Тринатрийфосфат применение в котлах

Обновлено: 05.07.2024

РД 34.37.522-88 Методические указания по коррекционной обработке питательной и котловой воды барабанных котлов давлением 3,9-13,8 Мпа

РАЗРАБОТАНО Уральским филиалом Всесоюзного дважды ордена Трудового Красного знамени теплотехнического научно-исследовательского института им. Ф.Э. Дзержинского, предприятием "Уралтехэнерго" Производственного объединения по наладке, совершенствованию технологии и эксплуатации электростанций и сетей Союзтехэнерго.

ИСПОЛНИТЕЛИ О.Г. САЛАШЕНКО, А.В. ТКАЛЕНКО

УТВЕРЖДЕНО Главным научно-техническим управлением энергетики и электрификации 23.03.88 г.

Заместитель начальника А.П. БЕРСЕНЕВ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО КОРРЕКЦИОННОЙ ОБРАБОТКЕ ПИТАТЕЛЬНОЙ И КОТЛОВОЙ ВОДЫ БАРАБАННЫХ КОТЛОВ ДАВЛЕНИЕМ 3,9-13,8МПа

РД 34.37.522-88

Срок действия установлен

до 01.01.98 г.

Настоящие Методические указания определяют технологию коррекционной обработки питательной воды аммиаком, гидразином, сульфитом натрия и котловой воды фосфатами и едким натром на электростанциях с барабанными котлами давлением 3,9-13,8 МПа.

Методические указания предназначены для персонала электростанций, энергосистем, проектных и наладочных организаций.

С выходом настоящих Методических указаний утрачивают силу "Инструкция по фосфатированию котловой воды" (М.: СПО Союзтехэнерго, 1978) и "Методические указания по обработке едким натром котловой воды котлов с фосфатным водно-химическим режимом: МУ 34-70-096-95" (М.: СПО Союзтехэнерго, 1985).

1. ОБЩАЯ ЧАСТЬ

1.1. Методические указания регламентируют технологию коррекционной обработки питательной и котловой воды паровых стационарных котлов с естественной циркуляцией давлением 3,9-13,8 МПа.

Коррекционная обработка наряду с очисткой добавочной воды, конденсата, термической деаэрацией, консервацией оборудования при остановах в резерв и ремонт обеспечивают предотвращение накипеобразования и коррозии основного и вспомогательного оборудования.

1.2. Коррекционная обработка питательной воды предназначена для снижения скорости коррозии стали и медных сплавов конденсатно-питательного тракта, сетевых подогревателей, трубопроводов пара, направляемого потребителям, и возвратного конденсата, теплообменного оборудования потребителей пара.

Снижение скорости коррозии обеспечивается созданием восстановительной среды в конденсатном тракте и глубоким связыванием кислорода и нитритов после деаэратора 0,6 МПа посредством ввода восстановителей, регулированием значения показателей рН среды за счет ввода аммиака.

Отклонения от режима коррекционной обработки могут вызвать:

- при концентрациях NH 4 OH , превышающих норма ПТЭ, - усиление коррозии медных сплавов;

- при рН ниже норм ПТЭ - усиление коррозии стали и медных сплавов;

- при концентрациях NH 4 ниже норм ПТЭ - усиление коррозии стали.

1.3. Коррекционная обработка котловой воды предназначена для предотвращения образования отложений и коррозии на внутренней поверхности испарительной части котла.

Для предотвращения отложений котловую воду обрабатывают фосфатами. Фосфатирование является эффективным средством предупреждения образования только кальциевых отложений.

Предотвращение коррозии обеспечивается регулированием показателя рН (или гидратной щелочности) котловой воды, изменением концентрации коррозионно-активных компонентов в котловой воде (с помощью продувки).

Нарушение режима коррекционной обработки может вызвать:

- при снижении показателя рН и щелочного соотношения ниже норм ПТЭ коррозию и охрупчивание металла экранных труб, образование отложений железофосфатных соединений, осаждение фосфата кальция;

- при превышении норм ПТЭ по содержанию фосфатов образование временных отложений фосфата натрия;

- при превышении норм ПТЭ по показателю рН щелочную коррозию экранных труб;

- при невыполнении требований по относительной щелочности охрупчивание опускных труб и барабана котла в местах вальцовочных и клепаных соединений.

1.4. Коррекционная обработка трилоном Б должна производиться в соответствии с "Методическими указаниями по комплексной обработке воды барабанных котлов давлением 40 - 100 кгс/см 2 (3,9 - 9,8 МПа): РД 34.37.514-91" (М.: СПО ОРГРЭС, 1993).

(Измененная редакция, Изм. № 2).

Трилонную обработку рекомендуется применять в случае, если фосфатирование не обеспечивает надежную эксплуатация котлов. Применение трилонного режима должно быть согласовано с РЭУ.

1.5. Для обеспечения надежного водно-химического режима необходимо уделять особое внимание качеству питательной воды и ее составляющих:

- очистку производственного конденсата производить в соответствии с "Руководящими указаниями по очистке производственного конденсата" (М.: СПО Союзтехэнерго, 1978);

- подпитку котлов давлением 13,8 МПа осуществлять только обессоленной водой.

Подпитку котлов давлением 9,8 МПа и ниже допускается производить умягченной водой. Допустимое количество умягченной воды определяется теплохимическими испытаниями.

1.6. В связи с тем, что фосфатирование котловой воды не обеспечивает полного предотвращения образования отложений, для исключения перегрева экранных труб следует также производить периодическую химическую очистку котлов. Периодичность химических очисток должна определяться в соответствии с "Методическими указаниями по контролю состояния основного оборудования тепловых электрических станций; определению качества и химического состава отложений: РД 34.37.306-87" (М.: Ротапринт ВТИ, 1987).

(Измененная редакция, Изм. № 2).

1.7. Оборудование, останавливаемое в резерв или ремонт, должно подвергаться консервации. Консервация должна производиться в соответствии с "Методическими указаниями по консервации теплоэнергетического оборудования: РД 34.20.591-87" (М.: Ротапринт ВТИ, 1990).

(Измененная редакция, Изм. № 2).

2. КОРЕЕКЦИОННАЯ ОБРАБОТКА ПИТАТЕЛЬНОЙ ВОДЫ

2.1. Выбор метода коррекционной обработки питательной воды

2.1.1. Коррекционная обработка питательной воды в целях связывания нитритов и остаточного кислорода может производиться гидразингидратом, гидразинсульфатом, сульфитом натрия.

На котлах давлением до 7 МПа при необходимости более глубокого удаления кислорода из питательной воды в дополнение к термической деаэрации можно производить обработку питательной воды сульфитом натрия или гидразином. На котлах давлением 7 МПа и выше обработка конденсата или питательной воды должна производиться только гидразином, кроме котлов с кислородными водно-химическими режимами и котлов с отпуском пара на предприятия пищевой, микробиологической, фармацевтической и другой промышленности в случае запрета санитарных органов на наличие гидразина в паре.

(Измененная редакция, Изм. № 2).

2.1.2. Для повышения показателя рН питательной воды и конденсата пара до нормальных значений на котлах всех параметров дополнительно к гидразинной обработке должна производиться аммиачная обработка питательной воды. В качестве реагента должен применяться преимущественно водный раствор аммиака.

В отдельных случаях при подпитке котлов химически очищенной водой, когда необходимости в повышении показателя рН питательной поды нет, но необходимо повысить показатель рН конденсата пара и снизить щелочность котловой воды, может применяться для аминирования сульфат аммония.

2.1.3. Гидразингидрат, гидразин сульфат, сульфит натрия необходимо вводить в трубопровод на стороне всасывания питательных насосов.

На электростанциях, где не выполняются нормы ПТЭ по содержанию меди из-за коррозии ПНД, рекомендуется вводить гидразин перед ПНД.

2.1.4. Аммиак можно вводить в питательную, обессоленною, химически очищенную воду, в пар, подаваемый на производство.

На блочных электростанциях аммиак целесообразно вводить на сторону всасывания питательных насосов. Допускается ввод аммиака в смеси с гидразином.

На электростанциях с поперечными связями аммиак рекомендуется вводить в обессоленную или умягченную воду (для снижения коррозии трубопроводов обессоленной воды). Раствор аммиака должен подаваться в трубопровод обессоленной или умягченной воды.

Если на электростанции имеются группы котлов с различным процентом добавки обессоленной воды, то аммиачная обработка должна производиться отдельно для каждой группы.

На электростанциях с большим возвратом производственного конденсата и высоким содержанием в нем продуктов коррозии, прежде всего оксидов (окислов) железа, рекомендуется вводить аммиак в пар, подаваемый на производство (только в пар или дополнительно к вводу аммиака в обессоленную воду). Ввод аммиака в пар, подаваемый на производство, должен быть согласован с потребителем. Наличие у потребителей теплообменников с латунными поверхностями нагрева, работающих под избыточным давлением, не является препятствием для обработки пара аммиаком. Ввод аммиака позволяет довести в конденсате пара показатель рН до значения выше 9,0 и значительно снизить скорость коррозии.

2.1.5. В случае запрета санитарных органов на наличие гидразина в паре, подаваемом на производство (предприятия пищевой, микробиологической, фармацевтической промышленности), для обработки котловой воды котлов давлением 9,8 МПа и менее должен использоваться сульфит натрия.

В случае запрета санитарных органов на наличие в паре гидразина и аммиака должно быть организовано снабжение этих предприятий паром через паропреобразователи.

2.2. Режим коррекционной обработки питательной воды

2.2.1. Режим коррекционной обработки должен обеспечить следующее качество питательной воды:

- содержание свободного гидразина перед экономайзером (в пересчете на NH 4 ) от 20 до 60 мкг/кг;

- содержание аммиака (в пересчете на NH 4 ) не более 1000 мкг/кг;

- показатель рН (при 25°С) для котлов давлением 3,9 МПа 8,5-9,5; 9,8 МПа и выше 9,1±0,1.

По разрешению энергоуправления допускается увеличение содержания аммиака до значения, не вызывающего коррозию медных сплавов. Повышенные концентрации аммиака рекомендуется поддерживать при обработке аммиаком пара, подаваемого на производство, и при подпитке котлов умягченной водой, если показатель рН конденсатов ниже 7,5 при концентрации аммиака 1 мг/кг.

При восполнении потерь пара и конденсата химически очищенной водой допускается повышение значения рН до 10,5. В этом случае показатель рН определяется щелочностью и количеством добавки умягченной воды, поэтому регулированию коррекционной обработкой не подлежит (аммиак на этих электростанциях служит для поддержания необходимых значений показателя рН паров и конденсатов).

(Измененная редакция, Изм. № 2).

2.2.2. Для обеспечения требуемой концентрации гидразина в питательной воде доза гидразина должна учитывать его расходование на взаимодействие с кислородом, нитритами, окислами железа и меди.

Расчет дозы гидразина g (мкг/кг) в пересчете на NH 4 рекомендуется производить по формуле

где С1 - концентрация кислорода в питательной воде до ввода гидразина, мкг/кг;

С2 - концентрация нитритов в питательной воде до ввода гидразина, мкг/кг;

С3 - концентрация железа в питательной воде, мкг/кг;

С4 - концентрация меди в питательной воде, мкг/кг.

2.2.3. Концентрация гидразина в рабочем растворе С (мг/кг) рассчитывается по формуле

где D - расход питательной воды, т/ч;

D Н - средняя (регулируемого диапазона) подача насоса-дозатора, л/ч.

2.2.4. При приготовлении рабочего раствора гидразинсульфата гидразинсульфат должен быть нейтрализован едким натром. Количество едкого натра, необходимого для нейтрализации, у (кг) рассчитывается по формуле

где у1 - количество загружаемого гидразинсульфата, кг;

Щ - щелочность по фенолфталеину воды, используемой для приготовления рабочего раствора, мг-экв/кг;

V б - объем бака, м 3 .

2.2.5. Дозу сульфита (с учетом взаимодействия с кислородом и нитритами) g 2 (мкг/кг) рассчитывает по формуле (в пересчете на SО )

2.2.6. Приготовление рабочих растворов реагентов для коррекционной обработки питательной воды котлов давлением 13,8 МПа должно производиться на обессоленной воде, для котлов давлением 9,8 МПа и ниже допускается использование натрий-катионированной воды.

2.2.7. Количество вводимого аммиака, необходимое для поддержания заданной его концентрации в питательной воде, зависит от ряда факторов: количества добавочной воды, дозы гидразина, количества турбинного конденсата, эффективности работы деаэратора и т.д., поэтому концентрация должна определяться методом последовательного подбора, по данным химических анализов. Начальную концентрацию аммиака в рабочем растворе gH (г/кг) можно рассчитывать по формуле

где D - расход питательной воды на котел (группу котлов), т/ч;

DH - средняя подача насоса-дозатора, л/ч;

С3 - необходимая концентрация аммиака в питательной зоне, мг/кг.

При вводе аммиака в пар, подаваемый на производство, концентрация аммиака в паре не должна вызывать усиление коррозии медь-содержащих сплавов и нарушение норм ПТЭ по содержанию меди в питательной воде (концентрация аммиака должна быть примерно 1,5-3 мг/кг).

2.2.8. На блочных электростанциях при растопках котла подачу аммиака и гидразина необходимо начинать единовременно с началом постоянной подачи питательной воды в котел. Концентрация гидразина при пусках и остановах котлов может быть увеличена до 3 мг/кг. После толчка турбины концентрация должна поддерживаться в соответствии с п.2.2.1.

2.2.9. На блочных электростанциях дозирование гидразина и аммиака, а на электростанциях с поперечными связями дозирование гидразина должно быть автоматизировано.

2.2.10. Схема приготовления и дозирования реагентов, а также схема автоматизации должна быть выполнена в соответствии с "Руководящими указаниями по применению гидразина на энергетических установках электростанций" (М.: СПО Союзтехэнерго, 1980) и "Рекомендациями по выполнению устройств для автоматизации фосфатно-продувочного режима и коррекционной обработки питательной воды на действующих электростанциях с барабанными котлами" (М.: СПО Союзтехэнерго, 1981). При вводе аммиака в пар, подаваемый на производство, узел ввода должен быть выполнен аналогично впрыску в перегретый пар. Схема ввода должна быть согласована с проектными организациями.

2.2.11. Ввод реагентов необходимо производить непрерывно. Регулирование концентрации гидразина и аммиака должно осуществляться за счет изменения подачи насоса-дозатора (длины хода плунжера).

При автоматическом управлении насосами-дозаторами допускается импульсная подача реагентов.

2.2.12. Заполнение котла для опрессовки и растопки должно производиться обессоленной водой или конденсатом турбин. В случае отсутствия на электростанциях обессоленной воды и недостаточного количества конденсата турбин (менее 20% паропроизводительности котлов) заполнение котлов производить водой с минимальным солесодержанием.

2.2.13. Перед растопкой, если это необходимо, произвести обработку котловой воды гидразином и аммиаком или едким натром. Если в процессе пуска при упаривании котловой воды отмечается уменьшение показателя рН ниже 8,5 или щелочного соотношения (см. раздел 3 ) ниже нормативных значений, обработка воды должна производиться едким натром, в остальных случаях возможно использование аммиака.

Концентрация гидразина в котловой воде перед растопкой должна составлять 2,3-3 мг/кг, аммиака 1-2 мг/кг, показатель рН не менее 9,0. Ввод реагентов осуществлять в барабан котла по линии фосфатирования или консервации.

Для подачи раствора может быть использована схема гидразинно-аммиачной консервации или могут быть установлены дополнительные насосы-дозаторы на установке дозирования гидразина и аммиака. Подачу насосов (л/ч) определяют по формуле

где СН - необходимая концентрация реагентов в котле, мг/кг;

С - концентрация реагента в рабочем растворе, г/кг;

D - расход воды на заполнение котла, т/ч.

Схема ввода щелочи приведена на рис. П4.1 . Концентрация рабочего раствора подбирается экспериментально. Возможно использование рабочего раствора, применяемого для обработки котловой воды во время работы котла.

При подпитке котла в процессе пуска дозировку аммиака и гидразина производить в питательную воду или конденсат в соответствия с пп. 2.2.1-2.2.11.

3. КОРРЕКЦИОННАЯ ОБРАБОТКА КОТЛОВОЙ ВОДЫ

3.1. Выбор метода коррекционной обработки котловой воды

3.1.1. Коррекционная обработка котловой воды может производиться тринатрийфосфатом, динатрийфосфатом, мононатрийфосфатом, гексаметафосфатом, триполифосфатом, аммонийфосфатом, едким натром и нитратом натрия.

Реагенты и технология коррекционной обработки выбираются в зависимости от параметров котла, схемы подготовки добавочной воды, количества и качества возвратного конденсата.

3.1.2. При подпитке котлов обессоленной водой или дистиллятом испарителей для фосфатирования котловой воды допускается применение только тринатрийфосфата.

На котлах, подпитка которых производится умягченной водой, коррекционную обработку наряду с тринатрийфосфатом можно проводить также и кислыми фосфатами. Кислые фосфаты рекомендуется применять главным образом для снижения щелочности котловой воды, если показатель рН котловой воды близок к максимально допустимым значениям или превышает их.

Кислыми фосфатами возможно снизить щелочность на 1 мг-экв/кг и показатель рН на 0,1-0,3. Дальнейшее снижение рН должно производиться за счет изменения режима работы установки умягчения добавочной воды (введение Н-катионирования или увеличение доли воды, проходящей Н-катионирование).

Некоторое снижение щелочности можно обеспечить обработкой питательной воды сульфатом аммония (до 1,5 мг-экв/кг в зависимости от количества добавочной воды).

3.1.3. На котлах давлением 3,9 МПа с вальцовочными и клепаными соединениями в случае невозможности снизить относительную щелочность до норм ПТЭ без реконструкции водоподготовительной установки котловая вода должна дополнительно к фосфатированию обрабатываться нитратом натрия.

3.1.4. На котлах, подпитка которых производится обессоленной водой, для обеспечения необходимого значения показателя рН котловую воду целесообразно обрабатывать одновременно тринатрийфосфатом и едким натром. Запрещается корректировать показатель рН (щелочность) котловой воды изменением режима работы обессоливающей установки (изменением величины "проскока" натрия).

3.1.5. Едкий натр целесообразно вводить совместно с тринатрийфосфатом.

На электростанциях, где возможно попадание потенциально-кислых соединений, необходимо иметь автономную схему ввода едкого натра. Раствор едкого натра необходимо вводить в фосфатную линию.

3.2. Режим коррекционной обработки котловой воды

3.2.1. Режим коррекционной обработки должен обеспечить следующее качество котловой воды:

- для котлованов давлением 13,8 МПа (140 кгс/см 2 ) по чистому отсеку 0,5 - 2,0 мг/дм 3 , по солевому отсеку - не более 12 мг/дм 3 ;

- для котлов давлением 9,8 МПа (100 кгс/см 2 ) и ниже по чистому отсеку 2 - 6 мг/дм 3 , по солевому отсеку - не более 30 мг/дм 3 ;

- для котлов без ступенчатого испарения избыток фосфатов должен (как и остальные показатели) соответствовать норме для чистого отсека.

Значение рН котловой воды чистого отсека:

- для котлов давлением 13,8 МПа (140 кгс/см 2 ) - 9,0 - 9,5;

- для котлов давлением 9,8 МПа (100 кгс/см 2 ) и ниже - не менее 9,3.

Значение рН котловой воды солевого отсека:

- для котлов давлением 13,8 МПа (140 кгс/см 2 ) - 10,5;

- для котлов давлением 9,8 МПа (100 кгс/см 2 ) - не более 11,2; при их подпитке химически очищенной водой (с разрешения АО-энерго) - не более 11,5;

- для котлов давлением 3,9 МПа (40 кгс/см 2 ) - не более 11,8.

- для котлов давлением 13,8 МПа (140 кгс/см 2 ) для чистого отсека Щфф = (0,2 ¸ 0,5) Щобщ, для солевого отсека Щфф = (0,5 ¸ 0,7) Щобщ;

- для котлов давлением 9,8 МПа (100 кгс/см 2 ) и ниже для чистого и солевого отсеков Щфф ³ 0,5 Шобщ.

При несоблюдении требуемых значений рН и соотношения щелочностей в котловую воду должен вводиться едкий натр, в том числе и в пусковых режимах.

- для котлов с барабанами, имеющими заклепочные соединения, - не более 20 %;

- для котлов со сварными барабанами и креплением труб вальцовкой с уплотнительной подваркой - не более 50 %;

- для котлов, имеющих сварные барабаны и приваренные к ним трубы, относительная щелочность не нормируется.

(Измененная редакция, Изм. № 2).

3.2.2. (Исключен, Изм. № 2).

3.2.3. (Исключен, Изм. № 2).

3.2.4. Избыточную концентрацию фосфатов определяют расчетным путем:

где РС - избыточная концентрация фосфатов в солевом отсека, мг/кг;

РЧ - избыточная концентрация фосфатов в чистом отсека, мг/кг;

Ра.с - общая концентрация фосфатов в солевом отсеке, мг/кг;

Ра.ч - общая концентрация фосфатов в чистом отсеке, мг/кг;

Рсв - связанные фосфаты в солевом отсеке (фосфаты в составе гидраксилапатита), мг/кг.

Общая концентрация фосфатов определяется действующими методиками химического контроля.

Количество связанных фосфатов в солевом отсеке определяют исходя из размера продувки и жесткости питательней воды по приложению 1. Для определения кратности концентрирования К могут быть использованы (в зависимости от необходимой точности) щелочность, солесодержание, концентрация натрия, сульфатов, хлоридов. Кратность концентрирования определяется как отношение значений этих показателей солевого и чистого отсеков.

Допускается ведение режима по общей концентрации фосфатов в котловой воде, если нет нарушения норм ПТЭ по жесткости питательной воды.

Относительную щелочность Щ, (%) рассчитывают по формуле

где Щфф - щелочность по фенолфталеину котловой воды солевого отсека, мг-экв/кг;

ЩОБЩ - общая щелочность (по смешанному индикатору) котловой воды солевого отсека, мг-экв/кг;

Ск.в - солесодержание (по электрической проводимости) котловой воды солевого отсека, мг/кг.

(Измененная редакция, Изм. № 1).

3.2.5. Для более точного поддержания заданного режима подачу раствора фосфатов (раствора смеси фосфатов и щелочи) необходимо автоматизировать. Автоматизация должна быть выполнена в соответствии с "Рекомендациями по выполнению устройств для автоматизации фосфатно-продувочного режима и коррекционной обработки питательной воды на действующих электростанциях с барабанными котлами" (М.: СПО Союзтехэнерго, 1981).

Если солесодержание котловой воды превышает не более чем в 1,5-2 раза солесодержание, определяемое фосфатами, подачу фосфатов рекомендуется регулировать по электрической проводимости котловой воды чистого отсека. В остальных случаях подача фосфатов регулируется по паропроизводительности котла.

3.2.6. При ручном (дистанционном) управлении насосами-дозаторами ввод фосфатов в котловую воду должен производиться непрерывно. Регулирование дозы должно осуществляться изменением хода плунжера насосов-дозаторов, количества работающих насосов-дозаторов, рабочей концентрации фосфатов. Контроль за режимом необходимо вести по содержанию фосфатов в чистом отсеке.

При автоматическом дозировании фосфатов режим работы насосов-дозаторов определяется выбранной системой автоматизации.

3.2.7. На котлах с автономной схемой ввода щелочи в котловую воду подача щелочи должна быть автоматизирована по показателю рН котловой воды чистого отсека.

3.2.8. Концентрацию рабочего раствора фосфатов РР (г/кг) при кратности концентрирования между чистым и солевым отсеками более 5 рассчитывают по формуле

где D ПР - расход продувки котла, т/ч;

DH - подача насоса-дозатора, л/ч;

РН - нормативное значение концентрации фосфатов в котловой воде солевого отсека, мг/кг.

Для котлов кратностью концентрирования менее 5 рабочую концентрацию (г/кг) рассчитывают по формуле

где DС - паропроизводительность солевого отсека, т/ч;

РП - максимально допустимое значение концентрации фосфатов в чистом отсеке, мг/кг.

При дозировании смеси фосфатов и щелочи управление насосами-дозаторами производится по фосфатам.

3.2.9. Регулирование концентрации щелочи (показателя рН) в котловой воде при совместном ее вводе с фосфатами производится изменением ее концентрации в рабочем растворе. Необходимые изменения концентрации щелочи определяются в зависимости от щелочности воды солевого отсека. Методика определения концентрации щелочи в рабочем растворе приведена в приложении 2.

3.2.10. Начало подачи фосфатов в котел определяется по фактическому их содержанию в котловой воде. Показатель рН котловой воды чистого отсека до начала подачи фосфатов должен быть не менее 8,5. При снижении показателя рН во время растопки ниже 8,5 котловую воду необходимо обрабатывать едким натром (см. также п. 2.2.13).

Подача фосфатов прекращается одновременно с отключением котла от главного паропровода.

3.2.11. Для обеспечения требуемых ПТЭ концентраций фосфатов в чистом и солевом отсеках кратность концентрирования между ними должна быть на более 8. В тех случаях, когда кратность концентрирования более 8 (при принятом размере непрерывной продувки), следует осуществлять рециркуляцию котловой воды. Схема рециркуляция приведена в приложении 3.

3.2.12. В случае, если котловую воду необходимо обрабатывать нитратом натрия, концентрация его в котловой воде должна соответствовать неравенству NO /40Щфф>0,4( NO в мг/кг, щелочность в мг-экв/кг).

3.3. Схема дозирования фосфатов

3.3.1. Подачу раствора в котел можно производить по индивидуальной и индивидуально-групповой схемам. Подробное описание схем приведено в приложении 4.

3.3.2. На блочных электростанциях и электростанциях с поперечными связями, работающих в пиковом режиме, должна применяться индивидуальная схема подачи фосфатов.

На электростанциях с поперечными связями, работающих в базовых режимах, наряду с индивидуальной схемой допускается использование индивидуально-групповой схемы. По индивидуально-групповой схеме подача раствора осуществляется только на котлы с одинаковыми параметрами.

3.3.3. Для подачи фосфатов должны использоваться насосы-дозаторы. Использование для подачи фосфатов другого оборудования не допускается.

3.3.4. Рабочий раствор фосфатов должен вводиться в барабан котла.

3.4. Коррекционная обработка котловой воды в период отклонения водно-химического режима от нормального

3.4.1. При нарушении норм ПТЭ по содержанию солей жесткости в питательной воде необходимо:

- перевести управление насосами-дозаторами на ручное (дистанционное);

- увеличить подачу фосфатов в котел с тем, чтобы обеспечить нормы ПТЭ по содержанию свободных фосфатов (включить дополнительные насосы-дозаторы, увеличить длину хода плунжеров, увеличить концентрацию фосфатов в рабочем растворе;

- на котлах, подпитка которых производится обессоленной водой, увеличить непрерывную продувку до 1,5-2,5, чаще проводить периодическую продувку - 1-2 раза в смену (в зависимости от жесткости питательной воды);

- при превышении норм ПТЭ по жесткости питательной воды более чем в 3 раза участить химический контроль за качеством котловой воды: показатель рН, фосфаты, щелочность контролировать через 1-2 ч;

- принять меры к устранению причин, вызвавших нарушение качества питательной воды. Причины, вызвавшие нарушение, должны быть устранены в сроки, указанные в ПТЭ.

3.4.2. При попадании в котел потенциально кислых соединений необходимо:

- увеличить непрерывную продувку до 1,5-5%;

- увеличить подачу щелочно-фосфатной смеси (не выходя за пределы норм ПТУ по содержанию фосфатов в солевом отсеке), содержание фосфатов в чистом отсеке допускается 15 мг/кг.

Если этих мер недостаточно, приготовить новый раствор, изменив концентрацию щелочи в соответствии с приложением 2. При автономной схеме подачи включить подачу щелочи:

- контроль за содержанием фосфатов, показателем рН, щелочностью проводить через 1-2 ч,

4. КОНТРОЛЬ ЗА РЕЖИМОМ КОРРЕКЦИОННОЙ ОБРАБОТКИ ПИТАТЕЛЬНОЙ И КОТЛОВОЙ ВОДЫ

Объем и периодичность химического контроля должны быть определены в соответствии с "Методическими указаниями по организации и объему химического контроля водно-химического режима на тепловых электростанциях: РД 34.37.303-88" (М.: Ротапринт ВТИ, 1988).

(Измененная редакция, Изм. № 2).

Приложение 1

РАСЧЕТНАЯ КОНЦЕНТРАЦИЯ СВЯЗАННЫХ ФОСФАТОВ В ПРОДУВОЧНОЙ ВОДЕ (СОЛЕВОМ ОТСЕКЕ) ПРИ РАЗЛИЧНЫХ ЗНАЧЕНИЯХ ЖЕСТКОСТИ ПИТАТЕЛЬНОЙ ВОДЫ И НЕПРЕРЫВНОЙ ПРОДУВКИ (мг/кг)

4.8.9. На котлах с естественной циркуляцией должно быть организовано фосфатирование котловой волы

с подачей фосфатного раствора в барабан котла. При необходимости должно корректироваться значение рН котловой воды раствором едкого натра. На котлах давлением 40-100 кгс/см2 (3,9-9,8 МПа) разрешается при-менение трилонной обработки котловой воды взамен фосфатирования.
Фосфатирование котловой воды является эффективным средством предупреждения образования кальциевых отложений на поверхностях нагрева энергетических котлов. В сочетании с периодическими химическими очистками
фосфатирование может обеспечить достаточную надежность поверхностей нагрева за счет поддержания необходимого (с точки зрения коррозии) значения рН котловой воды.
Фосфатирование осуществляется непрерывным дозированием раствора фосфатов (тринатрийфосфата, динатрийфосфата, мононатрийфосфата, гексаметафосфата, триполифосфата, аммонийфосфата). Кроме того, для коррекционной обработки котловой воды используются едкий натр и нитрит натрия. Растворы вводятся в барабан котла по индивидуальной схеме. Ввод фосфатов в питательную воду недопустим в связи с опасностью забивания образующимся шламом тракта подогревателей высокого давления и экономайзера. Фосфатирование применяется на всех котлах с давлением более 16 кгс/см2 (1,6 МПа).
Реагенты и технология коррекционной обработки котловой воды выбираются в зависимости от параметров котла, схемы подготовки добавочной воды, количества и качества возвратного конденсата.
На котлах давлением 40-140 кгс/см2 (3,9-13,8 МПа) с подпиткой обессоленной водой во многих случаях эффективность фосфатирования и надежность работы котла существенно снижаются изза: подшламовой коррозии и охрупчивания металла труб; образования временных отложений фосфата натрия; образования отложений железофосфатных соединений; частичного осаждения и отложения фосфата кальция. Перечисленные процессы зависят от режима обработки котловой воды фосфатами. Широкое распространение на электростанциях нашел фосфатнощелочной режим, при котором указанные процессы маловероятны.
Фосфатнощелочной режим (режим со свободной щелочностью) — это режим, при котором в котловой воде может присутствовать некоторое количество едкого натра, щелочность и значение рН котловой воды при этом соответствуют нормам ПТЭ. Фосфатнощелочной режим обеспечивается на электростанциях, где котлы питаются
конденсатом с добавкой умягченной или частично обессоленной воды.
В случае если значение рН котловой воды ниже нормы, особенно на электростанциях, где наблюдается поступление кислых и потенциально кислых соединений, котловую воду необходимо дополнительно к фосфатированию обрабатывать едким натром. При этом предотвращаются коррозионные повреждения экранных труб благодаря воздействию на металл среды с низким значением рН. Однако дозирование едкого натра в котловую воду не должно приводить к щелочной коррозии.
Более подробно выбор метода и режима коррекционной обработки котловой воды представлен в [1].
На котлах давлением 40—100 кгс/см2 (3,9 — 9,8 МПа) допускается применение трилонной обработки котловой воды взамен фосфатирования. Применение трилона Б для коррекционной обработки котловой воды, а также для пассивации металла поверхностей нагрева рекомендуется на котлах, работающих на жидком или газообразном топливе при высоких тепловых нагрузках вследствие конструктивных особенностей топки котла и при проведении в условиях фосфатного режима химических очисток котлов чаще 1 раза в 3 года. При этом качество пара, конденсата и питательной воды должно соответствовать нормам ПТЭ.
Более подробно характеристика способов коррекционной обработки котловой воды, схемы приготовления и дозирования растворов представлены в [20] и [21].

Большая Энциклопедия Нефти и Газа

При использовании установки весь объем раствора тринатрийфосфата закачивают в нагнетательную скважину непрерывно с минимальными материальными затратами. Себестоимость закачки снижается на 39 5 руб / т по сравнению с закачкой растворов ТНФ, доставляемых к скважине в автоцистернах.  [16]

Октагидрат Na3PO4 8Н2О готовят из раствора тринатрийфосфата , содержащего точно соответствующее октагидрату количество воды. Горячий раствор энергично перемешивают ( при помощи механической мешалки) и охлаждают до тех пор, пока он полностью не закристаллизуется.  [17]

Октагидрат Na3PO4 - 8H2O готовят из раствора тринатрийфосфата , содержащего точно соответствующее октагидрату количество воды. Горячий раствор подвергают энергичному перемешиванию ( при помощи механической мешалки) и охлаждают до тех пор, пока он полностью не закристаллизуется.  [18]

Выщелачивание образовавшейся в котле накипи производят раствором тринатрийфосфата из расчета 2 кг тринатрийфосфата на 1 м3 воды. Тринатрийфосфат хорошо размягчает отложившуюся накипь. Раствором тринатрийфосфата заполняют котел до нормального уровня и поднимают давление в котле до 2 - 2 5 ат по манометру. Котел продувается через каждые полчаса с под качкой питательной воды. Продувка котла прекращается после того, как из котла начнет вытекать чистая вода. Для размягчения накипи требуется кипятить щелочной раствор продолжительное время, иногда несколько суток.  [19]

Широко распространены фосфатные смеси, состоящие из раствора тринатрийфосфата , щелочей ( кальцинированной и каустической соды) и дубильного экс-тракта. Щелочи и дубильный экстракт защищают котел от коррозии. Кроме того, дубильный экстракт уменьшает вспенивание воды и предотвращает каустическую хрупкость металла. Внутри-котловая обработка воды антинакипинами с одновременным проведением регулярных продувок котла приостанавливает образование отложений твердой накипи; поверхность котла покрывается тонким слоем легко счищаемого шлама. При хорошо организованной внутрикотловой обработке воды паровые котлы малой мощности и невысокого давления могут работать 5000 ч без остановки.  [21]

Полугидрат тринатрийфосфата Na3PO4 / 2Н2О кристаллизуется из раствора тринатрийфосфата при температуре кипения раствора.  [22]

Системы охлаждения двигателей с алюминиевой головкой промывают раствором тринатрийфосфата или чистой водопроводной водой под давлением.  [23]

В щелочную мешалку 4, в которой приготовлен раствор тринатрийфосфата , закачивают отработавшее масло. Далее смесь отстаивается, щелочной раствор удаляют, а масло подвергают обработке на центрифуге П и одновременно перекачивают его в другую щелочную мешалку 4, в которой масло промывают горячей водой, и затем дают ему отстояться от промывных вод. Промытое масло обезвоживают на центрифуге до получения полной прозрачности и необходимых показателей электрической прочности.  [24]

Полугидрат тринатрийфосфата Na3PO4 1 / 2Н2О кристаллизуется из раствора тринатрийфосфата при температуре кипения раствора.  [25]

Очистка системы смазки агрегатов 5 % - ным раствором тринатрийфосфата может производиться в трех вариантах.  [26]

Восстановление трансформаторных и турбинных масел посредством их промывки раствором тринатрийфосфата с применением сепараторов: при этом из масла удаляются омыляемые продукты его окисления, шлам и уголь. Промывка производится 3 - 5 % - ным горячим раствором тринатрийфосфата, а затем горячим конденсатом.  [28]

Для очистки масляных систем паровых турбин от шлама применяют раствор тринатрийфосфата . Очистку производят как с разборкой, так и без разборки масляных систем.  [29]

В качестве эмульгирующей щелочи рекомендуется 5 % - ный раствор тринатрийфосфата Na3PO4 - 12Н2О, имеющий щелочную реакцию. Тринатрийфосфат обладает отличным эмульгирующим действием, он адсорбируется на пылевых частицах загрязнений в жировой пленке, способствует отрыву участков пленки от очищаемой поверхности и предотвращает обратное осаждение жировых капелек или их слипание между собой. Для понижения поверхностного натяжения обезжиривающего раствора ( чтобы улучшить его смачивающую способность) в раствор вводят поверхностно-активные вещества - ПАВ, например, мыло или синтетические добавки ОП-7, ОП-10, в количестве около 0 5 % от веса тринатрийфосфата. Для облегчения эмульгирования целесообразно повысить текучесть удаляемой пленки и проводить обезжиривание при тем-нературе около 70 С. Верхний предел температуры ограничен щелочестойкостью обрабатываемого основания.  [30]

Большая Энциклопедия Нефти и Газа

Тринатрийфосфат применяется в качестве стабилизатора для тех же целей, что и гексаметафосфат натрия. Вследствие меньшей активности этого реагента добавляют его в большем количестве. При нормальной установившейся закачке воды в пласт принимают b 23 мг / л воды.  [1]

Тринатрийфосфат предварительно растворяют в отдельном бачке и непрерывной струйкой вливают в воду после водоочистки на выходе воды из отстойника перед поступлением в питательный бак.  [2]

Тринатрийфосфат может применяться не только как средство, предупреждающее образование накипи, но и как средство, способствующее размягчению и переводу в шламовидное состояние уже образовавшейся накипи. Для этого Тринатрийфосфат вводят в остановленный и наполненный водой котел и кипятят воду на легком огне с открытыми предохранительными клапанами. Количество вводимого фосфата и время кипячения, продолжающееся 3 - 4 суток, зависят от состава и толщины накипи и состава воды. Накипь при этом переводится в шлам, который легко удаляется вместе со спускаемой из котла водой. Небольшую продувку и добавление воды и раствора производят регулярно через несколько часов.  [3]

Тринатрийфосфат Na3PO4 - трехзамещенная соль фосфорной кислоты представляет собой кристаллическое вещество белого цвета, растворимое в воде и нерастворимое в сероуглероде.  [4]

Тринатрийфосфат и суперфосфат следует дозировать в виде растворов крепостью не более 0 1 - 0 2 % во избежание интенсивного фосфатного умягчения воды в месте введения рабочих растворов в добавочную или циркуляционную воду.  [5]

Тринатрийфосфат ( ГОСТ 201 - 76) Na3PO4 Н2О - одноводный и Na3PO4 - 12H2O - двенадцативодный, выпускается в виде порошка.  [6]

Тринатрийфосфат повышает нейтрализационную способность раствора, едкий натр подавляет гидролиз мыла и жидкого стекла. Остекление проводится в кипящем растворе. Раствор устойчив и хорошо работает при колебании концентрации компонентов, обеспечивая одновременное нанесение подсма-зочного покрытия и мыльной смазки.  [7]

Тринатрийфосфат - желтоватая или розоватая масса, легко поглощающая воду. С ионами кальция и магния образует труднорастворимые в воде соединения, которые выделяются из раствора в виде осадка.  [9]

Тринатрийфосфат вводят в расчетном количестве для котлов первой группы. Для котлов второй и третьей групп вводят только половину расчетного количества, а вторую половину вводят в процессе щелочения. Процесс щелочения после второго ввода фосфатов принято называть фосфатной вываркой.  [10]

Тринатрийфосфат иепытывается только в системах охлаждения автомобилей Урал-355, где нет алюминиевых деталей.  [12]

Тринатрийфосфат в присутствии влаги подвергается гидролизу. Действие этой соли и ее водных растворов идентично воздействию кальцинированной соды.  [13]

Тринатрийфосфат ( трехзамещенный фосфорнокислый натрий) шожаро - и взрывоопасен, обладает щелочными свойствами. Пыль этого вещества вызывает раздражение слизистых оболочек глаз и верхних дыхательных путей, а также изменение кожных покровов типа дерматитов и экзем.  [14]

Тринатрийфосфат , трикальцийфосфат, натриевая селитра, бикарбонат, гипосульфит натрия, сульфит натрия, проявитель метол-гидрохиноно-вый.  [15]

Большая Энциклопедия Нефти и Газа

Фосфатирование котловой воды в парогенераторах АЭС не применяется. Основной причиной отказа от фосфатирования является образование рыхлого шлама - гидроксилапатита, который может служить источником глубокого упаривания котловой воды, так как по своей структуре содержит множество микроканалов. Кроме того, при наличии даже незначительных перетоков из первого контура во второй продувочная вода парогенератора становится радиоактивной и ее требуется очищать совместно с другими зараженными стоками. Присутствие в продувочной воде фосфатов значительно усложняет ее очистку любыми методами.  [2]

Фосфатирование котловой воды может проводиться по режиму чисто фосфатной щелочности или щелочно-солевому ( фосфатно-щелочному) режиму.  [3]

Применение фосфатирования котловой воды основано на следующих положениях.  [4]

Выпадающий при фосфатировании котловой воды шлам регулярно выводится из котла продувкой его из всех, нижних точек котла. Продувка производится в соответствии с результатами контроля содержания шлама в продуваемой воде. Недостаточная шламовая продувка и накопление шлама в коллекторах и трубах с малым углом наклона могут привести к нарушению циркуляции, местному перегреву стенок труб, забиванию шламом продувочных штуцеров и арматуры.  [5]

Для чего производится фосфатирование котловой воды .  [6]

В настоящее время метод фосфатирования котловой воды применяется в нескольких вариантах или режимах. Обоснованием к применению больших или меньших избытков фосфатов являются различия качества питательной воды по содержанию в ней ионов-накипеобразователей. Чем больше концентрация сульфатов и силикатов в питательной воде и чем выше степень упаривания воды в котле, тем полнее должен быть осажден кальций в форме гид-роксилапатита, с тем чтобы в котловой воде не достигались значения HPcaso.  [7]

При докотловой обработке питательной воды фосфатирование котловой воды для котлов с давлением менее 16 7 бар необязательно.  [9]

Таким образом, к введению фосфатирования котловой воды следует подходить в каждом случае с тщательной оценкой конкретных условий. Однако следует отметить, что фосфатирование позволяет избежать возникновения твердых силикатных и сульфатных отложений и должно быть использовано, если имеется угроза их образования. Необходимо также иметь в виду, что при фосфатировании жесткость питательной воды желательно иметь не более 5 - 6 мкг-экв / кг, чтобы избежать образования в котлах фосфатных отложений. В тех случаях, когда отложения уже возникли, их следует предварительно удалить, что и производится обычно в период капитального ремонта котлов. Для удаления отложений, как известно, используются механический и химический способы. Какому из них следует отдать предпочтение зависит от ряда конкретных условий.  [10]

В том случае, если при фосфатировании котловой воды не соблюдаются значения рН и соотношения между общей и фосфатной щелочностями, определяемые нормами ПТЭ, в котловую воду необходимо вводить раствор едкого натра.  [12]

На котлах с естественной циркуляцией должно проводиться фосфатирование котловой воды с подачей фасфатного раствора в барабан котла. При необходимости производится коррекция показателя рН котловой воды раствором едкого натра. На котлах давлением 3 9 - 9 8 МПа разрешается применение комплексонной обработки питательной воды взамен фосфатирования.  [13]

На котлах с естественной циркуляцией должно проводиться фосфатирование котловой воды с подачей фосфатного раствора в барабан котла.  [14]

Решающим фактором для оценки правильности проводимого режима фосфатирования котловой воды является отсутствие накипи и прикипевшего шлама на поверхностях нагрева котлов.  [15]

Читайте также: