руками в частном доме.

Для более точного расчета обязательно обратитесь к квалифицированным специалистам в вашем регионе!

Общие сведения по результатам расчетов

  • О бщий тепловой поток - Кол-во выделяемого тепла в помещение. Если тепловой поток меньше тепловых потерь помещения, необходимы дополнительные источники тепла, например, такие как настенные радиаторы.
  • Т епловой поток по направлению вверх - Кол-во выделяемого тепла в помещение с 1 квадратного метра площади по направлению вверх.
  • Т епловой поток по направлению вниз - Кол-во "теряемого" тепла и не участвующего в обогреве помещения. Для уменьшения данного параметра необходимо выбирать максимально эффективную теплоизоляцию под трубами ТП* (*теплого пола).
  • С уммарный удельный тепловой поток - Общее кол-во тепла, выделяемого системой ТП с 1 квадратного метра.
  • С уммарный тепловой поток на погонный метр - Общее кол-во тепла, выделяемого системой ТП с 1 погонного метра трубы.
  • С редняя температура теплоносителя - Средняя величина между расчетной температурой теплоносителя подающего трубопровода и расчетной температурой теплоносителя обратного трубопровода.
  • М аксимальная температура пола - Максимальная температура поверхности пола по оси нагревательного элемента.
  • М инимальная температура пола - Минимальная температура поверхности пола по оси между трубами ТП.
  • С редняя температура пола - Слишком высокое значение данного параметра может быть дискомфортно для человека (нормируется СП 60.13330.2012). Для уменьшения данного параметра необходимо увеличить шаг труб, снизить температуру теплоносителя либо увеличить толщину слоев над трубами.
  • Д лина трубы - Общая длина трубы ТП с учетом длины подводящей магистрали. При высоком значении данного параметра калькулятор рассчитает оптимальное кол-во петель и их длину.
  • Т епловая нагрузка на трубу - Суммарное количество тепловой энергии, получаемое от источников тепловой энергии, равное сумме теплопотреблений приемников тепловой энергии и потерь в тепловых сетях в единицу времени.
  • Р асход теплоносителя - Массовое кол-во теплоносителя предназначенного для подачи необходимого кол-ва тепла в помещение в единицу времени.
  • С корость движения теплоносителя - Чем выше скорость движения теплоносителя, тем выше гидравлическое сопротивление трубопровода, а также уровень шума, создаваемого теплоносителем. Рекомендуемое значение от 0.15 до 1м/с. Данный параметр можно уменьшить за счет увеличения внутреннего диаметра трубы.
  • Л инейные потери давления - Снижение напора по длине трубопровода, вызванного вязкостью жидкости и шероховатостью внутренних стенок трубы. Без учета местных потерь давления. Значение не должно превышать 20000Па. Можно уменьшить за счет увеличения внутреннего диаметра трубы.
  • О бщий объем теплоносителя - Общее кол-во жидкости для заполнения внутреннего объема труб системы ТП.

Калькулятор работает в тестовом режиме. Дата добавления калькулятора 11.03.2018

Методика укрупненных расчетов «теплого пола»

Водяной «теплый пол» все чаще проектируется в домах в Украине, как основной источник тепла. Его преимущества – экономия, комфорт, свобода в расстановке мебели. Попробую дать упрощенную, основанную на личном опыте, авторскую методику из нескольких пунктов о том, как проще, но, в то же время, максимально правильно спроектировать и создать систему поверхностного отопления, что называется «теплый пол водяной своими руками»

Точность теплопотерь – миссия невозможна

При проектировании любой системы отопления, включая «теплый пол», необходимо первым делом выполнить расчет потерь тепла. Он сложен и включает множество нюансов, которые необходимо учитывать: материал, толщина и теплопроводность стен; конструкция окон и размеры проемов; внутренний объем помещений; расположение по сторонам света; потери через вентиляцию и т.д.

Конечно, для упрощения можно применять компьютерные программы. Однако, дело в том, что точно рассчитать теплопотери практически невозможно. Ведь могут быть существенные отличия в характеристиках материалов на объекте от идеальных условий, в которых проходят их испытания при сертификации. Нередко встречаются отклонения от проекта, да и качество строительных работ также далеко не всегда на высоте. Есть ли смысл проводить подробные расчеты, если точно неизвестно как сделаны стены, к примеру, есть ли щели и мостики холода в местах примыканий? Строительная конструкция в любом случае несовершенна, поэтому подробные расчеты тоже могут быть неточными.

Исходя из этого во многих случаях можно обойтись ориентировочными укрупненными расчетами.

Теплопотери жилых помещений еще с советских времен принято принимать на уровне 100 Вт/ м 2 . Однако для зданий новой постройки, возведенных по современным нормам, эта цифра будет завышенной. Оптимальный вариант для них – 80 Вт/м 2 . Стоит брать во внимание, что это параметры для наиболее холодной пятидневки в году. Большую же часть времени отопительного сезона система будет покрывать меньшие теплопотери и работать с отдачей около 55-60 Вт/м 2 .

Для снижения нагрузки на систему «теплого пола» и покрытия пиковых потребностей в морозы можно дополнительно использовать приборы отопления (радиаторы или конвекторы). Их применение особенно важно, если в помещении есть большие оконные проемы, чтобы отсечь идущий от них холодный воздух.

Оптимальная длина = удобство запуска

Перейдем непосредственно к проектированию системы «теплого пола». Его контуры рекомендуется делать в виде «улитки» (рис. 1), по возможности одинаковыми по протяженности – около 80 м. Максимальная длина труб – до 120 м. Это объясняется тем, что при такой конфигурации упрощается ввод системы в эксплуатацию.

Изображение монтаж водяного теплого пола

Рис. 1. Укладка труб «теплого пола» в виде «улитки»

Прежде всего, речь идет об удалении воздуха из системы «теплого пола». Для этого сначала заполняют систему водой, желательной умягченной. Затем закрывают все контура, кроме одного, при помощи клапанов на подаче и обратном трубопроводе. После включают циркуляционный насос «теплого пола» и дают ему поработать 2-3 минуты. Часто, если длина контура менее 80 м, эта операция получается успешно.

Если же таким способом воздух удалить не удалось – расходомер показывает 0 л/мин., – то необходимо его выдавить с помощью давления водопроводной сети или посредством насосной станции с емкостью для теплоносителя.

Шаг укладки – на грани комфорта и экономии

Шаг укладки (расстояние между трубами) «теплого пола» для жилых помещений можно принимать от 15 до 20 см, для санузлов и бассейнов рекомендуется 10 см. Естественно, что от этого зависят, в первую очередь, расходы на материалы (табл.). Если расстояние 10 см, то требуется приблизительно 10 погонных метров трубы на 1 м 2 , а при 20 см – необходимо всего 5 п. м/м 2 . Однако экономия на приобретении труб не всегда целесообразна. При большом шаге укладки в 20-30 см в процессе эксплуатации появляются непрогретые зоны, и ходить босиком по такому «теплому полу» не всегда комфортно.

Изображение расчет теплых полов водяных по площади

Таблица. Расход труб и площадь контура в зависимости от шага укладки

Соблюдение указанных оптимальных значений шага укладки, при условии, что температура поверхности «теплого пола» составляет рекомендуемые 25-26°С, позволяет обеспечить температуру воздуха в помещении 22°С.

Отмечу, что эти и прочие рекомендации в данной статье указаны для труб диаметром 16 или 17 мм. Естественно, они должны быть предназначены для систем поверхностного отопления, к примеру, в нашей стране часто используются полиэтиленовые трубы RAUTHERM S производства REHAU (Германия).

Гидравлические расчеты – по-простому

Важный параметр при выборе насосного оборудования – гидравлическое сопротивление системы «теплого пола». Оно, в основном, складывается из потерь в контуре (из расчета 150 Па/м для максимальной длины контура 120 м – около 18 000 Па), коллекторе (10 000 Па), в трехходовом смесительном клапане (5 000 Па). Таким образом, выходим на суммарную цифру 33 000 Па.

Десять тысяч паскалей соответствуют одному метру напора, который должен создавать насос. То есть сопротивление всей системы с одним контуром максимальной длины – не более 3,5 м. Именно такой максимальный напор должен создавать насос для такой системы «теплого пола».

Для определения расхода (G, м 3 /ч) необходимо знать мощность контура (Q, кВт) и температуры теплоносителя (Т, °С) на линиях подачи и обратки. Кроме того, учитывается коэффициент 1,163.

Расход определяется по формуле:

Балансировку системы «теплого пола» достаточно просто можно произвести путем установки определенных значений G на расходомерах коллектора. При этом для перевода м 3 /ч в л/м (градуировка расходомера) необходимо полученный выше расход умножить на 1000 и разделить на 60.

Конструкционные особенности: миф о фольге

Трубы «теплого пола» необходимо укладывать на слой теплоизоляции. При этом лучше всего использовать фирменный утеплитель. Часто в качестве него используется пенополистирол. В случае, если система укладывается на плиту межэтажного перекрытия, то толщина листа утеплителя должна составлять 30 мм. При монтаже непосредственно на грунт, желательно увеличить этот параметр до 50 мм.

Существует миф о том, что для снижения теплопотерь необходима еще укладка в основание фольгированного пенофола. Это является заблуждением, ведь в конструкции «теплого пола» все слои плотно прижаты друг к другу, следовательно, тепло передается за счет теплопроводности, а не излучения. В то же время, важна отстенная изоляция по периметру помещения, для ликвидации мостиков холода.

Заказчики часто интересуются тем, какой толщины должна быть стяжка над трубой «теплого пола». Отвечу, что оптимальный вариант – 50 мм плюс напольное покрытие (плитка, ламинат, ковролин, линолеум или паркет). При укладке стяжки вручную – а это наиболее распространенный в нашей стране способ – желательно использовать качественные материалы: цемент марки М400, чистый речной песок, можно добавить мелкий щебень (фракция до 10 мм, не гран отсев, поскольку в нем много пыли). Соотношение указанных компонентов – 1:3:3.

Когда нужны «организованные трещины»?

Деформационные швы, по сути, представляют собой «организованные трещины», которые предохраняют напольное покрытие от разрушения вследствие температурных расширений при эксплуатации. Их необходимо предусматривать в местах дверных проемов, а также в следующих случаях: если площадь комнаты больше 40 м 2 ; при длине стены свыше 8 м или при соотношении сторон больше, чем один к двум; при сильно изломанном периметре помещения (рис. 2). При этом нельзя делать шов, пересекая все трубы контура. Подробнее о том, как не навредить в процессе инсталляции можно прочитать в статье «Распространенные ошибки монтажа «теплого пола».

Изображение расчет теплых полов водяных по площади

Рис. 2. Варианты расположения деформационных швов:
а) в помещениях сложной геометрии; б) неправильное расположение; в) правильное размещение

Для «теплых полов» нужен теплоноситель с пониженной температурой, поэтому для таких систем прекрасно подходят конденсационные котлы и тепловые насосы. Подключение к ним производится посредством различных смесительных узлов. Они позволяют регулировать температуру подачи, в том числе, в зависимости от погоды.

Видео. Проектирование «теплого пола»

В целях большей экономии энергоресурсов и достижения максимального комфорта систему на основе «теплого пола» можно дооснастить покомнатным регулированием.

Резюме

На основе вышеизложенных рекомендаций можно выделить следующие ключевые моменты экспресс-проектирования «теплого пола»:

Все остальное – на выбор и желание пользователя. Удачных вам решений и успехов в делах!

Примеры расчета насоса для водяного пола

Все большее число домовладельцев для отопления применяют системы теплого водяного отопления. Это не очень сложное инженерное сооружение, поэтому перед началом работ надо выполнить расчет насоса для теплого пола.

Такой расчет можно выполнить своими силам или воспользоваться онлайн-калькулятором. Они обычно располагаются на сайтах компаний, которые занимаются монтажом таких отопительных систем.

Данные необходимые для правильного расчета насоса

Принцип работы типовой отопительной системы замкнутого типа довольно прост.

Котельное оборудование нагревает теплоноситель, который проходит через отопительные приборы, отдавая тепловую энергию в окружающее пространство. Если при сооружении будет использована естественная циркуляция теплоносителя, то придется укладывать трубопровод под определенным углом к горизонту. Это позволит рабочей жидкости перемещаться самостоятельно.

Но при таком способе невозможно обеспечить достаточно высокую скорость передвижения теплоносителя из-за чего он возвращается в котел сильно охлажденным и это вынуждает его работать непрерывно с предельной нагрузкой. В связи с этим теплый пол без насоса, схема подключения которого находится на сайтах компаний, может доставлять определенные трудности в эксплуатации.

Для того чтобы увеличить скорость потока, используют циркуляционные насосы. Их использование позволяет добиться разницы температуры на входе и выходе из линии трубопровода в несколько градусов. Соответственно, котел перестает работать с полной нагрузкой, так снижаются затраты на энергию.

Конструктивно насос состоит из: корпуса, для изготовления которого применяют медные и нержавеющие сплавы; электрического двигателя; рабочего колеса (крыльчатки). При его вращении появляется центробежная сила. В итоге на выходе из корпуса формируется требуемый набор, и рабочая жидкость подается в трубопровод.

Существует два типа насосов — сухие и мокрые. Они отличаются друг от друга строением ротора. В конструкции мокрого колеса расположено непосредственно в рабочей среде, но электрическая часть узла надежно герметизирована в металлическом стакане, разделяющем статор и ротор.

Но такой тип агрегатов не стоит устанавливать для перекачивания горячей воды, с течением времени соли, растворенные в воде, забьют собой микронные зазоры между ротором и статором, в результате чего двигатель перестанет функционировать.

В двигателе сухого типа рабочее колесо также погружено в рабочую среду, но при этом элемент полностью от нее изолирован. Следует отметить, что устройства последнего типа отличаются высокой производительностью.

Домовладелец должен понимать, что расчет циркуляционного насоса для теплого пола, это довольно сложное дело и будет лучше, если его выполнят специалисты теплотехники. Кстати, после проведения расчетов будет ясна и схема подключения насоса теплого пола.

При выполнении расчета необходимо учесть разницу температуры в трубопроводе, то есть в трубе выходящей из нагревательного прибора и той, через которую она подаётся обратно. Для длинных трубопроводов разница может составлять до 20 град, если в отопительной системе использованы короткие контуры, такое значение составляет 10 град. Если обогревание теплого пола выполняют с небольшой площадью, то температурный перепад принимают равным 5 градусам.

насос для теплого пола 4

Нельзя забывать и о типе теплоносителя. Если в трубопровод залита вода, то при расчете принимают коэффициент теплоемкости, он составляет 1,163. Если в системе применяют антифриз, то этот коэффициент имеет другое значение и его определяют по специальной литературе.

Кроме названных данных, при выполнении расчетов потребуются следующие данные:

  1. Вид строительных материалов, использованных при возведении здания.
  2. Площадь обогреваемого помещения.
  3. Будет ли использовано дополнительное нагревательное оборудование.

Количество контуров

При укладке теплого пола применяют цельную трубу. Наличие соединений повышает вероятность повреждения трубы по стыку, а это приводит к дополнительным затратам на ремонт и восстановление отопительной системы.

То есть домовладелец должен знать общую длину теплового контура. По сути, это самый простой расчет, но для его проведения потребуется подготовить детальную схему помещения с указанием всех линий и расстоянием между ними.

Для проведения подобного расчета применяют несколько методик:

  1. По средней величине. На один квадратный метр пола монтируют 5 п. м. трубы. То есть, требуется перемножить площадь помещения на 5.
  2. По размеру среднего шага. Для этого необходимо площадь помещения умножить на среднюю величину шага в метрах и к полученному значению добавить 10% на углы и повороты. Если у стены дистанция между линиями составляет 100 мм, то в центре он составляет 300 мм. То есть средний шаг будет равен 200 мм.
  3. Можно использовать размер ширины помещения. Ее требуется перемножить на число шагов и добавить длину комнаты на повороты. Такой метод расчета применяют при монтаже пола змейкой.

Гидравлическое сопротивление трубы

Сопротивление перемещения потока теплоносителя, которое оказывает трубопроводная система, называют гидравлическим. Его оценивают как объем утерянной тепловой энергии, израсходованной на силы трения.

Любая трубопроводная конструкция состоит не только из прямых отрезков, но и поворотов, ответвлений и пр., для их формирования применяют различные соединительные устройства. Все это приводит к появлению гидравлического сопротивления. Оно зависит и от материала, использованного для производства трубопровода.

Проведение соответствующих расчетов позволит снизить тепловые потери и, таким образом, избежать ненужных затрат энергии. Гидравлический расчет проводят для достижения следующих целей:

  1. Расчета потерь давления на отрезках отопительной системы.
  2. Вычисления оптимального размера трубопровода, при это необходимо учитывать рекомендованную скорость движения потока.
  3. Вычисления тепловых потерь и размера минимального сопротивления давления в трубопроводной системе.
  4. Правильной сборки параллельно размещенных линий и установленной арматуры.

В ходе движения по закрытому контуру поток должен преодолевать определенное сопротивление. С его увеличением должна быть повышена мощность насоса.

На самом деле нет смысла приобретать оборудование большой мощности, так как вырастут энергозатраты. Если она будет недостаточной, то насос не сможет обеспечить требуемое давление, а это приведет к росту тепловых потерь.

Маркировка насоса

Для правильного подбора насосного оборудования, который предназначен для обеспечения принудительного движения теплового носителя, требуется разбираться в его технических характеристиках. Еще необходимо понимать, какая информация зашифрована в его маркировке.

На деле требуется обращать внимание на два ключевых свойства- напор и производительность (расход).

насос для теплого пола 5

Напором называют сопротивление, создаваемое системой, преодолеваемое агрегатом. Для измерения этой характеристики применяют метры водяного столба. По большей части предельное давление задано верхней точкой трубопровода, по которому происходит перемещение теплоносителя.

Производительность говорит о том, какое количество теплоносителя возможно передать по трубопроводу за определённое количество времени. Производительность измеряют в куб.м в час.

На шильдике, который закреплен на корпусе насоса, указываются следующие данные:

  • присоединительные размеры;
  • напор;
  • Производительность;
  • Длина насоса.

Длина насоса

При расчете длины трубопровода необходимо учитывать строительную длину насоса, то есть расстояние между торцами насоса. Если в расчете будет совершена ошибка или указан слишком короткий размер, то придется слишком сильно натягивать трубы. Это чревато повреждением рукава.

Пример расчета насоса

На 50 м.кв.(1 контур)

При использовании придется устанавливать один циркуляционный насос. Его производительность должна быть определена по выражению

Q = 0,86*Pн/(tпр.т — tобр.т, где

Pн — мощность отопительного контура, кВт,

tобр.т — температура теплоносителя в линии обратной подачи,

tпр.т — температура в линии прямой подачи.

На 50 м.кв. (2 контура)

В системе, где проложены два контура, придется проводить расчет по каждому из насосов по той же формуле, что приведена в предыдущем разделе

ВАЖНО! ПОДКЛЮЧЕНИЕ МОЖЕТ БЫТЬ ПРОВЕДЕНО ТОЛЬКО ПОСЛЕ ТОГО, КАК СМОНТИРОВАНА КОЛЛЕКТОРНАЯ ГРУППА ДЛЯ ТЕПЛОГО ПОЛА С НАСОСОМ.

насос для теплого пола 7

В каких случаях можно обойтись без насоса

Перемещение теплоносителя в контуре может происходить благодаря законам физики. То есть, нагретая рабочая жидкость поднимается вверх, а охлажденная опускается вниз. Таким образом происходит нагрев помещения, так работает теплый пол без насоса от котла.

Больше всего такие системы применяют в загородных домах или на дачах. Это обусловлено тем, что в пригородных условиях электроснабжение не всегда отличается стабильностью или его нет вообще. Поэтому не всегда целесообразно использовать оборудование с принудительной циркуляцией.

На интернет-ресурсах компаний, которые заняты установкой подобного оборудования, можно найти схему подключения насоса для теплого пола.

Конструкция и материалы теплого пола

Рис. 1. Конструкция «мокрого» тёплого пола (пример): 1 – основание (плита перекрытия); 2 – пароизоляция; 3 – слой утеплителя (пенополистирол); 4 – цементно-песчаная или бетонная стяжка; 5 – клеевой слой; 6 – чистовое напольное покрытие: 7 – демпферная лента; 8 – арматурная сетка; 9 – трубы тёплого пола.

Рис. 2. Конструкция «сухого» тёплого пола (пример): 1 – подшивка по лагам; 2 – пароизоляция; 3 – слой утеплителя (пенополистирол); 4 – лаги; 5 – чёрный пол; 6 – опорные бруски; 7 – теплораспределительная пластина; 8 – трубы тёплого пола; 9 – слой ГВЛ; 10 – дощатый пол; 11 – плинтус.

Трубы для устройства тёплого пола

Для устройства водяного тёплого пола в квартирах и коттеджах наиболее распространёнными являются трубы на основе структурированного (сшитого) полиэтилена РЕХ. В этом материале длинные цепочки макромолекул обычного полиэтилена «сшиты» между собой поперечными связями, что придаёт пластику повышенную прочность и термостойкость. В зависимости от метода сшивки трубы подразделяются на РЕХа (пероксидный метод), РЕХb (органосиланидный метод) и РЕХс (радиационный метод).

Наиболее удобны в монтаже металлополимерные трубы композиции PEX-AL-PEX, в которых между слоями сшитого полиэтилена заключён слой алюминиевой фольги. Благодаря алюминию труба сохраняет приданную ей форму, меньше подвержена температурным деформациям и на 100 % защищена от диффузии кислорода в теплоноситель. Напомним, что наличие кислорода в теплоносителе приводит к коррозии металлических деталей системы.

Не меньшей популярностью при устройстве тёплых полов пользуются также трубы PEX-EVOH, в которых роль барьерного слоя от проникновения кислорода выполняет тонкий слой этиленвинилгликоля (EVOH). Трубы из полиэтилена повышенной термостойкости PE-RT дешевле труб PEX-AL-PEX и PEX-EVOH, однако термостойкость таких труб ниже, так как этот материал занимает промежуточное положение между обычным и сшитым полиэтиленом.

Физических поперечных связей между макромолекулами полимера в нём нет, а их взаимное сцепление обеспечивается наличием боковых октеновых ветвей (эффект липучки). Трубы из PEX-EVOH и PE-RT не сохраняют приданную им форму, поэтому при раскладке петель тёплого пола их надо немедленно надёжно фиксировать. В номенклатуре VALTEC присутствуют трубы для теплого пола всех перечисленных типов (табл. 1).

Читайте также: