Способы передачи тепла в котельных установках

Обновлено: 16.05.2024

Теплообмен в котельном агрегате

Теплообменом называется совокупность процессов, свя­занных с распространением тепла.

В котельном агрегате теплообмен происходит между горящим топливом или продуктами его сгорания и рабочими телами — водой, паром и воздухом.

Теплообмен происходит путем теплопроводности, конвекции и излучения. *

Теплопроводностью называется такой процесс тепло­обмена, при котором тепло в среде распространяется через взаим­ное соприкосновение частиц этой среды.

В случае наличия плоской стенки расчетное уравнение тепло­проводности имеет следующий вид:

(1 = н(^ст-^п;2) ккал/час, (38)

Где: <3—количество тепла, передаваемое через стенку с по­

Верхностью Н м2; о—толщина стенки в м;

1сп и — температуры поверхностей стенки в °С.

Коэффициент пропорциональности X ккал/м час град назы­вается коэффициентом теплопроводности. Он ха­рактеризует свойства материала стенки и численно равен количе­ству тепла, которое переходит в час через поверхность стенки в

1 м2 при ее толщине в 1 м и разности температур поверхностей стенки в 1°С.

Чем выше коэффициент теплопроводности материала стенки, тем больше тепла проходит через стенку определенной поверхно­сти и толщины при заданной разности между температурами ее поверхностей.

Коэффициенты теплопроводности * ккал/м час град некоторых тел имеют следующие значения: сталь — 39-^42; медь — 300 ^-340; красный кирпич — 0,20-^0,25; огнеупорный кирпич — 0,5 - ч - 0,8; накипь — 0,2 - г-2,7; сажа и зола — 0,06 ^-0,1; асбест — 0,10.

Конвективный теплообмен происходит в результате соприкосновения жидкости (или газа) с твердым телом и заклю­чается в переносе тепловой энергии нагретой массой жидкости к поверхности или от поверхности твердого тела.

Количество тепла, передаваемого конвекцией, определяется по расчетной формуле:

(2 = а/1 £ст) ккал/ч, ас, (39)

Где: tж — температура жидкости (или газа) в °С;

Ьст — температура поверхности стенки в °С;

Н— величина поверхности теплообмена в м2

Коэффициент о, с ккал! м2 час град называется коэф­фициентом теплоотдачи, который численно равен ко­личеству тепла, передаваемого в час через 1 м2 омываемой по­верхности от жидкости (газа) к стенке (или обратно) при раз­ности температур жидкости (газа) и стенки в 1°С.

Коэффициент теплоотдачи не является физической постоян­ной; на его величину влияют следующие факторы: характер, на­правление и скорость движения жидкости, физические свойства и температура жидкости, форма и степень шероховатости твер­дого тела и др.

В нормах ЦКТИ и ВТИ по тепловому расчету котельных установок приводятся обобщенные формулы подсчета коэффи­циента теплоотдачи для различных практических случаев кон­вективного теплообмена.

Примерные значения коэффициента теплоотдачи ас ккал/м2 час град при конвективной теплоотдаче стенке трубы могут изме­няться в следующих пределах: от газа — 10-г-100, воды — 5Г0-*- -5-20000, перегретого пара — 20-И00, конденсирующегося пара — 4000-ь-100 000.

Теплообмен излучением происходит путем перехода тепловой энергии в лучистую. В излучающем теле часть его теп­ловой энергии переходит в лучистую, которая воспринимается затем другим телом и превращается в нем в тепловую энергию.

Энергия излучения твердого тела равна количеству лучистой энергии, испускаемой в час 1 м2 поверхности тела, и пропорцио­нальна четвертой степени абсолютной температуры тела согласно формуле:

£ = С0 в ккал/м2 час, (40)

Где: Т — абсолютная температура тела в °абс (Т = 273 + /°С);

Е — степень черноты тела, равная, например, для кирпича, 0,8 н

0,9; для сажи — 0,95;

С0 = 4,96 ккал/м2 час град4 — коэффициент излучения абсо­лютно черного тела (при с = 1).

Излучение твердых тел происходит в пределах всех длин волн спектра излучения. Газообразные тела излучают в пределах определенных для каждого газа длин волн спектра. Излучатель - ная и поглотительная способность двухатомных газов ничтожна и в практических расчетах не учитывается. Трехатомные газы (Н20, С02| БОг), входящие в состав продуктов сгорания топлива, выделяют лучистую энергию, которая повышается с увеличением температуры газа и произведения парциального давления газа на толщину газового слоя.

В котельных установках сочетаются все три рассмотренных вида теплообмена. В топочном пространстве котла преобладает лучистый теплообмен, в газоходах котла — конвективный.

Процесс передачи тепла от дымовых газов к воде, пару или воздуху через стенки элементов котла протекает следующим образом:

А) дымовые газы отдают тепло стенке путем конвекции и из­лучением в количестве, подсчитываемом по формуле (39):

(2 = а ХН [1Х— ^т1) к кал/час,

Где: ^ — температура дымовых газов, отдающих тепло стенке; ах — коэффициент теплоотдачи конвекцией и излучением от дымовых газов к стенке в ккал/м2 час град;

Б) тепло переходит через стенку путем теплопроводности. Согласно формуле (38):

Где: 'Кт — коэффициент теплопроводности стенки в ккал/м час град;

Ьст — толщина стенки в м

В) тепло от стенки отдается нагреваемой среде конвекцией в количестве, подсчитываемом по формуле (39):

Где: /"а — температура нагреваемой среды (воды, пара, воз - духа) в °С;

Л•, — коэффициент теплоотдачи конвекцией от стенки к на­греваемой среде в ккал/м2 час град.

Найдя из вышеприведенных формул соответствующие разно­сти температур и суммируя их, получим:

Отсюда получаем расчетную формулу теплопередачи:

Где коэффициент К находится из выражения:

И называется коэффициентом теплопередачи. Этот коэффициент численно равен количеству тепла, которое перехо­дит в час от одной жидкости (газа) к другой через I м2 поверх­ности разделяющей стенки при разности температур жидкостей (или газов) в 1°С.

Размерность коэффициента теплопередачи К. (ккал/м2 час град) такая же, как и теплоотдачи.

Слагаемые в правой части выражения (42) являются терми­ческими сопротивлениями теплоотдачи (—и —) или теплопро-

Если стенка состоит из нескольких слоев, как это бывает, на­пример, в тех случаях, когда металлическая стенка котла по­крыта с наружной стороны сажей, а с внутренней стороны — на­кипью, то выражение (42) принимает вид:

Решение. Для решения задачи подсчитаем отдельные тер­мические сопротивления переходу тепла:

Котельные установки

Котельные установки на всех видах топлива следующих типов: паровые, водогрейные; мощностью от 150 КВт до 15 МВт; угольные с ручными котлами; угольные с механизированной топливоподачей и шлакозолоудалением.

Паровые и водогрейные котельные установки

Котельные установки - это устройства, предназначенные для получения водяного пара или нагревания воды. В зависимости от вида вырабатываемого рабочего тела котельные установки подразделяют на паровые и водогрейные. Паровая котельная установка служит для получения водяного пара заданных параметров, водогрейная - для нагревания воды до определенной температуры.

По назначению котельные установки делят на энергетические, производственные (промышленные) отопительно - производственные. В энергетических котельных установках вырабатывается пар высокого (р ≥ 9 МПа) и среднего (р ≥ 3,5 МПа) давлений, который в основном используют для привода паровых турбин. Производственные котельные установки предназначены для получения водяного пара или горячей воды, которые используют для различных технологических нужд. В отопительных котельных установках вырабатывают водяной пар низкого давления или нагревают воду только для отопления, вентиляции и горячего водоснабжения жилых и производственных зданий и сооружений.

Все крупные современные заводы и фабрики, в том числе и предприятия, изготовляющие строительные материалы и изделия, оборудуют, как правило, отопительно - производственными котельными установками для отопления, вентиляции, горячего водоснабжения, осуществления технологических процессов производства. В частности, в промышленности строительных материалов водяной пар паровых котлов необходим для тепло влажностной обработки бетонных, железобетонных, тепло - изоляционных и других изделий в автоклавах и пропарочных камерах, для подогрева заполнителей бетона в пароувлажнительных установках и т. п. (см. гл. 20).

Котельные установки состоят из котельного агрегата и вспомогательного оборудования. Котельный агрегат является основным элементом котельной установки и включает комплекс элементов, предназначенных для сжигания топлива и передачи теплоты от продуктов сгорания к рабочему телу (воде и пару). Котельный агрегат состоит из собственно котла (испарителя), пароперегревателя, водяного экономайзера, воздухоподогревателя, топочного устройства, газоходов и воздуховодов, каркаса, обмуровки, регулирующих устройств (арматуры), устройств для осмотра и очистки труб (гарнитуры).

В водогрейном котельном агрегате испарительной части, пароперегревателя и экономайзера нет. В настоящее время широко используется термин "водогрейный котел", хотя более правильно применять термин "водогрейный котлоагрегат". Вспомогательное оборудование предназначено для подготовки и подачи топлива и воды в котельный агрегат, удаления золы, шлака и дымовых газов и подачи воздуха для горения топлива (тягодутьевая установка), а также для контроля и автоматического регулирования режима работы агрегата. Источником тепловой энергии в котлоагрегате служит органическое топливо.

Рабочим телом котельных агрегатов является вода, иногда используются высококипящие органические жидкости: даутерм, дифенил, дифенилоксид и др. Применение высококипящих органических жидкостей обусловлено их теплофизическими свойствами, и в первую очередь высокой температурой кипения и конденсации при низких давлениях (по сравнению с водой). Это позволяет повысить КПД бинарного цикла, в котором водяной пар обеспечивает возможность использования нижнего температурного предела, а органические жидкости - верхнего.

Рабочий процесс в паровом котельном агрегате состоит из следующих основных стадий: 1) горение топлива; 2) теплопередача от горячих дымовых газов к воде или к пару; 3) парообразование (нагрев воды до кипения и ее испарение) и перегрев насыщенного пара.

В водогрейном котельном агрегате рабочий процесс включает лишь две первые стадии. Принципиальная схема паровой котельной установки показана на рис. 18.1. Топливо подается в топку 17 через, горелки 13. Из топки горячие продукты сгорания направляются в газоход, где расположен пароперегреватель 4, и далее поступают в конвективную шахту, в которой помещены экономайзер 5 и воздухоподогреватель 11. Дымососом 7 дымовые газы отсасываются из котельного агрегата и через дымовую трубу 6 выбрасываются в атмосферу.

Воздух на горение подается вентилятором 10. Предварительный подогрев воздуха (до топки) осуществляется в рекуперативном воздухоподогревателе и за счет теплоты дымовых газов.
Вода, прошедшая предварительно химическую и термическую обработку (она называется питательной), питательным насосом 8 нагнетается через экономайзер 5, где происходит ее подогрев, в барабан котла 18. В барабане питательная вода смешивается с водой, находящейся в контуре котла (котловая вода). По опускным трубам 14 котловая вода поступает в нижние камеры (коллекторы 12) и направляется в экранные испарительные трубы 15, где за счет теплоты горения топлива подогревается до температуры кипения и превращается в пар. Образующийся пар вместе с кипящей водой (пароводяная смесь) направляется в барабан котла 18, где происходит сепарация (отделение воды от пара).

Движение воды в опускных и экранных трубах происходит вследствие разности плотностей воды (в необогреваемых трубах 14) и пароводяной смеси (в обогреваемых трубах 15). Пар по пароотводящим трубам 2 направляется в пароперегреватель 4 и из коллектора 3 поступает к потребителю. Для уменьшения потерь теплоты в окружающую среду, герметизации конструкций и создания безопасных условий работы и обслуживания топку и газоходы котельного агрегата изолируют огнеупорными и теплоизоляционными материалами, которые называются обмуровкой.

Схема паровой котельной установки

Рис. 18.1. Схема паровой котельной установки
1 - паровой котел; 2 - пароотводящие трубы; 3 - коллекторы пароперегревателя; 4 - пароперегреватель; 5 - экономайзер; 6 - дымовая труба; 7 - дымосос; 8 - питательный насос; 9 - канал для продуктов сгорания; 10 - вентилятор; 11 - воздухоподогреватель; 12 - коллекторы экранов; 13 - горелки; 14 - опускные трубы; 15 - экраны; 16 - обмуровка; 17 - топка; 18 - барабан.

На рис. 18.1 не показаны установки для химической очистки воды от содержащихся в ней солей и термической очистки от растворенных газов (С02, N2, 02), здание, в котором располагается котельная установка, и т. д.

При сжигании твердого топлива перед дымососом устанавливают золоотделители для очистки дымовых газов от золовой пыли, а перед горелками - систему приготовления топлива.
К числу общих требований, предъявляемых к котельным установкам, относятся надежность и долговечность работы при заданных параметрах, безопасность, легкость регулирования, низкая стоимость вырабатываемого пара (или теплоты).

В настоящее время при тепловой обработке строительных материалов и изделий основное количество расходуемой теплоты (более 90 %) получают от сжигания различных видов топлива непосредственно в топках печей, сушилок и других технологических установок, при этом некоторые из них в отличие от топочных устройств котельных установок работают с переменной тепловой нагрузкой в различные периоды обжига строительных изделий.

Тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения

Выбор системы теплоснабжения (открытая или закрытая) производится на основе технико-экономических расчетов. Пользуясь данными, полученными от заказчика, и методикой, изложенной в § 5.1, приступают к составлению, затем и расчету схем, которые называются тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения, поскольку максимальная теплопроизводительность чугунных котлов не превышает 1,0 - 1,5 Гкал/ч.

Так как рассмотрение тепловых схем удобнее вести на практических примерах, ниже приведены принципиальные и развернутые схемы котельных с водогрейными котлами. Принципиальные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения, работающей на закрытую систему теплоснабжения, показана на рис. 5.7.

Принципиальная тепловая схема котельной с водогрейными котлами

Рис. 5.7. Принципиальные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения.

1 - котел водогрейный; 2 - насос сетевой; 3 - насос рециркуляционный; 4 - насос сырой воды; 5 - насос подпиточной воды; 6 - бак подпиточной воды; 7 - подогреватель сырой воды; 8 - подогреватель химии чески очищенной воды; 9 - охладитель подпиточной воды; 10 - деаэратор; 11 - охладитель выпара.

Вода из обратной линии тепловых сетей с небольшим напором (20 - 40 м вод. ст.) поступает к сетевым насосам 2. Туда же подводится вода от подпиточных насосов 5, компенсирующая утечки воды в тепловых сетях. К насосам 1 и 2 подается и горячая сетевая вода, теплота которой частично использована в теплообменниках для подогрева химически очищенной 8 и сырой воды 7.

Для обеспечения температуры воды перед котлами, заданной по условиям предупреждения коррозии, в трубопровод за сетевым насосом 2 подают необходимое количество горячей воды, вышедшей из водогрейных котлов 1. Линию, по которой подают горячую воду, называют рециркуляционной. Вода подается рециркуляционным насосом 3, перекачивающим нагретую воду. При всех режимах работы тепловой сети, кроме максимально зимнего, часть воды из обратной линии после сетевых насосов 2, минуя котлы, подают по линии перепуска в количестве G пер в подающую магистраль, где вода, смешиваясь с горячей водой из котлов, обеспечивает заданную расчетную температуру в подающей магистрали тепловых сетей. Добавка химически очищенной воды подогревается в теплообменниках 9, 8 11 деаэрируется в деаэраторе 10. Воду для подпитки тепловых сетей из баков 6 забирает подпиточный насос 5 и подает в обратную линию.

Даже в мощных водогрейных котельных, работающих на закрытые системы теплоснабжения, можно обойтись одним деаэратором подпиточной воды с невысокой производительностью. Уменьшается также мощность подпиточных насосов, оборудование водоподготовительной установки и снижаются требования к качеству подпиточной воды по сравнению с котельными для открытых систем. Недостатком закрытых систем является некоторое удорожание оборудования абонентских узлов горячего водоснабжения.

Для сокращения расхода воды на рециркуляцию ее температура на выходе из котлов поддерживается, как правило, выше температуры воды в подающей линии тепловых сетей. Только при расчетном максимально зимнем режиме температуры воды на выходе из котлов и в подающей линии тепловых сетей будут одинаковы. Для обеспечения расчетной температуры воды на входе в тепловые сети к выходящей из котлов воде подмешивается сетевая вода из обратного трубопровода. Для этого между трубопроводами обратной и подающей линии, после сетевых насосов, монтируют линию перепуска.

Наличие подмешивания и рециркуляции воды приводит к режимам работы стальных водогрейных котлов, отличающимся от режима тепловых сетей. Водогрейные котлы надежно работают лишь при условии поддержания постоянства количества воды, проходящей через них. Расход воды должен поддерживаться в заданных пределах независимо от колебаний тепловых нагрузок. Поэтому регулирование отпуска тепловой энергии в сеть необходимо осуществлять путем изменения температуры воды на выходе из котлов.

Для уменьшения интенсивности наружной коррозии труб поверхностей стальных водогрейных котлов необходимо, поддерживать температуру воды на входе в котлы выше температуры точки росы дымовых газов. Минимально допустимая температура воды на входе в котлы рекомендуется следующая:

при работе на природном газе - не ниже 60°С; при работе на малосернистом мазуте - не ниже 70°С; при работе на высокосернистом мазуте - не ниже 110°С.

В связи с тем, что температура воды в обратных линиях тепловых сетей почти всегда ниже 60°С, тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения предусматривают, как отмечено ранее, рециркуляцинонные насосы и соответствующие трубопроводы. Для определения необходимой температуры воды за стальными водогрейными котлами должны быть известны режимы работы тепловых сетей, которые отличаются от графиков или режимных котлоагрегатов.

Во многих случаях водяные тепловые сети рассчитываются для работы по так называемому отопительному температурному графику типа, показанного на рис. 2.9. Расчет показывает, что максимальный часовой расход воды, поступающей в тепловые сети от котлов, получается при режиме, соответствующем точке излома графика температур воды в сетях, т. е. при температуре наружного воздуха, которой соответствует на низшей температура воды в подающей линии. Эту температуру поддерживают постоянной даже при дальнейшем повышении температуры наружного воздуха.

Исходя из изложенного, в расчет тепловой схемы котельной вводят пятый характерный режим, отвечающий точке излома графика температур воды в сетях. Такие графики строятся для каждого района с соответствующей последнему расчетной температурой наружного воздуха по типу показанного на рис. 2.9. С помощью подобного графика легко находятся необходимые температуры в подающей и обратной магистралях тепловых сетей и необходимые температуры воды на выходе из котлов. Подобные графики для определения температур воды в тепловых сетях для различных расчетных температур наружного воздуха - от -13°С до - 40°С разработаны Теплоэлектропроектом.

Температуры воды в подающей и в обратной магистралях,°С, тепловой сети могут быть определены по формулам:

Формула 5-40

Формула 5-41

где tвн - температура воздуха внутри отапливаемых помещений,°С; tH - расчетная температура наружного воздуха для отопления,°С; t′H - изменяющаяся во времени температура наружного воздуха,°С;π′i - температура воды в подающем трубопроводе при tн°С; π2 - температура воды в обратном трубопроводе при tн°С;tн - температура воды в подающем трубопроводе при t′н,°С; ∆т - расчетный перепад температур, ∆t = π1 - π2,°С; θ =πз2 - расчетный перепад температур в местной системе,°С; π3 = π1+ aπ2 / 1+ a - расчетная температура воды, поступающей в отопительный прибор, °С; π′2 - температура воды, идущей в обратный трубопровод от прибора при t'H,°С; а - коэффициент смещения, равный отношению количества обратной воды, подсасываемой элеватором, к количеству сетевой воды.

Сложность расчетных формул (5.40) и (5.41) для определения температуры воды в тепловых сетях подтверждает целесообразность использования графиков типа показанного на рис. 2.9, построенного для района с расчетной температурой наружного воздуха - 26 °С. Из графика видно, что при температурах наружного воздуха 3°C и выше вплоть до конца отопительного сезона температура воды в подающем трубопроводе тепловых сетей постоянна и равна 70 °С.

Исходными данными для расчетов тепловых схем котельных со стальными водогрейными котлами для закрытых систем теплоснабжения, как указывалось выше, служат расходы теплоты на отопление, вентиляцию и горячее водоснабжение с учетом тепловых потерь в котельной, сетях и расхода теплоты на собственные нужды котельной.

Соотношение отопительно-вентиляционных нагрузок и нагрузок горячего водоснабжения уточняется в зависимости от местных условий работы потребителей. Практика эксплуатации отопительных котельных показывает, что среднечасовой за сутки расход теплоты на горячее водоснабжение составляет около 20 % полной теплопроизводительности котельной. Тепловые потери в наружных тепловых сетях рекомендуется принимать в размере до 3 % общего расхода теплоты. Максимальные часовые расчетные расходы тепловой энергии на собственные нужды котельной с водогрейными котлами при закрытой системе теплоснабжения можно принять по рекомендации [9] в размере до 3 % установленной теплопроизводительности всех котлов.

Суммарный часовой расход воды в подающей линии тепловых сетей на выходе из котельной определяется, исходя из температурного режима работы тепловых сетей, и, кроме того, зависит от утечки воды через не плотности. Утечка из тепловых сетей для закрытых систем теплоснабжения не должна превышать 0,25 % объема воды в трубах тепловых сетей.

Допускается ориентировочно принимать удельный объем воды в местных системах отопления зданий на 1 Гкал/ч суммарного расчетного расхода теплоты для жилых районов 30 м 3 и для промышленных предприятий - 15 м 3 .

С учетом удельного объема воды в трубопроводах тепловых сетей и подогревательных установках общий объем воды в закрытой системе ориентировочно можно принимать равным для жилых районов 45 - 50 м 3 , для промышленных предприятий - 25 - 35 MS на 1 Гкал/ч суммарного расчетного расхода теплоты.

 Развернутая тепловая схема котельной с тремя водогрейными котлами

Рис. 5.8. Развернутаые тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения.

1 - котел водогрейный; 2 - насос рециркуляционный; 3 - насос сетевой; 4 - насос сетевой летний; 5 - насос сырой воды; 6 - насос конденсатный; 7 - бак конденсатный; 8 - подогреватель сырой воды; 9 - подогреватель химически очищенной воды; 10 - деаэратор; 11 - охладитель выпара.

Иногда для предварительного определения количества утекающей из закрытой системы сетевой воды эту величину принимают в пределах до 2 % расхода воды в подающей линии. На основе расчета принципиальной тепловой схемы и после выбора единичных производительностей основного и вспомогательного оборудования котельной составляется полная развернутая тепловая схема. Для каждой технологической части котельной обычно составляются раздельные развернутые схемы, т. е. для оборудования собственно котельной, химводоочистки и мазутного хозяйства. Развернутая тепловая схема котельной с тремя водогрейными котлами КВ -ТС - 20 для закрытой системы теплоснабжения показана на рис. 5.8.

В верхней правой части этой схемы размещены водогрейные котлы 1, а в левой - деаэраторы 10 ниже котлов размещены рециркуляцинонные ниже сетевые насосы, под деаэраторами - теплообменники (подогреватели) 9, бак деаэрированной воды 7, подпилочные насосы 6, насосы сырой воды 5, дренажные баки и продувочный колодец. При выполнении развернутых тепловых схем котельных с водогрейными котлами применяют обще станционную или агрегатную схему компоновки оборудования (рис. 5.9).

Общестанционные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения характеризуется присоединением сетевых 2 и рециркуляционных 3 насосов, при котором вода из обратной линии тепловых сетей может поступать к любому из сетевых насосов 2 и 4, подключенных к магистральному трубопроводу, питающему водой все котлы котельной. Рециркуляцинонные насосы 3 подают горячую воду из общей линии за котлами также в общую линию, питающую водой все водогрейные котлы.

При агрегатной схеме компоновки оборудования котельной, изображенной на рис. 5.10, для каждого котла 1 устанавливаются сетевые 2 и рециркулярные насосы 3.

 Общестанционная компоновка котлов сетевых и рециркуляционных насосов

Рис 5.9 Общестанционная компоновка котлов сетевых и рециркуляционных насосов.1 - котел водогрейный , 2 - рециркуляционный , 3 - насос сетевой, 4 - насос сетевой летний.

Агрегатная компоновка котлов КВ - ГМ - 100, сетевых и рециркуляционных насосов

Рис. 5-10. Агрегатная компоновка котлов КВ - ГМ - 100, сетевых и рециркуляционных насосов. 1 - насос водогрейный; 2 - насос сетевой; 3 - насос рециркуляционный.

Вода из обратной магистрали поступает параллельно ко всем сетевым насосам, а нагнетательный трубопровод каждого насоса подключен только к одному из водонагревательных котлов. К рециркуляционному насосу горячая вода поступает из трубопроводом за каждым котлом до включения его в общую падающую магистраль и направляется в питательную линию того же котлоагрегата. При компоновке при агрегатной схеме предусматривается установка одного для всех водогрейных котлов. На рис.5.10 линии подпиточной и горячей воды к основным трубопроводам и теплообменником не показаны.

Агрегатный способ размещения оборудования особенно широко применяется в проектах водогрейных котельных с крупными котлами ПТВМ - 30М, КВ - ГМ 100. и др. Выбор обще станционного или агрегатного способа компоновки оборудования котельных с водогрейными котлами в каждом отдельном случае решается, исходя из эксплуатационных соображений. Важнейшими из них из компоновки при агрегатной схеме является облегчение учета и регулирования расхода и параметра теплоносителя от каждого агрегата магистральных теплопроводов большого диаметра и упрощение ввода в эксплуатацию каждого агрегата.

Котельный завод "Котлы КВ"

У вас есть вопросы?

Оставьте ваши контактные данные и наши менеджеры свяжутся с вами

Основные причины травматизма

1. Циркуляция воды в паровом котле. Объяснить работу циркуляции контуров котла по плакату или макету котла.

2. Топки для сжигания жидкого топлива. Классификация, устройство, принцип действия форсунки для жидкого топлива.

3. Гидроудары. Причины их вызывающие. Мероприятия по предотвращению.

4. Дренажи и воздушники. Назначение, места установки. Требования Правил к их расположению.

5. Основные способы передачи тепла: излучение (радиация), теплопроводность, конвекция. примеры каждого в котлоагрегате.

6. Причины пожаров в котельных.

Ответ:

Циркуляция воды в паровом котле. Объяснить работу циркуляции контуров котла по плакату или макету котла.

(смотри ответ в билете №-1, вопрос №-1).

Топки для сжигания жидкого топлива. Классификация, устройство, принцип действия форсунки для жидкого топлива.

(смотри ответ в билете №-15, вопрос №-2; билете №-1, вопрос №-2).

Гидроудары. Причины их вызывающие. Мероприятия по предотвращению.

(смотри ответ в билете №-11, вопрос №-3).

Дренажи и воздушники. Назначение, места установки. Требования Правил к их расположению.

(смотри ответ в билете №-9, вопрос №-3).

Основные способы передачи тепла: излучение (радиация), теплопроводность, конвекция. примеры каждого в котлоагрегате.

Способы передачи тепла:

В котельных установках тепло от продуктов сгорания топлива ограждающим топку поверхностям, и через них воде и пару, передается тремя способами: излучением (радиацией), теплопроводностью и конвекцией.

Излучение (радиация) — это передача тепла от одного тела к другому на расстояние с помощью электромагнитных волн. Например, от горящего факела к поверхностям нагрева котла.

Теплопроводность — вид теплопередачи, при которой перенесение тепла имеет атомно-молекулярный характер и происходит без макроскопического движения в теле (в стенке трубы котла от внешней поверхности к внутренней).

Различные вещества имеют различную теплопроводность. Так, теплопроводность накипи более чем в 40 раз, а сажи более чем в 200 раз ниже теплопроводности чугуна. Отложение накипи и осадка затрудняют передачу тепла и приводят к перерасходу топлива.

Конвекция — это передача энергии в форме тепла перемещением и перемешиванием нагретых масс жидкостей или газов. Примером конвекции есть распространение тепла по всей комнате от горячей батареи.

В котельном агрегате конвективный теплообмен происходит на хвостовых поверхностях нагрева, где горячие дымовые газы обтекают трубы экономайзера и воздухоподогревателя.

Лекция 11. Способы переноса теплоты. Температурное поле. Теплопроводность. Конвекция. Излучение. Теплообмен. Теплопередача

Теплота - кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже). Теплота играет важную роль в жизни человека, в том числе и в функционировании его организма. Часть химической энергии, содержащейся в пище, превращается в теплоту, благодаря чему температура тела поддерживается вблизи 37 градусов Цельсия. Тепловой баланс тела человека зависит также от температуры окружающей среды, и люди вынуждены расходовать много энергии на обогрев жилых и производственных помещений зимой и на охлаждение их летом. Большую часть этой энергии поставляют тепловые машины, например котельные установки и паровые турбины электростанций, работающих на ископаемом топливе (угле, нефти) и вырабатывающих электроэнергию.

До конца 18 в. теплоту считали материальной субстанцией, полагая, что температура тела определяется количеством содержащейся в нем «калорической жидкости», или «теплорода». Позднее Б.Румфорд, Дж.Джоуль и другие физики того времени путем остроумных опытов и рассуждений опровергли «калорическую» теорию, доказав, что теплота невесома и ее можно получать в любых количествах просто за счет механического движения. Теплота сама по себе не является веществом – это всего лишь энергия движения его атомов или молекул. Именно такого понимания теплоты придерживается современная физика.

Теплопередача – это процесс переноса теплоты внутри тела или от одного тела к другому, обусловленный разностью температур. Интенсивность переноса теплоты зависит от свойств вещества, разности температур и подчиняется экспериментально установленным законам природы. Чтобы создавать эффективно работающие системы нагрева или охлаждения, разнообразные двигатели, энергоустановки, системы теплоизоляции, нужно знать принципы теплопередачи. В одних случаях теплообмен нежелателен (теплоизоляция плавильных печей, космических кораблей и т.п.), а в других он должен быть как можно больше (паровые котлы, теплообменники, кухонная посуда).

Теплопередача – это теплообмен между двумя теплоносителями через разделяющую их твёрдую стенку или через поверхность раздела между ними. Теплопередача включает в себя теплоотдачу от более горячей жидкости к стенке, теплопроводность в стенке, теплоотдачу от стенки к более холодной подвижной среде. Интенсивность передачи теплоты при теплопередаче характеризуется коэффициентом теплопередачи k, численно равным количеству теплоты, которое передаётся через единицу поверхности стенки в единицу времени при разности температур между жидкостями в 1 К; размерность kвт/(м 2 .К) [ккал/м 2 .°С)]. Величина R, обратная коэффициенту теплопередачи, называется полным термическим сопротивлением . Например, R однослойной стенки


,

где α1 и α2 — коэффициенты теплоотдачи от горячей жидкости к поверхности стенки и от поверхности стенки к холодной жидкости; δ — толщина стенки; λ— коэффициент теплопроводности.

Существуют три основных вида теплопередачи: теплопроводность, конвекция и лучистый теплообмен.

Теплопроводность. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью; при достаточно высоких температурах в твердых телах его можно наблюдать визуально. Так, при нагревании стального стержня с одного конца в пламени газовой горелки тепловая энергия передается по стержню, и на некоторое расстояние от нагреваемого конца распространяется свечение (с удалением от места нагрева все менее интенсивное). Интенсивность теплопередачи за счет теплопроводности зависит от градиента температуры, т.е. отношения DТ/Dx разности температур на концах стержня к расстоянию между ними. Она зависит также от площади поперечного сечения стержня (в м 2 ) и коэффициента теплопроводности материала [в соответствующих единицах Вт/(мDК)]. Соотношение между этими величинами было выведено французским математиком Ж.Фурье и имеет следующий вид:





где q – тепловой поток, k – коэффициент теплопроводности, а A – площадь поперечного сечения. Это соотношение называется законом теплопроводности Фурье; знак «минус» в нем указывает на то, что теплотапередается в направлении, обратном градиенту температуры.Из закона Фурье следует, что тепловой поток можно понизить, уменьшив одну извеличин – коэффициент теплопроводности, площадь или градиент температуры. Дляздания в зимних условиях последние величины практически постоянны, а поэтомудля поддержания в помещении нужной температуры остается уменьшатьтеплопроводность стен, т.е. улучшать их теплоизоляцию.

Теплопроводность металлов обусловлена колебаниями кристаллической решетки и движением большого числа свободных электронов (называемых иногда электронным газом). Движение электронов ответственно и за электропроводность металлов, а потому неудивительно, что хорошие проводники тепла (например, серебро или медь) являются также хорошими проводниками электричества. Тепловое и электрическое сопротивление многих веществ резко уменьшается при понижении температуры ниже температуры жидкого гелия (1,8 K). Это явление, называемое сверхпроводимостью, используется для повышения эффективности работы многих устройств – от приборов микроэлектроники до линий электропередачи и больших электромагнитов.

Конвекция. Как мы уже говорили, при подводе тепла к жидкости или газу увеличивается интенсивность движения молекул, а вследствие этого повышается давление. Если жидкость или газ не ограничены в объеме, то они расширяются; локальная плотность жидкости (газа) становится меньше, и благодаря выталкивающим (архимедовым) силам нагретая часть среды движется вверх (именно поэтому теплый воздух в комнате поднимается от батарей к потолку). Данное явление называется конвекцией. Чтобы не расходовать тепло отопительной системы впустую, нужно пользоваться современными обогревателями, обеспечивающими принудительную циркуляцию воздуха. Конвективный тепловой поток от нагревателя к нагреваемой среде зависит от начальной скорости движения молекул, плотности, вязкости, теплопроводности и теплоемкости и среды; очень важны также размер и форма нагревателя. Соотношение между соответствующими величинами подчиняется закону Ньютона

где q – тепловой поток (измеряемый в ваттах), A – площадь поверхности источника тепла (в м 2 ), TW и T¥ – температуры источника и его окружения (в кельвинах). Коэффициент конвективного теплопереноса h зависит от свойств среды, начальной скорости ее молекул, а также от формы источника тепла, и измеряется в единицах Вт/(м 2 хК). Величина h неодинакова для случаев, когда воздух вокруг нагревателя неподвижен (свободная конвекция) и когда тот же нагреватель находится в воздушном потоке (вынужденная конвекция). В простых случаях течения жидкости по трубе или обтекания плоской поверхности коэффициент h можно рассчитать теоретически. Однако найти аналитическое решение задачи о конвекции для турбулентного течения среды пока не удается. Турбулентность – это сложное движение жидкости (газа), хаотичное в масштабах, существенно превышающих молекулярные. Если нагретое (или, наоборот, холодное) тело поместить в неподвижную среду или в поток, то вокруг него образуются конвективные токи и пограничный слой. Температура, давление и скорость движения молекул в этом слое играют важную роль при определении коэффициента конвективного теплопереноса. Конвекцию необходимо учитывать при проектировании теплообменников, систем кондиционирования воздуха, высокоскоростных летательных аппаратов и многих других устройств. Во всех подобных системах одновременно с конвекцией имеет место теплопроводность, причем как между твердыми телами, так и в окружающей их среде. При повышенных температурах существенную роль может играть и лучистый теплообмен.

Лучистый теплообмен. Третий вид теплопередачи – лучистый теплообмен – отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум. Сходство же его с другими способами передачи тепла в том, что он тоже обусловлен разностью температур. Тепловое излучение – это один из видов электромагнитного излучения. Другие его виды – радиоволновое, ультрафиолетовое и гамма-излучения – возникают в отсутствие разности температур. Тепловое излучение может сопровождаться испусканием видимого света, но его энергия мала по сравнению с энергией излучения невидимой части спектра.

Интенсивность теплопередачи путем теплопроводности и конвекции пропорциональна температуре, а лучистый тепловой поток пропорционален четвертой степени температуры и подчиняется закону Стефана – Больцмана


где, как и ранее, q – тепловой поток (в джоулях в секунду, т.е. в Вт), A – площадь поверхности излучающего тела (в м 2 ), а T1 и T2 – температуры (в кельвинах) излучающего тела иокружения, поглощающего это излучение. Коэффициент s называетсяпостоянной Стефана – Больцмана и равен (5,66961 х 0,00096)х10 –8 Вт/(м 2 DК 4 ).

Представленный закон теплового излучения справедлив лишь для идеального излучателя – так называемого абсолютно черного тела. Ни одно реальное тело таковым не является, хотя плоская черная поверхность по своим свойствам приближается к абсолютно черному телу. Светлые же поверхности излучают сравнительно слабо. Чтобы учесть отклонение от идеальности многочисленных «серых» тел, в правую часть выражения, описывающего закон Стефана – Больцмана, вводят коэффициент, меньший единицы, называемый излучательной способностью. Для плоской черной поверхности этот коэффициент может достигать 0,98, а для полированного металлического зеркала не превышает 0,05. Соответственно лучепоглощательная способность высока для черного тела и низка для зеркального.

Жилые и офисные помещения часто обогревают небольшими электрическими теплоизлучателями; красноватое свечение их спиралей – это видимое тепловое излучение, близкое к границе инфракрасной части спектра. Помещение же обогревается теплотой, которую несет в основном невидимая, инфракрасная часть излучения. В приборах ночного видения применяются источник теплового излучения и приемник, чувствительный к ИК-излучению, позволяющий видеть в темноте.

Мощным излучателем тепловой энергии является Солнце; оно нагревает Землю даже на расстоянии 150 млн. км. Интенсивность солнечного излучения, регистрируемая год за годом станциями, расположенными во многих точках земного шара, составляет примерно 1,37 Вт/м 2 . Солнечная энергия – источник жизни на Земле. Ведутся поиски способов наиболее эффективного ее использования. Созданы солнечные батареи, позволяющие обогревать дома и получать электроэнергию для бытовых нужд.

Какие виды теплообмена происходят в котле.

Теплообмен- это передача тепла между веществами и физическими телами.

Способы передачи тепла. В котельных установках тепло от про­дуктов сгорания топлива к поверхностям нагрева передается тремя спо­собами: излучением (радиацией), теплопроводностью и конвекцией (сложный теплообмен).

Излучение (радиация) - это передача тепла от одного тела к дру­гому на расстояние с помощью электромагнитных волн, например, от горящего факела к поверхностям нагрева котла.

Теплопроводность - вид теплопередачи, при которой перенесе­ние тепла имеет атомно-молекулярный характер и происходит без макроскопического движения в теле (в стенке трубы котла от внеш­ней поверхности к внутренней).

Вещества имеют различную теплопроводность. Так, теплопро­водность накипи более чем в 40 раз, а сажи - более чем в 200 раз ниже теплопроводности чугуна. Отложения накипи и осадка затруд­няют передачу тепла и приводят к перерасходу топлива.

Конвекция - передача энергии в виде тепла перемещением и пе­ремешиванием нагретых масс жидкостей или газов. Пример конвек­ции - распространение тепла по всей комнате от горячей батареи отопления.

В котле конвективный теплообмен происходит на хвостовых поверхностях нагрева, где горячие дымовые газы обтекают трубы экономайзера и нагревают проходящую по трубам воду, а проходя по трубам воздухоподогревателя нагревают воздух.

2. Порядок осмотра и проверки газового оборудования котельной и ГРУ согласно графику.

Ежедневно:

- внешний осмотр всего газового оборудования, газопроводов ГРУ и котельной, узлов учета расхода газа, запорной арматуры, приборов, контура заземления;

* давление газа перед и после регулятора, перепад давления на фильтре, температуру воздуха в помещении;

* проверка герметичности системы с помощью мыльной эмульсии;

- контроль за правильностью положения молоточка сцепления рычагов

- проверка уровня жидкости в ПСУ;

- проверка исправности КИПиА, наличие и целостность пломб на приборах учета;

- проверка исправности и работы электроосвещения и электрооборудования, вентиляции, системы отопления.

Один раз в месяц ( совместно с эл.слесарем СИ и А):

- проверка плотности закрытия клапана-отсекателя на котлах.

Действия машиниста при обнаружении повреждения труб в работающем котле.

При разрыве труб - аварийно остановить котел.

При других повреждениях (свищи, выпутаны, покраснения) .Во всех случаях сделать запись в сменном журнале с указанием причины и времени. Сообщить ответственному лицу.

Читайте также: