Параметры настройки регуляторов системы отопления

Обновлено: 12.05.2024

Основы регулирования системы отопления

Данная статья открывает цикл материалов, который буден посвящен различным аспектам регулирования систем отопления - проектированию, расчетам, используемому оборудованию и сферам его применения. В этой статье остановимся на целях, общих принципах и особенностях регулирования систем водяного отопления.

Задачи регулирования в системах отопления.

Основной целью регулирования отопления является поддержание заданной температуры в помещении при изменяющихся внешних условиях. То есть, вне зависимости от уличной температуры, силы ветра, влажности и прочих условий, в нашем доме должен поддерживаться заданный тепловой комфорт.

Упрощенно, понятие процесса регулирования системы отопления можно охарактеризовать следующим образом:

Регулирование системы отопления – это комплекс мер по максимальному приближению теплоотдачи отопительных приборов к текущей потребности объекта в тепле для поддержания требуемой внутренней температуры при постоянном изменении внешних условий.

Так как в системах водяного отопления нужную нам температуру, как правило, обеспечивают приборы отопления (радиаторы, конвекторы, водяные теплые полы и т.д.), то для поддержания заданной температуры теплоотдача отопительных приборов должна иметь возможность изменяться в зависимости от изменений внешних условий. Если не рассматривать механическое ограничение теплоотдачи отопительного прибора, которое до сих пор иногда применяется в конструкции конвекторов (воздушная заслонка на конвекторе с кожухом), основными способами изменения теплоотдачи являются изменение расхода теплоносителя через прибор и/или изменение температуры теплоносителя.

Таким образом, главная цель регулирования - поддержание требуемой температуры в помещении трансформируется в две основные частные задачи:
- обеспечение расчетного расхода теплоносителя через приборы отопления;
- задание требуемой температуры теплоносителя.

Кроме того, нужно иметь в виду, что в процессе регулирования, как правило, меняются гидравлические режимы работы системы, что может приводить к нарушению стабильности работы и появлению нежелательных шумов. Поэтому в системе регулирования должны быть предусмотрены меры по предотвращению этих негативных явлений.

Суть процесса регулирования отопления.

В общих чертах, процесс регулирования заключается в том, что величина регулируемого параметра находится под постоянным контролем и сравнивается с каким-то заданным значением этого параметра или величиной другого параметра. И в зависимости от их значения подвергается регулированию. Назовем совокупность элементов и алгоритмов регулирования, участвующих в этом процессе регулировочным контуром. Стоит сразу отметить, что таких контуров в системе отопления может быть достаточно много. Примерами таких регулировочных контуров являются поддержание температуры в помещении с помощью отопительного прибора по комнатному термостату или с помощью термостатического клапана на радиаторе отопления, регулирование котловой температуры теплоносителя в зависимости от температуры наружного воздуха, поддержание заданной температуры теплоносителя в водяном теплом поле и так далее.

Замкнутый регулировочный контур

Рассмотрим простейший замкнутый регулировочный контур, состоящий из прибора отопления, комнатного термостата, выполняющего функции измерительного устройства и контроллера, а также сервопривода с термостатическим клапаном, в качестве исполнительного устройства.

regul kontur

Рис. Замкнутый процесс регулирования в системе отопления

В рассматриваемом контуре регулируемый параметр – температура воздуха в помещении (х), которая формируется под воздействием прибора отопления и некого возмущающего воздействия, например, открытого окна. Для примера, заданное на термостате значение температуры (w) примем равным 23°С, а значение временно сформировавшейся температуры – равным 21°С. Температура воздуха постоянно контролируется измерительным устройством, в качестве которого может служить датчик температуры, встроенный в комнатный термостат. Результат измерения передается на контроллер, который в нашем примере также встроен в термостат. Контроллер сравнивает измеренное значение (21°С) с заданным (23°С) и при наличии рассогласования, подаёт управляющий сигнал на сервопривод на открытие, либо закрытие термостатического клапана. Исполнительное устройство формирует управляющее воздействие (в нашем случае увеличение расхода теплоносителя) на радиатор отопления, вследствие чего его теплоотдача увеличивается и повышает температуру воздуха в помещении. Таким образом образовался замкнутый регулировочный контур, в котором температура в помещении является и регулируемым и контролируемым параметром, и в процессе регулирования влияет сама на себя.

Открытый регулировочный контур

Рассмотрим другой пример контура регулирования, достаточно распространенного в современных системах отопления. Это - так называемый, открытый контур.

OpenKontur

Рис. Пример открытого регулировочного контура

Особенность открытого регулировочного контура заключается в том, что, в отличие от закрытого контура, контролируемая и регулируемая величины относятся к различным параметрам. В данном примере контролируемая величина - это температура наружного воздуха, регулируемая - температура теплоносителя, подаваемая в контур теплого пола.

Отопительные кривые

Принцип работы такой схемы регулирования заключается в следующем. Температура наружного воздуха (контролируемая величина) регистрируется датчиком (1), в результате чего формируется сигнал (Y), уровень которого зависит от измеренной температуры. Сигнал поступает на измерительный модуль контроллера (2) (в нашем примере контроллер встроен в котел отопления). Одновременно с помощью датчика (3) регистрируется температура теплоносителя в контуре теплого теплого пола (регулируемая величина), сигнал (х) от которого также передается в измерительное устройство. В контролерре происходит оценка того, насколько температуры (уровни сигналов) соответствуют настройкам. Обычно, соответствие контролируемой и регулируемой температур задается с помощью диаграмм. И в случае выявления несоответствия, подается управляющий сигнал (Z) на сервопривод трехходового клапана (4), в результате чего изменяются пропорции смешения горячего и остывшего теплоносителя и, таким образом, изменяется температура в контуре теплого пола.

Наладка и регулировка систем водяного отопления

В статье приведён принцип работы систем водяного отопления. Рассмотрены методы регулировки систем водяного двухтрубного отопления, которые осуществляются при наладке. Выделены преимущества и недостатки приведённых методов.

Системы отопления, вентиляции и кондиционирования предназначены для создания и поддержания комфортных условий микроклимата для эффективной и плодотворной жизнедеятельности человека. Эффективная работа систем ОВиК во многом зависит от грамотно выполненного проекта, качественного монтажа и правильной эксплуатации. Отсюда также следует, что грамотный проект, качественный монтаж и правильная эксплуатация систем ОВиК возможна только при наличии соответствующих знаний и навыков у проектировщика.

Данная статья посвящена вопросу регулировки систем отопления (СО).

Система отопления предназначена для поддержания в помещении комфортной (требуемой) температуры воздуха. Также можно сказать, что работа системы отопления направлена на компенсацию теплопотерь в помещении. Достигается это возвратом в него требуемого количества тепла. Последнее генерируется источником тепла (котлом, котельной, тепловым насосом и др.) транспортируется теплоносителем (вода, воздух, пар и т.п.) по теплопроводам (трубопроводы, воздуховоды) к потребителю (отопительному прибору, тёплому полу, теплообменнику, калориферу и т.п.). В целом систему отопления можно представить следующим образом — рис. 1.

Наладка и регулировка систем водяного отопления. 8/2018. Фото 1

Основываясь на основной задаче системы отопления — обеспечении потребителя требуемым количеством тепла — можно говорить об эффективности работы системы отопления. Оценивать эффективность можно по температуре в помещении, температуре и давлению теплоносителя, наличию его утечек, а также по равномерности распределения тепла по объекту. При этом эффективность работы системы отопления нас интересует как при вводе в эксплуатацию, так и в ходе использования.

Системы водяного отопления с принудительной циркуляцией в обязательном порядке включают в себя следующие элементы:

  • источник тепла (котёл);
  • отопительный прибор;
  • циркуляционный насос;
  • расширительный бак;
  • трубопроводы, фитинги и трубопроводную арматуру (вентили, краны, воздухоотводчики, предохранительные клапаны и т.п.);
  • контрольно-измерительные приборы и система автоматизации.

Отсутствие любого из этих элементов делает систему неработоспособной — полностью или частично. Нет расширительного бака — не будет происходить компенсация температурного расширения теплоносителя, но появится статическое давление. Это, в свою очередь, приведёт к наличию течей в системе, её нестабильной работе, сбоям в автоматике, если она есть. Нет насоса — практически полностью остановится циркуляция теплоносителя, к потребителю не дойдёт нужное количество тепла, и он замёрзнет. Нет котла — нет тепла. Нет отопительного прибора — мало тепла (функцию отопительных приборов могут выполнять трубопроводы системы).

Наладка

Наладка — это подготовка к использованию. Синонимы слова наладка: настройка, отлаживание, починка, регулировка, проверка, поправление. Антонимы: разборка, поломка, авария.

Итак, система отопления заполнена и опрессована. Самое время приступить к регулировке, тепловым испытаниям и вводу её в эксплуатации. Перед регулировкой должны быть выполнены следующие работы:

  • смонтирована система отопления;
  • произведена проверка её соответствия проекту;
  • система промыта и заполнена водой;
  • произведена пусконаладка основного оборудования.

В процессе пусконаладки предстоит сделать следующее:

  • включить основное оборудование;
  • внимательно прислушаться и присмотреться к происходящему вокруг — посторонние шумы, вибрации, наличие утечки воды, запах гари, яркие вспышки и многое другое должны насторожить.

Может быть, пора бежать отсюда? Или необходимо открыть закрытый вентиль у насоса? А может, после нажатия кнопки «Вкл» ничего не изменилось, потому что забыли включить штекер в розетку или не открыли вентиль подачи газа на котёл?

Ситуации бывают разные и, чтобы быть готовыми ко всему, прежде всего нужно понимать и представлять устройство системы отопления, наладку которой осуществляется.

  • внимательно проконтролировать показания всех имеющихся контрольноизмерительных приборов;
  • настроить и отрегулировать различные контуры системы отопления;
  • не забыть подписать приёмо-сдаточный акт.

В общем случае процесс наладки можно разделить на несколько этапов, каждый из которых отвечает за настройку и регулировку определённой группы узлов системы:

  • наладка котельного агрегата или теплового пункта;
  • гидравлическая и тепловая регулировка системы отопления.

Гидравлическая и тепловая регулировка системы отопления

Регулировка систем осуществляется для обеспечения распределения проектных расходов теплоносителя по всем циркуляционным кольцам. Теплоотдачу СО можно регулировать двумя способами: качественно и количественно (рис. 2).

Наладка и регулировка систем водяного отопления. 8/2018. Фото 2

Качественное регулирование — это изменение теплоотдачи за счёт изменения температуры теплоносителя t1 и t2 [°C] и, соответственно, температурного напора отопительного оборудования Δt [°C].

Качественное регулирование осуществляется в котельной, индивидуальном тепловом пункте и смесительном узле. В котельной температура теплоносителя изменяется за счёт изменения количества сжигаемого топлива или смешивания теплоносителей; в ИТП при закрытой схеме — за счёт изменения расхода греющего теплоносителя; в ИТП при открытой схеме присоединения системы отопления и в узлах смешивания — смешиванием подающего и обратного теплоносителя.

Количественное регулирование — это изменение теплоотдачи за счёт изменения расхода теплоносителя G [кг/ч].

Количественное регулирование в первую очередь направлено на гидравлическую увязку системы, то есть настройку распределения потоков между циркуляционными кольцами.

Настройка системы отопление заключается в обеспечении равномерности прогрева системы отопления и равномерности распределения теплоносителя. В практике наладки и эксплуатации систем отопления применяются оба способа одновременно.

Итак, приступим к наладке небольшой двухтрубной системы отопления (рис. 3). Наша цель — обеспечить равномерное, требуемое распределение тепла.

Наладка и регулировка систем водяного отопления. 8/2018. Фото 3

Без регулировки системы отопления в системе наступит равновесие (то есть Δр1 = Δр2 = Δр3 = рразрег) и расход теплоносителя распределится так, как ему будет удобней и основной объём воды пойдёт по пути наименьшего сопротивления. Последнее объясняется тем, что данный путь будет пролегать через отопительный прибор №1, то есть G1 > G2 (G > G1тр, G < G2тр, G < G3тр).

В свою очередь, это повлечёт за собой неравномерное распределение теплоотдачи, «перетоп» воздуха в помещении №1 и «недотоп» помещениях №2 и 3. Человек, находящийся в помещении №1, откроет окна, а в помещениях №2 и 3 «протянет ноги» в поисках тёплого места.

Регулировка заключается в изменениях расхода теплоносителя, а также сопротивлениях циркуляционных колец, которые мы варьируем за счёт уменьшения или увеличения площади проходного сечения в балансировочном вентиле. В нашем примере необходимо так прикрыть вентиль №1, 2 и 3, чтобы повысившееся сопротивление циркуляционного кольца Δр1, Δр2 и Δр3 привело к перераспределению расходов теплоносителей G1, G2 и G3.

Гидравлическая увязка потоков на практике может осуществляться несколькими методами [1–3]:

  • последовательного приближения к заранее заданному расходу (также его можно назвать «метод проб и ошибок» или «метод научного тыка»);
  • температурным;
  • проектным;
  • пропорциональным;
  • компенсационным;
  • компьютерным.

Стоит отметить, что при наладке целесообразно использовать комбинацию методов, учитывая при этом особенности смонтированной системы отопления.

Метод проб и ошибок

Данный метод полностью опирается на индивидуальный интуитивный опыт наладчика и заключается в закрытии и открытии регулирующих клапанов в надежде настроить систему отопления.

Результат наладки чаще всего определяется по температуре отопительных приборов — она должна быть одинаковой.

  • простота и малые финансовые затраты, не требуются дополнительные технические средства;
  • данным методом умеет пользоваться каждый, не требуется специальная подготовка;
  • удовлетворительно настраиваются небольшие системы.
  • неточность регулировки;
  • трудно настраивать большие системы, требуются большие затраты времени и волевых усилий (а в случае слабой интуиции и маленького опыта — придётся изрядно побегать).

Этот метод характеризует народная мудрость: «Если не доходит через голову, то доходит через руки и ноги».

Температурный метод наладки

Метод температурной наладки аналогичен методу проб и ошибок, их даже можно назвать аналогами. Однако есть ряд «но». Данный метод опирается на закон сохранения энергии и на приборные измерения температуры теплоносителя на входе и выходе из отопительного прибора. Метод базируется на законе сохранения энергии, уравнении определения количества теплоты:

Наладка и регулировка систем водяного отопления. 8/2018. Фото 4

При передаче тепла Q от теплоносителя посредством отопительного прибора в помещение температура теплоносителя t2 понижается. Изменяем расход G — регулируется теплоотдача.

Данный метод применяется в достаточно простых системах, где используются балансировочные клапана без штуцеров.

Плюсы — доступность. Использование этого метода возможно в ситуациях, когда другие методы недоступны. Такой метод применяется, когда мастер ограничен в ресурсах (приборы, современные балансировочные и автоматические клапаны, «интеллект» и т.п.).

Минусы: данный метод является неточным, особенно в ситуациях, когда разность температур теплоносителя незначительна. То есть точность метода повышается с ростом температуры наружного воздуха. К некорректным результатам также приводит завышенная площадь отопительных приборов.

Проектный (расчётный) метод

Метод предварительной настройки клапанов основан на регулировке по результатам гидравлического расчёта при проектировании систем отопления.

Собственно, в первую очередь он осуществляется в процессе проектирования. При этом проектировщик производит увязку циркуляционных колец в ходе расчёта пропускной способности и настройки регулирующих клапанов.

Преимущества: наладчику достаточно выставить необходимую настройку, проверить расход теплоносителя и, в случае необходимости, произвести корректировку данных настроек.

Недостатки: не учитываются изменения, внесённые в процессе монтажа систем отопления, а их может быть предостаточно. Монтаж — коварная штука, и очень часто «взгляды» проектировщика и монтажника расходятся по ряду объективных и необъективных причин.

Пропорциональный метод

Метод основан на закономерностях отклонения потоков в параллельных участках системы при регулировании одного из них. Из курса гидравлики известно, что контуры трубопроводов могут соединяться параллельно, последовательно и разветвлённо. Каждый участок трубопровода имеет определённую характеристику сопротивления S [Па/(кг/ч)2]. В зависимости от способа соединения различных трубопроводов эти характеристики определённым образом суммируются.

При последовательном соединении данная зависимость имеет вид: S = S1 + S2, G1 = G2. При параллельном соединении:

Наладка и регулировка систем водяного отопления. 8/2018. Фото 5

Потери давления на участке определяются по следующему уравнению:

Известно, что в параллельно соединённых трубопроводах будут одинаковые потери напора. Соответственно, для системы (рис. 3) получим:

Наладка и регулировка систем водяного отопления. 8/2018. Фото 6

Предполагается, что регулировка одного из вентилей в контуре не ведёт к пропорциональному изменению параметров в остальных клапанах контура.

Между расходами воды в контурах системы существует пропорциональная зависимость — изменение сопротивления одного из клапанов влечёт за собой перераспределение расходов с сохранением пропорции между ними (рис. 3).

Алгоритм регулировки системы отопления пропорциональным методом:

1. Определяем циркуляционные кольца.

2. Выделяем главное циркуляционное кольцо.

3. Открываем вентиль основного циркуляционного кольца (при этом немного прикрываем остальные вентили контура). Если нет уверенности в том, какое циркуляционное кольцо главное, — оставляем открытыми.

4. Определяем существующую пропорцию между стояками или пропорцию между фактическими и проектными расходами в стояках (контурах).

5. Находим стояк или контур, относительно которого будем осуществлять регулирование (обычно это контур с наименьшим соотношением G/G1пр).

6. Затем методом последовательных приближений выставляется регулируемым вентилем расход в контуре 2 G/G1пр = n = G/G2пр и т.д.

7. На завершающем этапе регулируем основной вентиль, выставляя на нём соотношение Gф/Gпр = 1, и по закону пропорциональности в остальных контурах системы установится также соотношение G/G1пр = G/G2пр = 1.

Этот метод регулирования применяется в больших разветвлённых системах.

Плюсы: это возможность настройки сложных разветвлённых систем; возможность быстрой корректировки при регулировании проектным методом в случае изменений смонтированных систем относительно проекта. Минусы: наличие большого количества балансировочных вентилей и, как следствие, повышенные потери давления в системе; многократные измерения расходов теплоносителя в контурах; необходимость наличия измерительных приборов и времени.

Компенсационный метод регулировки

Данный метод базируется на рассмотренных в предыдущем разделе принципах гидравлики (является усовершенствованным пропорциональным методом).

Алгоритм регулировки системы отопления компенсационным методом:

1. Необходимо наличие не менее трёх человек. Наладчик 1 будет отвечать за регулировку основного (эталонного) клапана, наладчик 2 — настраивать клапана системы и контролировать расход в них, наладчик 3 — регулируя магистральный клапан, поддержит заданный перепад давления или расход на основном клапане (компенсирует перетоки).

2. На наиболее удалённом клапане наладчиком 1 устанавливается такой перепад давления, например — 3 кПа. Остальные клапаны контура, либо в целом системы остаются открытыми.

3. Наладчик 3 прикрывает удалённые клапаны до тех пор, пока не установится соотношение G = G1пр.

4. Наладчик 2 начинает регулировать клапан одного из второстепенных контуров и устанавливает G = G2пр.

5. Наладчик 3 по указаниям наладчика 1 компенсирует возникшие перераспределения потоков и пока у наладчика 1 не установится G = G1пр.

6. Наладчик 2 проверяет, установилось ли в контуре равенство G = G2пр. Если оно не установилось, то действия пунктов 4 и 5 повторяются.

7. Наладчик 2 начинает регулировать клапан последующего второстепенного контура и устанавливает на нём расход G = G3пр.

8. Наладчик 3 по указаниям наладчика 1 компенсирует возникшие перераспределения потоков, пока у наладчика 1 не установится G = G1пр.

9. Далее цикл повторяется вновь и вновь, пока не настроится вся система в целом.

Преимущества метода: настройка разветвлённых систем отопления за один этап; минимизация количеств измерений. Его недостатки: настройку желательно производить втроём; необходимо два дифференциальных манометра.

Выводы

Рассмотренные методы регулировки на практике целесообразно комбинировать, оперируя теми устройствами регулировки и контроля регулируемых параметров, которые доступны, а понимание пропорциональности перераспределения расходов в регулируемых участках способно облегчить процесс наладки.

Читайте также: