Параметры гвс для котельной

Обновлено: 17.05.2024

Оптимизация режимов работы систем горячего водоснабжения

Характерной особенностью отечественных систем горячего водоснабжения является сильно выраженная циркуляционная составляющая. Циркуляция воды в системах горячего водоснабжения (ГВС) предназначена для компенсации тепловых потерь при отсутствии водоразбора [1]. Однако данные по тепловым потерям во внутридомовых системах горячего водоснабжения практически всегда отсутствуют в проектной или эксплуатационной документации теплопотребляющих систем. Без этих данных сложно производить режимно-наладочные мероприятия в системах горячего водоснабжения. Поэтому тепловые потери в трубопроводах систем горячего водоснабжения, как правило, определяют в долях от расхода воды. Согласно [2, 3] нормативные значения циркуляционного расхода предусмотрены в размере 10% от расчетного расхода воды, определенного для неотопительного периода. В [4] потери теплоты трубопроводами систем горячего водоснабжения учитываются прибавлением доли среднего за отопительный период расхода воды в системе ГВС. При этом коэффициент, учитывающий потери трубопроводами, зависит от конструктивных особенностей и наличия изоляции трубопроводов, изменяется от 0,15 до 0,35. Для широко распространенных в отечественном теплоснабжении систем горячего водоснабжения с неизолированными стояками и полотенцесушителями добавочный коэффициент равен 0,35.

В современной законодательной и нормативно-технической литературе, регламентирующей эксплуатацию систем горячего водоснабжения, существует ряд противоречий, влияющих на экономичность работы систем горячего водоснабжения. Так, согласно требованиям [1, 5] в системах ГВС температура воды может изменяться в значительных пределах: 50-75 О С в закрытых системах, 60-75 О С в открытых системах. Нормативный документ [6] предписывает выдерживать температуру горячей воды в системах горячего водоснабжения дошкольных организаций не ниже 65 О С. Согласно требованиям [7, 8] температура горячей воды должна выдерживаться в пределах 60-75 О С независимо от применяемой системы горячего водоснабжения. Согласно [8] допускается отклонение температуры воды в точке водоразбора в ночное время (с 23:00 до 06:00) не более чем на 5 О С; в дневное время (с 06:00 до 23:00) не более чем на 3 О С.

Противоречия в законодательной и нормативной литературе [5, 6, 7, 8] заключаются в том, что в зданиях, подключенных к одной централизованной системе теплоснабжения, должны поддерживаться различные температуры в системе ГВС. Кроме того, в расчетах тарифа на горячую воду, как правило, применяют значения температур, соответствующие нижнему нормативному уровню, т.е. потребители не оплачивают избыточную тепловую энергию, которая поступает в систему ГВС при повышенной температуре воды. Особенно остро эта проблема стоит в системах, не оборудованных приборами коммерческого учета 9.

Сотрудниками научно-исследовательской лаборатории «Теплоэнергетические системы и установки» УлГТУ совместно со специалистами коммунальных предприятий проведено обследование систем горячего водоснабжения жилых домов г. Ульяновска в отопительном сезоне 2011-2012 гг. В результате обследования установлено, что реальное значение циркуляционного расхода существенно превышает расчетные значения. В табл. 1 приведены средние за отопительный период расходы в системах горячего водоснабжения ряда жилых домов.


Расход воды в циркуляционных трубопроводах систем горячего водоснабжения жилых домов G4 составляет 40-90% от расхода в подающем трубопроводе G3 и 70-500% от расхода воды на горячее водоснабжение Gf.

В табл. 2 приведены среднечасовые температуры воды и расходы тепловой энергии в системах горячего водоснабжения ряда жилых домов г. Ульяновска, подключенных к тепловым сетям по открытой схеме. Данные в табл. 2 усреднены за 7 месяцев отопительного сезона 2011-2012 гг.


Из табл. 2 следует, что в системах ГВС практически всех обследованных жилых домов, среднечасовая температура воды превышает нижний нормативный уровень на 2-6 О С. С учетом допускаемого отклонения 3 О С в дневное время и 5 О С в ночное [10], температура в системах ГВС превышает нормативный уровень на 5-9 О С в дневное время и на 7-11 О С - в ночное. Из табл. 2 также следует, что потери теплоты при циркуляции горячей воды составляют 40-70% от всего теплопотребления в системе горячего водоснабжения. Режим работы систем горячего водоснабжения отличается существенной часовой и суточной неравномерностью. Установка на циркуляционных трубопроводах дроссельных шайб с постоянным отверстием не позволяет в полной мере учесть изменения потребления ГВС. В результате температура воды в циркуляционных трубопроводах систем ГВС превышает температуру воды в обратных трубопроводах систем отопления, что приводит к повышению температуры воды в обратных трубопроводах тепловых сетей и, как следствие, к снижению экономической эффективности теплофикационных систем. На циркуляционных линиях систем ГВС всех домов в период проведения обследования были установлены шайбы, диаметры которых приведены в табл. 1.

На наш взгляд в системах ГВС необходимо применять технологии регулирования, позволяющие учесть неравномерность режимов их работы. Одной из таких технологий является технология поддержании температуры горячей воды вблизи нижнего предела в период минимального водоразбора, что позволяет добиться значительной экономии теплоты.

В настоящее время существует большая номенклатура приборов, позволяющих осуществлять оптимизацию теплоснабжения в соответствии с графиками теплопотребления. Выбор типа прибора и схемы его включения должен быть обусловлен необходимостью решения различных задач при регулировании параметров теплоносителя.

С декабря 2006 г. в системе теплоснабжения г. Ульяновска применяются технологии регулирования параметров горячего водоснабжения. Регулирование осуществляется на основе программируемых контроллеров с функцией реального времени, позволяющих программировать изменение температуры воды в системе горячего водоснабжения в соответствии с фактическим водопотреблением. Первоначально регулирование применялось в закрытых системах ГВС, что обусловлено большим диапазоном нормируемой температуры ГВС.

На рис. 1 показана схема включения контроллера в структуру центрального теплового пункта (ЦТП). Импульс от датчика температуры 8 поступает в контроллер 6, где формируется управляющий сигнал для электропривода регулятора 7.


Первоначально настройка регулятора была выполнена таким образом, что с 0:00 до 19:00 температура ГВС на выходе с ЦТП поддерживалась 55 О С, а с 19:00 до 0:00 - 58 О С. Затем, при неизменной продолжительности периодов регулирования, температуры были изменены соответственно на 54 О С и 60 О С. Такая настройка объясняется необходимостью поддержания повышенной температуры ГВС в пиковый период.


Анализ работы прибора и сравнение параметров работы ЦТП за декабрь 2006 г., январь и февраль 2007 г. показали, что суммарный расход теплоносителя через ЦТП снизился на 4264,4 т (152 т в сутки) в январе и на 5847,9 (244 т в сутки) в феврале (линия 1 на рис. 2). Вследствие понижения расхода существенно уменьшилось теплопотребление ЦТП. Так, в январе теплопотребление снизилось на 85,3 Гкал (3 Гкал в сутки), что составило 2,5% от теплопотребления в декабре 2006 г. Увеличение теплопотребления в феврале обусловлено повышением температуры сетевой воды в подающей магистрали: средняя разность температур между подающим и обратным трубопроводами составила 33,1 О С. Можно с полной уверенностью утверждать, что при отсутствии регулирования на ЦТП теплопотребление в феврале существенно превысило бы фактическое. Данные сравнительного анализа приведены в табл. 3.

Таблица 3. Технико-экономические показатели работы теплового пункта.

Наименование Декабрь 2006 г. Январь 2007 г. Февраль 2007 г.
Теплопотребление, Гкал 3412,2 3326,9 4025,3
Суммарный расход теплоносителя в подающем тубопроводе, т 127352,97 123088,6 121505,1
Средняя температура в подающем трубопроводе, °С 72,01 71,82 80,9
Средняя температура в обратном трубопроводе, °С 45,22 44,79 47,8
Средняя температура наружного воздуха, °С -2,3 -2,2 -14,3

Большее снижение расхода теплоносителя в феврале обусловлено изменением режима регулирования температуры ГВС. В феврале в период минимального водоразбора температура ГВС поддерживалась на более низком уровне, чем в январе. На рис. 3 показана динамика изменения температуры воды, подаваемой на ГВС, по часам суток. На графике четко прослеживаются периоды изменения температуры в соответствии с заданной программой.



Равенство средних температур наружного воздуха в декабре 2006 г. и январе 2007 г. позволяет провести технико-экономическое сравнение показателей работы ЦТП в эти месяцы и сделать вывод о том, что снижение расхода теплоносителя через ЦТП в январе обусловлено только оптимизацией режима работы системы ГВС.

Технико-экономические расчеты показывают, что в январе 2007 г. за счет оптимизации режима теплопотребления было сэкономлено 43503 руб. при тарифе 510 руб./Гкал. Стоимость прибора и монтажных работ составили 15000 руб. Таким образом, затраты на покупку и монтаж контроллера окупились менее чем за месяц. Чистая экономия от установки прибора составила 28503 руб.

На примере одного ЦТП показана эффективность энергосбережения от внедрения простого, малозатратного и быстроокупаемого технического решения.

В структуру системы теплоснабжения г. Ульяновска входит более 100 центральных тепловых пунктов. По результатам этого пилотного проекта было рекомендовано в системе теплоснабжения г. Ульяновска внедрять технологии регулирования температуры ГВС с учетом часовой и суточной неравномерности потребления ГВС. В настоящее время в системе теплоснабжения г. Ульяновска такое регулирование осуществляется на 25 ЦТП с расчетной максимальной тепловой нагрузкой ГВС равной 171 Гкал/ч (расчетная среднечасовая нагрузка ГВС 85,5 Гкал/ч). Ежегодная экономия тепловой энергии на этих ЦТП за счет ночного понижения температуры ГВС составляет более 3,96 млн руб. при средневзвешенном тарифе на покупку тепловой энергии в размере 1100 руб./Гкал (с учетом НДС). Экономия определялась из условия ежедневного 6-часового понижения параметров. При этом затраты на привод регуляторов температуры, питание датчиков температуры и контроллеры составляют не более 105 кВт.ч в год, стоимостью не более 500 руб.

Реализация подобного технического решения на каждом ЦТП позволит добиться существенной экономии топливно-энергетических ресурсов, снижения себестоимости производства и транспорта теплоты и, как следствие, снижения тарифов для населения.

Выводы

1. Проведен анализ режимов работы систем горячего водоснабжения жилых домов г. Ульяновска. В результате обследования определено, что в системах горячего водоснабжения происходит существенный перерасход тепловой энергии и теплоносителя, обусловленный нерегулируемой циркуляцией теплоносителя и отсутствием регулирования температуры горячей воды в периоды минимального водоразбора.

2. С 2006 г в системе теплоснабжения г. Ульяновска реализуется автоматическое регулирование температуры горячей воды с нормативным понижением температуры в периоды минимального водоразбора. Обследование режимов работы ЦТП показало, что за счет автоматического понижения температуры ГВС в периоды минимального водоразбора теплопотребление системы горячего водоснабжения снижается более чем на 2,5 %.

3. В период с 2006 по 2012 гг. автоматическое понижение температуры ГВС в периоды минимального водоразбора реализовано на 25-ти ЦТП в системе теплоснабжения г Ульяновска. Расчетная годовая экономия тепловой энергии на этих ЦТП за счет ночного понижения температуры ГВС составляет более 3,96 млн руб. при средневзвешенном тарифе на покупку тепловой энергии в размере 1100 руб./Гкал (с учетом НДС).

Литература

1. Строительные нормы и правила. СНиП 2.04.01-85. Внутренний водопровод и канализация зданий. М.: ЦИТП Госстроя СССР, 1986.

2. Строительные нормы и правила. СНиП 2.04.07-86. Тепловые сети. М.: ЦИТП Госстроя СССР, 1988. - 50 с.

4. Свод правил по проектированию и строительству. СП 41-101-95. Проектирование тепловых пунктов / Минстрой России. - М.: Изд-во ГУП ЦПП, 2003. - 78 с.

6. Об утверждении СанПиН 2.4.1.2660-10 «Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы в дошкольных организациях». Постановление Главного государственного санитарного врача Российской Федерации от 22.07.2010 г. № 91 //Российская газета, 2010. - № 5280. - 08.09.2010.

9. Ротов П.В., Егоров В.Н., Сидорова Л.Ю. О необходимости приборного учета в системах горячего водоснабжения// Сантехника, отопление, кондиционирование.

10. Ротов П.В., Егоров В.Н. Учет воды на горячее водоснабжение - важнейший фактор энергосбережения в жилищно-коммунальном хозяйстве / П.В. Ротов, В.Н. Егоров // Материалы Пятой Российской научно-технической конференции «Энергосбережение в городском хозяйстве, энергетики и промышленности». - Ульяновск: УлГТУ, 2006. Т. 2. С. 66-70.

11. Ротов П.В., Егоров В.Н. Приборный учет в системе ЖКХ на примере г. Ульяновска. // Строительная инженерия. 2006. - № 5. С.

Горячее водоснабжение. Расчет сетей

Проектирование сетей горячего водоснабжения часто выполняют эмпирически или очень приближенно. Между тем значимость сетей требует совершенно иного, более глубокого подхода, в котором нет места импровизации и случайностям.

Одна из проблем, требующих особого внимания при проектировании сети горячего водоснабжения, это дискомфорт пользователя, обусловленный определенным периодом ожидания с момента открытия водоразборного прибора (смесителя, крана) до момента, когда из него потечет действительно горячая вода. Подающая сеть горячей воды (рис. 1) в при отсутствии водоразбора заполнена холодной водой, а не горячей. При открытии водоразборного прибора из емкостного или проточного водонагревателя горячая вода начинает поступать в трубопровод, но горячая вода потечет из водоразборного прибора только через некоторое время, когда из подающего трубопровода выльется вся холодная вода. В такой сети продолжительный период времени между открытием водоразборного прибора и поступлением горячей воды вполне допустим для односемейных жилых домов и совершенно недопустим для крупных распределительных сетей, таких как гостиничные или иные общественные объекты.

Схема сети горячей воды традиционного типа

За и против циркуляционных сетей

Наиболее очевидное решение заключается в устройстве постоянной циркуляционной сети (рис. 2). Такая сеть обеспечивает практически мгновенную подачу горячей воды и, безусловно, является оптимальной, радикально решающей вышеуказанную проблему. Ее недостаток – высокая стоимость, в силу которой сеть оправдывает себя только при значительном числе пользователей. Кроме того, постоянная циркуляция горячей воды ведет к потерям тепла, а это немалые дополнения к общему счету за энергоносители. Поэтому на сетях средней протяженности целесообразно предварительно внимательно изучить принципиальную схему расположения водоразборных приборов для сокращения протяженности подающих трубопроводов и понять, целесообразно ли применение системы без циркуляции с допустимым периодом ожидания подачи горячей воды.

В Италии нет соответствующего регламента на период ожидания. Считается вполне приемлемым период до 60 секунд, но только в жилищном строительстве. Для остальных объектов более высокого статуса приемлемый период ожидания сокращен до 30 секунд.

Схема сети горячей воды с циркуляцией

Обоснование схемы горячего водоснабжения (расчет периода ожидания)

Для оптимизации периода ожидания вычисляется время, необходимое для поступления горячей

воды в наиболее удаленный от накопителя или теплогенератора водопроводный прибор. Если результат превышает общепринятые показатели, ставится задача модифицировать сеть таким образом, чтобы период ожидания укладывался в установленные пределы. В связи с этим следует учитывать, что период ожидания:

– тем короче, чем выше давление воды, приходящей в точку водоразбора;

– тем короче, чем больше пропускная способность водоразборного прибора;

– тем дольше, чем больше объемы участков, образующих наиболее удаленный контур, а также чем больше сечение трубопровода.

Расчет производится в следующем порядке:

1. Определяют пиковые (максимальные) расходы горячей воды на водоразбор (см. далее), затем длину, тип и диаметр каждого участка подающего трубопровода;

2. Умножают общую длину, м трубопровода каждого диаметра на удельный объем воды, л/м (табл. 1);

3. Определяют расчетный путь для наименее выгодно расположенного водоразборного прибора (наиболее удаленного от оборудования для нагрева воды) и суммируют объемы воды на участках трубопровода до водоразборного прибора.

4. Рассчитывают время фактического поступления горячей воды, для чего делят сумму объемов воды в трубопроводах по расчетному пути на секундный расход водоразборного прибора при расчетном давлении перед ним (секундный расход водоразборного прибора обычно указывается изготовителем).

Наиболее трудоемким при расчете является вычисление удельных объемов трубопроводов Cs. Для этого используется следующая формула:

Cs = 10 • ( F /100) 2 • 3,14/4

где F – внутренний диаметр трубопровода (не внешний или номинальный), мм.

Для упрощения расчетов в табл. 1 приведены удельные объемы воды в стальном, CPVC, медном трубопроводах для наиболее распространенных диаметров труб, применяемых на сетях горячего водоснабжения.

Стоимость такой сети ниже, но на сетях большой протяженности время ожидания поступления горячей воды к удаленному водоразборному прибору слишком большое.

Данное решение практически во всех случаях обеспечивает быстрое поступление горячей воды из водоразборного прибора, но имеет более высокие стоимостные строительные (закупочные) и эксплуатационные показатели. Постоянная циркуляция горячей воды ведет к существенным потерям тепла и технически менее надежна из-за наличия насосного агрегата.

Пример расчета

В качестве примера рассмотрим сеть горячего водоснабжения, аналогичную изображенной на рис. 1. Наиболее удаленный водоразборный прибор имеет расчетный секундный расход (пропускную мощность) 0,15 л/с и подключен к первичному источнику горячей воды (оборудованию для нагрева воды) тремя участками: первый (А) – медный трубопровод диаметром 3/4” длиной 8 м, второй (Б) – медный 1/2” длиной 18 м и последний (В) – медный 3/8” длиной 1 м.

Расчет объемов воды в трубопроводах в соответствии с рекомендациями табл. 1:

А) объем воды на участке 3/4”: 8 м х 0,314 л/м = 2,512 л

Б) объем воды на участке 1/2”: 18 м х 0,122 л/м = 2,196 л

В) объем воды на участке 3/8”: 1 м х 0,086 л/м = 0,086 л

Общий объем воды в трубопроводах составит

(2,512 + 2,196 + 0,086) = 4,794 л.

Время поступления горячей воды на водоразборную точку: (4,794 л / 0,15 л/с) = примерно 32 с.

В водопроводной сети с коллекторной разводкой (рис. 3), к которой присоединены разводящие трубопроводы к водоразборным приборам, и подключенной непосредственно к оборудованию для нагрева и подачи горячей воды, наиболее удаленной из числа подключенных к коллектору является точка трубопровода на 3/8” длиной (8 + 18 + 1) = 27 м. Объем воды в контуре при этом сокращается до (27 х 0,086) = 2,332 л. Время ожидания поступления горячей воды на самый дальний водоразборный прибор сокращается до 2,332 / 0,15 = примерно 15,5 с, что можно считать безусловно приемлемым показателем.

Схема сети горячей воды с коллектором

Такая сеть имеет среднюю стоимость и, если длина сети не слишком значительна, позволяет обеспечивать вполне приемлемое время ожидания горячей воды на наиболее удаленном водоразборном приборе

Диаграмма определения расчетного расхода участка трубопровода в зависимости от суммы элементов FU и типа здания (ASHRAE)

А – рестораны; Б – больницы, хосписы, дома престарелых, пансионы и гостиницы; В – квартиры и коттеджи; Г – административные здания и школьные учреждения

Расчет суточного потребления горячей воды

Определение объемов потребления горячей воды и тепла, необходимых для инженерного расчета емкостных и скоростных водонагревателей, возможно только при наличии достоверных данных о социальном назначении объекта, в котором проектируется горячее водоснабжение. Другими словами, было бы неправильно брать за основу применительно к нашей стране параметры североевропейских государств или, хуже того, Америки, где образ жизни решительно отличается от нашего, вследствие чего расходы горячей воды имеют мало или не имеют ничего общего с итальянской моделью.

В качестве иллюстрации в табл. 2 приведены расходы горячей воды в жилом секторе, а также на предприятиях торговли и сферы услуг.

Примечание: данные предоставлены компанией ENEL

Расчет трубопроводов

Во-первых (и это главное), трубопровод горячего водоснабжения должен рассчитываться на пиковые (максимальные) периоды водоразбора на основе таблиц и диаграмм, используемых для расчета трубопроводов отопления. Применяемые материалы (в порядке роста популярности): оцинкованная сталь, медь и CPVC.

По методике расчета трубопровода из практического руководства ассоциации ASHRAE (ASHRAE Handbook 2003 Application) для каждого типа водоразборного прибора назначается условный элемент – эквивалентный прибор FU (Fixture Unit).

Расчет выполняют по следующей методике:

1. Определяется эквивалент FU на каждой точке водоразбора по табл. 3;

2. Подающая (распределительная) сеть делится на участки по тому же принципу, что и сети отопительных контуров;

3. Определяется сумма эквивалентных приборов FU, обслуживаемых каждым участком трубопровода;

4. Определяется расчетный расход на каждом участке в зависимости от суммарного показателя FU и типа здания по табл. 4;

5. Определяется диаметр каждого участка в зависимости от расчетного расхода (пропускного объема) и длины участка так, чтобы в целом по сети потери давления не выходили за приемлемые границы.

Примечание: значения эквивалентного прибора FU ( Fixture Units) могут корректироваться в зависимости от температуры горячей воды следующим образом:
корректное значение FU = значение FU из таблицы х (60 – 15) / (температура, °С имеющейся горячей воды – 15)

Диаметр циркуляционной сети (если таковую решено организовать) можно определить, если принять по каждому расчетному участку трубопровода пропускной объем 3 л/с на каждый условный элемент FU подающего линейного ответвления, от которого он отходит. Рециркуляционный насос должен рассчитываться на пропускную мощность, равную сумме элементов FU водоразборных точек всей подающей сети.

Для предотвращения непроизводительного расхода энергии, свойственного любой циркуляционной сети, рекомендуется оборудовать насос термостатом, который должен включать насос при снижении температуры циркуляционной (обратной) воды ниже определенного установленного уровня и выключать насос, когда температура обратной воды примерно на 5 °С ниже установленного значения горячей воды.

Водоразборные приборы являются смесительными устройствами (смешивают холодную и горячую воду для получения на изливе температуры, нужной потребителю) и не всегда такое устройство (смеситель) термостатического типа. Расчет необходимо выполнить для подающей (распределительной) сети и холодного, и горячего водоснабжения так, чтобы в каждой точке водоразбора (на подводках смесителей холодной и горячей воды) разница давления была минимальной, во-первых, и давление холодной и горячей воды были постоянными, во-вторых. Эти особенно важно при установке на конечных участках сети ванны или душевой кабины, в которых любой внезапный перепад давления в холодном или горячем водопроводе приводит к произвольному нерегулируемому снижению или росту температуры подаваемой воды.

Контроль содержания легионелл (Legionella Pneumophila)

Бактерия Legionella Pneumophila , о которой достаточно написано в специальной литературе, размножается на застойных участках сети распределения горячей воды. Но размножается она в воде, температура которой не превышает 46 °С. Логично предположить, что решить проблему можно, если нагревать и подавать в сеть горячую воду с температурой выше 60 °С. В Италии, однако, законодательно запрещена температура воды более 46 °С. Поэтому для профилактики возникновения очагов легионелл в сети водоснабжения необходима периодическая дезинфекции трубопровода. Для дезинфекции через трубопроводы прокачивают в течение нескольких часов очень горячую воду или воду с антибактериальными добавками.

Параметры гвс для котельной

РУКОВОДЯЩИЙ ДОКУМЕНТ ПО СТАНДАРТИЗАЦИИ

НОРМЫ КАЧЕСТВА СЕТЕВОЙ И ПОДПИТОЧНОЙ ВОДЫ ВОДОГРЕЙНЫХ КОТЛОВ, ОРГАНИЗАЦИЯ ВОДНО-ХИМИЧЕСКОГО РЕЖИМА И ХИМИЧЕСКОГО КОНТРОЛЯ

Дата введения 1991-07-01

1. УТВЕРЖДЕН Министерством тяжелого машиностроения СССР

2. РАЗРАБОТАН Научно-производственным объединением по исследованию и проектированию энергетического оборудования им. И.И.Ползунова (НПО ЦКТИ)

И.А.Кокошкин, канд. техн. наук (руководитель темы); В.Ю.Петров, канд. техн. наук; А.В.Цветков; Д.А.Тихомирова; Г.П.Сутоцкий, канд. техн. наук (консультант)

3. ВЗАМЕН ОСТ 108.030.47-81, РТМ 108.131.101-76 и РТМ 108.030.111-76

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта, подпункта, перечисления, приложения

1.5; 2.3.6; 2.3.9; 2.4.3; 3.4.7

2.1.3; 2.2.4; 3.2.3; 3.2.4

3.3.7; 3.5.11.3; 3.5.12.2

Настоящие методические указания (МУ) распространяются на стационарные прямоточные водогрейные котлы теплопроизводительностью от 2,33 МВт (2 Гкал/ч) до 209 МВт (180 Гкал/ч) с температурой сетевой воды на выходе из котла не более 200 °С, изготавливаемые предприятиями Минэнергомаша СССР по ГОСТ 21563-82.

МУ могут быть распространены на водогрейные котлы такого же типа, изготовленные ранее предприятиями отрасли и предприятиями других ведомств, а также на импортные котлы при условии получения соответствующего подтверждения от специализированной (головной) научно-исследовательской организации*.

Методические указания являются рекомендуемыми для предприятий - изготовителей водогрейных котлов, организаций, проектирующих котельные с этими котлами, и организаций, осуществляющих эксплуатацию этих котлов.

МУ устанавливают предельные значения показателей качества сетевой и подпиточной воды котлов, а также требования, предъявляемые к предприятиям - изготовителям котлов, организациям, проектирующим котельные, и предприятиям, эксплуатирующим котлы, по организации надежного, экономичного и экологически совершенного водно-химического режима (ВХР) и его химического контроля (ХК).

МУ не распространяются на пароводогрейные и чугунные водогрейные котлы.

На электростанциях Минэнерго СССР, где водогрейные котлы работают в качестве пиковых агрегатов вместе с бойлерными установками, при установлении норм качества воды, организации водно-химического режима и химического контроля должны учитываться "Правила технической эксплуатации" и "Нормы технологического проектирования" Минэнерго СССР.

Термины, используемые в МУ, и пояснения к ним приведены в приложении.

1. НОРМЫ КАЧЕСТВА СЕТЕВОЙ И ПОДПИТОЧНОЙ ВОДЫ

1.1. Значения нормируемых показателей сетевой и подпиточной воды должны устанавливаться в зависимости от расчетной температуры воды на выходе из котла и типа систем теплоснабжения и не должны превышать или выходить за пределы значений, указанных в табл.1 и в "Правилах устройства и безопасной эксплуатации паровых и водогрейных котлов" Госгортехнадзора СССР.

1.2. Нормы, приведенные в табл.1, относятся к котлам, в которых отсутствует эффект пристенного кипения воды и, как следствие, местное существенное повышение температуры стенки трубы. Возможность появления этого эффекта в конкретных условиях эксплуатации устанавливается в процессе пуска и наладки котла. В этих случаях принимаются меры для предотвращения указанного эффекта.

1.3. Качество подпиточной воды из напорной линии подпиточного насоса должно удовлетворять всем требованиям, предъявляемым к соответствующим показателям сетевой воды (см. табл.1). Должна быть исключена возможность загрязнения обратной сетевой воды растворенным кислородом и солями жесткости.

1.4. Предельная карбонатная жесткость сетевой и подпиточной воды с окисляемостью менее 6 мг/кг должна уточняться в первый период эксплуатации при наладке водогрейного котла.

1.5. Качество сетевой и подпиточной воды для открытых систем теплоснабжения должно дополнительно удовлетворять требованиям ГОСТ 2874-82.

1.6. Использование воды от непрерывной продувки паровых котлов, а также отмывочной воды от ионитных фильтров в обоснованных случаях допускается только для закрытых систем теплоснабжения.

1.7. Применение химических методов обескислороживания воды (например, сульфитирования) допускается только для закрытых систем теплоснабжения без непосредственного водоразбора.

Параметры гвс для котельной

Дата введения 1977-01-01

ВНЕСЕНЫ Главным архитектурно-планировочным управлением Мосгорисполкома

УТВЕРЖДЕНЫ постановлением Государственного комитета Совета Министров СССР по делам строительства от 30 марта 1976 г. N 31

Глава СНиП II-34-76 "Горячее водоснабжение" разработана Московским научно-исследовательским и проектным институтом типового и экспериментального проектирования ГлавАПУ Мосгорисполкома, ЦНИИЭП инженерного оборудования Госгражданстроя при Госстрое СССР, ВТИ им.Дзержинского Минэнерго СССР и институтом Ленпроект ГлавАПУ Ленгорисполкома.

Редакторы - инж. А.М.Кошкин (Госстрой СССР), канд. техн. наук М.М.Грудзинский (МНИИТЭП ГлавАПУ Мосгорисполкома), канд. техн. наук Л.А.Шопенский (ЦПИИЭП инженерного оборудования Госгражданстроя) и инж. И.Н.Крутова (ГПИ Сантехпроект Госстроя СССР)

1. ОБЩИЕ УКАЗАНИЯ

1.1. Настоящие нормы и правила должны соблюдаться при проектировании систем горячего водоснабжения для хозяйственно-бытовых нужд вновь строящихся и реконструируемых жилых, общественных, производственных зданий, а также вспомогательных зданий и помещений предприятий.

1.2. Системы горячего водоснабжения должны предусматриваться согласно глав СНиП по проектированию зданий и сооружений различного назначения и других нормативных документов, утвержденных в установленном порядке.

1.3. Настоящие нормы и правила не распространяются на проектирование тепловых пунктов, а также систем горячего водоснабжения для подачи горячей воды:

на технологические нужды предприятий, зданий и сооружений;

для лечебных процедур в зданиях лечебно-профилактических учреждений и других зданиях.

1.4. При проектировании наружных трубопроводов систем централизованного горячего водоснабжения (способ прокладки, тепловая изоляция, антикоррозионная защита, выбор арматуры, а также материала труб) и сооружений на них (смотровые колодцы, компенсаторы и др.) следует выполнять требования, предусмотренные главой СНиП по проектированию тепловых сетей.

1.5. В проектах систем централизованного горячего водоснабжения зданий и сооружений различного назначения должно быть указано, что в целях обеспечения надежности их работы следует производить регулировку и наладку систем для определения оптимального режима работы насосов при водоразборе в режиме циркуляции и при отсутствии циркуляции горячей воды в трубопроводах, для определения необходимой периодичности чистки водонагревателей, а также для соответствующей настройки приборов автоматизации принятых в проекте систем.

1.6. Электрические устройства систем горячего водоснабжения должны отвечать требованиям Правил устройства электроустановок (ПУЭ).

1.7. Электроприемники систем горячего водоснабжения следует принимать не выше 2-й категории.

2. СИСТЕМЫ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

2.1. В зависимости от режима и объема потребления горячей воды для хозяйственно-бытовых нужд зданий и сооружений различного назначения следует предусматривать системы централизованного или местного горячего водоснабжения.

2.2. Если потребителям необходима горячая вода питьевого качества и для технологических нужд, то при проектировании систем горячего водоснабжения допускается предусматривать подачу горячей воды одновременно на хозяйственно-бытовые и технологические нужды (например, при проектировании предприятий бытового обслуживания населения).

2.3. При проектировании систем горячего водоснабжения производственных зданий и помещений предприятий следует предусматривать возможность использования тепла от технологических установок и оборудования.

2.4. Не допускается соединение трубопроводов систем горячего водоснабжения с трубопроводами, подающими горячую воду непитьевого качества для технологических нужд, а также непосредственный контакт с технологическим оборудованием и установками горячей воды, подаваемой потребителям с возможным изменением ее качества.

СИСТЕМЫ ЦЕНТРАЛИЗОВАННОГО ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

2.5. При централизованном теплоснабжении подогрев воды в системах централизованного горячего водоснабжения следует предусматривать в центральных или индивидуальных тепловых пунктах теплоносителем, подаваемым тепловыми сетями.

При проектировании систем централизованного горячего водоснабжения следует предусматривать присоединение их при двухтрубных водяных тепловых сетях открытых систем теплоснабжения непосредственно к подающему и обратному трубопроводам, а при закрытых системах теплоснабжения - через водонагреватели.

Присоединение систем централизованного горячего водоснабжения к паровым тепловым сетям следует предусматривать через пароводяные нагреватели.

Выбор схемы подогрева воды для систем централизованного горячего водоснабжения следует производить в соответствии со СНиП по проектированию тепловых сетей.

2.6. Системы централизованного горячего водоснабжения следует проектировать, предусматривая размещение пунктов подогрева воды, как правило, в центре района потребления горячей воды.

2.7. Для зданий высотой более 50 м следует предусматривать разделение систем централизованного горячего водоснабжения на зоны по вертикали.

Высоты зон следует определять в соответствии со СНиП по проектированию внутреннего водопровода и канализации зданий.

2.8. При проектировании систем централизованного горячего водоснабжения необходимо предусматривать циркуляцию горячей воды в водоразборных (подающих) трубопроводах, объем которой следует определять в соответствии с указаниями раздела 5 настоящих норм.

Допускается не предусматривать циркуляцию горячей воды в системах централизованного горячего водоснабжения с регламентированным по времени потреблением горячей воды, если температура ее в местах водоразбора не будет снижаться в это время ниже установленной в п.3.8 настоящих норм.

2.9. В ванных комнатах и душевых зданий и помещений учреждений, указанных в прил.1, следует предусматривать установку постоянно обогреваемых полотенцесушителей.

Присоединение полотенцесушителей к системам централизованного горячего водоснабжения следует предусматривать только по схеме, которая обеспечивает постоянное обогревание полотенцесушителей протекающей горячей водой.

Вариант присоединения полотенцесушителей к системам следует обосновывать технико-экономическим расчетом.

Примечание. Если в здания и помещения, указанные в пп.1, 3, 4, 5 и 6 прил.1, предусматривается подача горячей воды системами централизованного горячего водоснабжения с непосредственным водозабором из трубопроводов тепловой сети, то допускается предусматривать присоединение полотенцесушителей к самостоятельным круглогодичного действия системам отопления ванных и душевых, которые следует проектировать в соответствии с требованиями СНиП по проектированию отопления, вентиляции и кондиционирования воздуха.

2.10. Системы горячего водоснабжения следует проектировать с нижней разводкой трубопроводов.

Предусматривать верхнюю разводку трубопроводов допускается для систем горячего водоснабжения с естественной циркуляцией воды, а также если они разделены на зоны по вертикали.

Схему разводки трубопроводов следует определять с учетом планировочных решений зданий и сооружений, этажности их и местных условий строительства.

2.11. Для систем централизованного горячего водоснабжения, обслуживающих группу зданий и сооружений или здания большой протяженности (жилые здания более 5 секций, общественные и другие здания протяженностью более 150 м), допускается предусматривать объединение трубопроводов водоразборных и циркуляционных стояков в секционные узлы и присоединение группы трубопроводов циркуляционных стояков к распределительному циркуляционному трубопроводу в одной точке.

Использование трубопроводов циркуляционных стояков систем в качестве водоразборных предусматривать не допускается.

2.12. Для зданий высотой 9 этажей и более следует предусматривать закольцовывание трубопроводов водоразборных стояков поверху перемычками и присоединение их к трубопроводу общего циркуляционного стояка.

Примечание. Разрешается не предусматривать закольцовывание трубопроводов водоразборных стояков при установке полотенцесушителей на циркуляционных стояках, а также в жилых, общественных зданиях, вспомогательных зданиях и помещениях предприятий без чердаков, если отсутствует возможность прокладки трубопроводов закольцовывающих перемычек по нежилым и нерабочим помещениям.

2.13. В душевых с количеством душевых сеток более трех распределительный трубопровод следует, как правило, предусматривать закольцованным.

Одностороннюю подачу горячей воды допускается предусматривать при коллекторном распределении воды.

2.14. Установку баков-аккумуляторов в системах централизованного горячего водоснабжения следует предусматривать в соответствии с разделом 6 настоящих норм.

2.15. Установку приборов для учета расхода тепла (или воды) в системах централизованного горячего водоснабжения следует предусматривать в системах, присоединяемых:

а) к закрытым системам теплоснабжения - на трубопроводах, подающих холодную воду в водонагреватели;

б) к открытым системам теплоснабжения - на подающих трубопроводах после смесительного узла и на общих циркуляционных трубопроводах.

Примечание. Допускается не предусматривать установку приборов для учета расходов воды и тепла в системах централизованного горячего водоснабжения с непосредственным водоразбором из трубопроводов тепловой сети, при установке этих приборов на подающем и обратном трубопроводах тепловой сети, обслуживающей группу зданий.

2.16. Мощность системы централизованного горячего водоснабжения по теплу и горячей воде (количество обслуживаемых потребителей - зданий, предприятий, сооружений, объектов и т.д.) следует выбирать в зависимости от данных технико-экономических обоснований.

СИСТЕМЫ МЕСТНОГО ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

2.17. Системы местного горячего водоснабжения (когда подогрев воды осуществляется на месте ее потребления) следует предусматривать, как правило, для зданий и сооружений при отсутствии централизованного теплоснабжения, а также для объектов, удаленных от источников централизованного теплоснабжения, и когда сооружение тепловых сетей к этим объектам экономически нецелесообразно.

2.18. Подогрев воды в системах местного горячего водоснабжения следует предусматривать в паровых, водяных и газовых водонагревателях, а также в водонагревателях на твердом и жидком топливе или электрических нагревателях.

Примечания 1. Область применения газовых водонагревателей для систем местного горячего водоснабжения следует устанавливать, руководствуясь СНиП по проектированию газоснабжения производственных, жилых и общественных зданий.

2. Для подогрева воды в банях и прачечных допускается предусматривать установку контактных экономайзеров и других контактных водонагревателей, допущенных к применению Главным санитарно-эпидемиологическим управлением Минздрава СССР.

3. Применение электрических водонагревателей в системах местного горячего водоснабжения должно быть обосновано технико-экономическим расчетом.

Возможность отпуска электроэнергии для подогрева воды должна быть согласована в установленном порядке.

2.19. Циркуляцию горячей воды в системах местного горячего водоснабжения предусматривать, как правило, не следует.

2.20. Баки-аккумуляторы следует предусматривать в системах местного горячего водоснабжения в соответствии с требованиями раздела 6 настоящих норм.

2.21. Установку приборов для учета тепла (или воды) следует предусматривать в системах местного горячего водоснабжения только при необходимости этого учета.

3. КАЧЕСТВО И ТЕМПЕРАТУРА ВОДЫ

3.1. Горячая вода, подаваемая потребителям, должна соответствовать ГОСТ 2874-73 "Вода питьевая".

Примечание. Использование для горячего водоснабжения на хозяйственно-бытовые нужды потребителей геотермальных вод, не подвергшихся необходимой подготовке, допускается предусматривать при условии соответствия качества этих вод ГОСТ 2874-73.

3.2. В проектах систем централизованного горячего водоснабжения, присоединяемых к закрытым системам теплоснабжения, в которых холодная вода питьевого качества подается из городского (поселкового) водопровода, следует предусматривать в зависимости от качества используемой воды мероприятия для защиты от коррозии и накипеобразования внутренних поверхностей трубопроводов и оборудования.

3.3. Противокоррозионную и противонакипную обработку воды надлежит, в зависимости от качества воды и материала труб трубопроводов систем централизованного горячего водоснабжения, предусматривать в соответствии с: прил.2; СНиП по проектированию тепловых сетей; результатами проверки технико-экономической целесообразности снижения коррозионных свойств исходной воды на водопроводных станциях.

Противокоррозионная и противонакипная обработка воды, подаваемой потребителям, не должна ухудшать ее качества.

Реагенты и материалы, применяемые для противокоррозионной и противонакипной обработки воды, должны соответствовать требованиям санитарно-эпидемиологической службы.

3.4. Для противокоррозионной обработки воды на пунктах приготовления горячей воды следует применять деаэрацию или ингибиторы коррозии (силикат натрия, магномассу и др.).

Примечание. Использование магномассы для обработки воды допускается предусматривать при условии, если загрузка фильтров будет осуществляться специальной гранулированной магномассой.

3.5. Противонакипную обработку воды на пунктах приготовления горячей воды следует предусматривать методом магнитной обработки воды.

Примечания: 1. Магнитную обработку воды следует применять при напряженности магнитного поля не более 2000 эрстед и при обеспечении контроля за напряженностью.

2. Применение магнитной обработки для артезианских вод, содержащих более 0,3 мг/кг железа, следует предусматривать при условии предварительного обезжелезивания воды с помощью аэрации и последующего фильтрования ее через механические сульфоугольные фильтры.

3.6. При проектировании систем централизованного горячего водоснабжения для отдельных зданий допускается не предусматривать мероприятия по противокоррозионной и противонакипной обработке воды, при условии, что прокладываемые трубопроводы будут доступны для ремонта.

3.7. Необходимость умягчения горячей воды или другой ее обработки, кроме указанной в настоящих нормах, следует устанавливать по нормам технологического проектирования.

Умягчение горячей воды следует предусматривать в соответствии со СНиП по проектированию наружных сетей и сооружений водоснабжения.

3.8. Температуру горячей воды в местах водоразбора следует предусматривать:

Читайте также: