Электростанции котельные насосные установки входят в подсистему

Обновлено: 19.05.2024

28. Производственный цикл

Производственный цикл – это законченный круг производственных операций при изготовлении изделия. Вследствие того что производственный процесс протекает во времени и пространстве, производственный цикл можно измерить длиной пути движения изделия и его комплектующих элементов, а также временем, в течение которого изделие проходит весь путь обработки. Измерение производственного цикла с помощью длины пути ведется от первого рабочего места, где началась обработка изделия и его компонентов, до последнего.
Длина производственного цикла – это не линия, а площадь, на которой размещаются машины, оборудование, инвентарь. На практике в большинстве случаев определяется не длина пути, а площадь и объем помещения, в котором размещается производство.
Продолжительность производственного цикла во времени – интервал календарного времени от начала первой производственной операции до окончания последней.
Время технологического обработки (рабочий период) – это время, в течение которого производится непосредственное воздействие на предмет труда либо самим рабочим, либо машинами и механизмами под его управлением, а также время естественных технологических процессов, которые происходят без участия людей и техники.
Время естественных технологических процессов – это время, в течение которого предмет труда изменяет свои характеристики без непосредственного воздействия человека или техники. Для ускорения производства многие естественные процессы осуществляются в искусственно созданных условиях (например, сушка в сушильных камерах).
Время перерывов в работе – это время, в течение которого не производится никакого воздействия на предмет труда и не происходит изменения его качественной характеристики, но продукция еще не является готовой и процесс производства не закончен. Различают регламентированные и нерегламентированные перерывы.
Длительность производственного цикла во многом зависит от порядка движения изделий в процессе их обработки.
Последовательное движение обрабатываемых изделий предполагает, что при изготовлении заданной партии каждая последующая операция начинается только после завершения предыдущей операции. Последовательное движение предметов труда характеризуется наибольшей продолжительностью производственного цикла и отличается относительно простой организацией.
При последовательном движении предметов труда каждая отдельная деталь пролеживает в ожидании обработки всей заданной партии деталей.
Параллельно-последовательное движение предметов труда характеризуется тем, что выполнение последующих операций начинается до окончания обработки всей партии изделий на предыдущей операции. Этот вид движения предметов труда применяется в том случае, когда обработка ведется параллельно на многих рабочих местах.
Параллельно-прямоточное движение предметов труда в процессе производства – каждый отдельный компонент изделия немедленно передается после окончания данной операции для дальнейшей обработки независимо от готовности партии изделий в целом. В данном случае длительность производственного цикла минимальна.
Основными факторами сокращения длительности производственных процессов являются: повышение уровня блочности для изделий крупносерийного и массового производства; упрощение и совершенствование технологических процессов изготовления изделия; унификация и стандартизация составных частей изделия, его конструктивных элементов, элементов технологических процессов, оборудования, оснастки, организации производства; углубление подетальной, технологической и функциональной специализации на основе унификации и увеличения программы выпуска изделий и его составных частей и др.

29. Организация энергетического хозяйства предприятия

Промышленные предприятия в процессе производства потребляют энергию и энергоносители различных видов и параметров: электроэнергию, газообразное, жидкое и твердое топливо, горячую и холодную воду, пар, сжатый воздух, кислород, ацетилен и т. д. Для поддержания нормального хода производственного процесса на каждом предприятии требуется организация устойчивого энергоснабжения. Эта задача возложена на энергетическое хозяйство.
Основное назначение энергетического хозяйства предприятия – бесперебойное снабжение производства всеми видами энергии при соблюдении техники безопасности, выполнении требований к качеству и экономичности энергоресурсов.
Основные задачи энергетического хозяйства
предприятия:
1) определение потребности предприятия в энергоресурсах и наиболее экономичных способов ее покрытия;
2) организация устойчивого энергоснабжения предприятия и его подразделений в точном соответствии с потребностью;
3) рациональная организация эксплуатации, технического обслуживания и ремонта энергетического оборудования и сетей на предприятии;
4) разработка и проведение мероприятий, направленных на сокращение энергопотребления, экономию энергии и всех видов топлива, использование вторичных энергоресурсов и нетрадиционных источников энергии, сокращение затрат на энергоснабжение предприятия и содержание энергохозяйства.
Подсистемы энергетического хозяйства:
1) генерирующая подсистема (электростанции, котельные, газогенераторные установки и компрессорные станции, насосные установки и т. д.);
2) передающая и распределительная подсистема (трубопроводы и сети, распределительные устройства и трансформаторные подстанции);
3) потребляющая подсистема (энергоприемники основного и вспомогательного производства и непроизводственные потребители).
Отличительной особенностью энергоснабжения является отсутствие возможности создания существенных запасов энергии (не путать с запасами энергоносителей), что вынуждает производить и потреблять энергию одновременно, а также обеспечивать соразмерность по величине ее производства и потребления. Режим производства энергии в каждый момент времени зависит от режима ее потребления. Важной особенностью организации энергетического хозяйства предприятия является недопустимость сбоев в энергопитании технологических средств, участвующих в производстве товарной продукции: энергетическое хозяйство должно обеспечивать надежность и бесперебойность энергоснабжения. Объем и структура энергопотребления промышленного предприятия, организация его энергоснабжения зависят от энергоемкости производства, производственной мощности и размера предприятия, вида выпускаемой продукции и характера технологических процессов.
Энергоснабжение может быть организовано в трех формах.
1. Внутреннее энергоснабжение применяется, когда в силу экономических или иных причин предприятие считает целесообразным полностью обеспечивать себя энергией всех видов от собственных генерирующих установок и станций.
2. Внешнее энергоснабжение предполагает полное удовлетворение потребностей предприятия в энергии всех видов за счет ее закупки у специализированных поставщиков и посредников энергоснабжения, обеспечивающих ее поставку точно к месту потребления на предприятии.
3. Комбинированное энергоснабжение в настоящее время является основным для большинства промышленных предприятий: электроэнергию, тепло, воду и газ они получают от территориальных энергосистем и сетей, а сжатый воздух, ацетилен и все остальное – от собственных генерирующих установок и станций.
Организационно в составе энергетического хозяйства предприятия выделяются подсистемы двух уровней – общезаводская и цеховая.

30. Организация инструментального хозяйства

В системе технического обслуживания производства на предприятиях промышленности ведущую роль играет инструментальное обеспечение. Обеспечение производства всеми видами инструмента и другой технологической оснастки осуществляет инструментальное хозяйство предприятия.
Инструментальное хозяйство предприятия представляет собой совокупность отделов и цехов, занятых проектированием, приобретением, изготовлением, ремонтом и восстановлением технологической оснастки, а также ее учетом, хранением и выдачей в цеха и на рабочие места.
Назначение инструментального хозяйства предприятия – своевременное и в полном объеме удовлетворение потребностей производственных подразделений предприятия в технологической оснастке с минимальными затратами.
Инструментальное хозяйство предприятия включает ряд общезаводских и цеховых подразделений, которые под руководством инструментального отдела (управления) осуществляют закупки, проектирование и изготовление, хранение, доставку, эксплуатацию, восстановление и утилизацию оснастки. В цехах, как правило, имеются бюро инструментального хозяйства (БИХ).
К общезаводским подразделениям относятся инструментальные цеха (или цех), центральный инструментальный склад (ЦИС), база восстановления инструмента (может быть развернута в инструментальном цехе), измерительные лаборатории. К цеховым подразделениям относятся цеховые инструментально-раздаточные кладовые (ИРК), заточные и ремонтные отделения (участки) в цехах. Состав инструментального хозяйства зависит от типа производства и размера предприятия, особенностей его производственной структуры, применяемых технологических процессов и оборудования. На крупных заводах может быть несколько инструментальных цехов с предметной специализацией, обслуживающих потребности литейных, кузнечных и механических цехов основного производства. На небольших заводах может быть один инструментальный цех.
Централизованное управление инструментальным хозяйством предприятия осуществляет инструментальный отдел, подчиненный главному технологу или непосредственно главному инженеру.
Выдача инструмента цехам производится в соответствии с их потребностью согласно нормам расхода и планам производства. Могут устанавливаться лимиты для каждого цеха, тогда выдача инструмента осуществляется в пределах установленного лимита. При постоянстве потребности инструмент должен выдаваться в том количестве, в котором изношенный или поломанный инструмент был бы сдан цехом на базу восстановления или в утиль в соответствии с актами убыли (поломки). Отступления от этого порядка допускаются в случае необходимости пополнения оборотного фонда цеха или при получении цехом инструмента впервые.

Что такое электростанция. Оборудование электростанций. Энергетика. Энергосистема

генерация электроэнергии. Электростанция. Что такое электростанция. Оборудование электростанций. Энергетика. Энергосистема

Электрическая станция - совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.

Существует множество типов электростанций. Отличия заключаются в технических особенностях и исполнении, а также в виде используемого источника энергии. Но несмотря на все различия большинство электростанций используют для своей работы энергию вращения вала генератора.

Станции разных типов объединены в Единую энергетическую систему, позволяющую рационально использовать их мощности, снабжать всех потребителей.

Основное оборудование электростанций

К основному оборудованию электростанций можно отнести:

  • генераторы;
  • турбины;
  • котлы;
  • трансформаторы;
  • распределительные устройства;
  • двигатели;
  • выключатели;
  • разъединители;
  • линии электропередач;
  • средства автоматики и релейной защиты

Энергосистемы

Энергосистемы - совокупность энергетических ресурсов всех видов, методов и средств их получения, преобразования, распределения и использования, обеспечивающих снабжение потребителей всеми видами энергии.

Что входит в энергосистему

В энергосистемы входят:

  • электроэнергетическая система;
  • система нефте- и газоснабжения;
  • система угольной промышленности;
  • ядерная энергетика;
  • нетрадиционная энергетика.

Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов — в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов

Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой.

В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях связывают между собой ТЭЦ и котельные.

Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико-экономические преимущества:

  • существенное снижение стоимости электро- и теплоэнергии;
  • значительное повышение надёжности электро- и теплоснабжения потребителей;
  • повышение экономичности работы различных типов электростанций;
  • снижение необходимой резервной мощности электростанций.

Энергетика

Энергетика - область общественного производства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Энергетика каждого государства функционирует в рамках созданных соответствующих энергосистем.

Её целью является обеспечение производства энергии путём преобразования первичной, природной, энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:

  • получение и концентрация энергетических ресурсов, примером может послужить добыча, переработка и обогащение ядерного топлива;
  • передача ресурсов к энергетическим установкам, например доставка мазута на тепловую электростанцию;
  • преобразование с помощью электростанций первичной энергии во вторичную, например химической энергии угля в электрическую и тепловую энергию;
  • передача вторичной энергии потребителям, например по линиям электропередачи.

Энергетика как наука, в соответствии с номенклатурой специальностей научных работников, утверждённой Министерством образования и науки Российской Федерации, включает следующие научные специальности:

  • Энергетические системы и комплексы;
  • Электрические станции и электроэнергетические системы;
  • Ядерные энергетические установки;
  • Промышленная теплоэнергетика;
  • Энергоустановки на основе возобновляемых видов энергии;
  • Техника высоких напряжений;
  • Тепловые электрические станции, их энергетические системы и агрегаты.

Электроэнергетика

Электроэнергетика — это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи. Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей. Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов.

Электроэнергетику принято делить натрадиционную и нетрадиционную.

Традиционная электроэнергетика

Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единична электрическая мощность очень часто превышает 1000 Мвт. Традиционная электроэнергетика делится на несколько направлений.

Тепловая энергетика (теплоэнергетика)

В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС), использующих для этого химическую энергию органического топлива.

Тепловые электростанции делятся на:

  • Паротурбинные электростанции, на которых энергия преобразуется с помощью паротурбинной установки;
  • Газотурбинные электростанции, на которых энергия преобразуется с помощью газотурбинной установки;
  • Парогазовые электростанции, на которых энергия преобразуется с помощью парогазовой установки.

Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе нефти вырабатывается 39% всей электроэнергии мира, на базе угля - 27%, газа - 24%, то есть всего 90% от общей выработки всех электростанций мира. Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов - газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.

Гидроэнергетика

В этой отрасли электроэнергия производится на гидроэлектростанциях (ГЭС), использующих для этого энергию водного потока.

ГЭС преобладает в ряде стран — в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков.

Ядерная энергетика

Отрасль, в которой электроэнергия производится на атомных электростанциях (АЭС), использующих для этого энергию управляемой цепной ядерной реакции, чаще всего урана и плутония.

По доле АЭС в выработке электроэнергии первенствует Франция, около 80 %. Преобладает она также в Бельгии, Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США, Франция и Япония.

Нетрадиционная электроэнергетика (Альтернативная энергетика)

Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство (например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км²) и малая единичная мощность.

Направления нетрадиционной энергетики:

  • Малые гидроэлектростанции
  • Ветровая энергетика
  • Геотермальная энергетика
  • Солнечная энергетика
  • Биоэнергетика
  • Установки на топливных элементах
  • Водородная энергетика
  • Термоядерная энергетика.

Также можно выделить важное из-за своей массовости понятие — малая энергетика, этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика, распределённая энергетика, автономная энергетика и др. Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции (среди малых электростанций их подавляющее большинство, например в России — примерно 96 %), газопоршневые электростанции, газотурбинные установки малой мощности на дизельном и газовом топливе.

Электрические сети

Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии. Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.

Электрические сети современных энергосистем являются многоступенчатыми, то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям. Также для современных электрических сетей характерна многорежимность, под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях. Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными.

Теплоснабжение

Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей. Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами. Такие условия могут быть реализованы в большинстве стран мира только при постоянном подводе к объекту отопления (теплоприёмнику) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80-90°C. Также для различных технологических процессов промышленных предприятий может требоваться так называемый производственный пар с давлением 1—3 МПа.

В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:

  • источника тепла, например котельной;
  • тепловой сети, например из трубопроводов горячей воды или пара;
  • теплоприёмника, например батареи водяного отопления.

Централизованное теплоснабжение

Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.).

Для централизованного теплоснабжения используются два вида источников:

  • Теплоэлектроцентрали (ТЭЦ), которые также могут вырабатывать и электроэнергию;
  • Котельные, которые делятся на:
    • Водогрейные;
    • Паровые.

    Децентрализованное теплоснабжение

    Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует. Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал/ч (1,163 МВт). Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев.

    Виды децентрализованного отопления:

    • Малыми котельными;
    • Электрическое, которое делится на:
      • Прямое;
      • Аккумуляционное;

      Тепловые сети

      Тепловая сеть — это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.

      От коллекторов прямой сетевой воды с помощью магистральных теплопроводов горячая вода подаётся в населённые пункты. Магистральные теплопроводы имеют ответвления, к которым присоединяется разводка к тепловым пунктам, в которых находится теплообменное оборудование с регуляторами, обеспечивающими снабжение потребителей тепла и горячей воды. Тепловые магистрали соседних ТЭЦ и котельных для повышения надёжности теплоснабжения соединяют перемычками с запорной арматурой, которые позволяют обеспечить бесперебойное теплоснабжение даже при авариях и ремонтах отдельных участков тепловых сетей и источников теплоснабжения. Таким образом, тепловая сеть любого города является сложнейшим комплексом теплопроводов, источников тепла и его потребителей.

      Энергетическое топливо

      Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.

      Органическое топливо

      В зависимости от агрегатного состояния органическое топливо делится на газообразное, жидкое и твёрдое, каждое из них в свою очередь делится на естественное и искусственное. Доля такового топлива в мировом энергобалансе составляла в 2000 году около 65%, из которых 39% приходились на уголь, 16% на природный газ, 9% на жидкое топливо(2000г). В 2010 году по данным BP доля ископаемого органического топлива 87%, в том числе: нефть 33,6%, уголь 29,6% газ 23,8%. Tо же по данным «Renewable21» 80,6%, не считая традиционной биомассы 8,5%.

      Газообразное

      Естественным топливом является природный газ, искусственным:

      • Генераторный газ;
      • Коксовый газ;
      • Доменный газ;
      • Продукты перегонки нефти;
      • Газ подземной газификации;
      • Синтез-газ.

      Жидкое

      Естественным топливом является нефть, искусственным называют продукты его перегонки:

      • Бензин;
      • Керосин;
      • Соляровое масло;
      • Мазут.

      Твёрдое

      Естественным топливом являются:

      • Торф;
      • Бурый уголь;
      • Каменный уголь;
      • Антрацит;
      • Горючий сланец;
      • Дрова;
      • Древесные отходы;
      • Топливные брикеты;
      • Топливные гранулы.

      Искусственным твёрдым топливом являются:

      • Древесный уголь;
      • Кокс и полукокс;
      • Углебрикеты;
      • Отходы углеобогащения.

      Ядерное топливо

      В использовании ядерного топлива вместо органического состоит главное и принципиальное отличие АЭС от ТЭС.

      Ядерное топливо получают из природного урана, который добывают:

      • В шахтах (Франция, Нигер, ЮАР);
      • В открытых карьерах (Австралия, Намибия);
      • Способом подземного выщелачивания (США, Канада, Россия).

      Для использования на АЭС требуется обогащение урана, поэтому его после добычи отправляют на обогатительный завод, после переработки на котором 90% побочного обеднённого урана направляется на хранение, а 10% обогащается до нескольких процентов (3—5% для энергетических реакторов). Обогащённый диоксид урана направляется на специальный завод, где из него изготавливают цилиндрические таблетки, которые помещают в герметичные циркониевые трубки длиной почти 4 м, ТВЭЛы (тепловыделяющие элементы). По нескольку сотен ТВЭЛов для удобства использования объединяют в ТВС, тепловыделяющие сборки.

      Котлы тепловых электростанций и защита атмосферы


      Систематизированы и обобщены сведения о первой части технологического цикла тепловой электростанции: подготовке различных видов топлива к сжиганию, организации топочного процесса, получении перегретого пара в котельных установках различных конструкций. Приведены особенности эксплуатации паровых котлов на разных видах органического топлива. Учитывая всё возрастающее значение вопросов охраны окружающей среды, авторы, используя результаты собственных исследований и достижения отечественных и зарубежных энергетиков, подробно рассказывают о методах и конструкциях аппаратов, предназначенных для защиты атмосферы от токсичных и парниковых газов, а также золовых частиц, выбрасываемых в атмосферу с дымовыми газами котлов. Пособие предназначено для студентов энергетических специальностей технических вузов, инженерно-технического персонала инжиниринговых компаний и тепловых электростанций, а также слушателей курсов повышения квалификации инженеров-теплотехников.

      Оглавление

      • Введение
      • Глава 1. Котельные установки. Назначение и классификация котлов. Особенности котлов для разных мощностей, параметров и видов.
      • Глава 2. Органическое топливо и особенности его использования на тепловых электростанциях

      Приведённый ознакомительный фрагмент книги Котлы тепловых электростанций и защита атмосферы предоставлен нашим книжным партнёром — компанией ЛитРес.

      Глава 1. Котельные установки. Назначение и классификация котлов. Особенности котлов для разных мощностей, параметров и видов топлива

      Паровые котлы тепловых электростанций — это устройства, в которых химическая энергия органического топлива, превращаясь в тепловую энергию (перегретый пар), используется затем для получения механической энергии на валу турбогенератора и, соответственно, электрической энергии. Если для получения механической энергии применяется не конденсационная, а теплофикационная или противодавленческая турбина, то потребителю поступает ещё и тепловая энергия в виде технологического пара (рис. 1.1).


      Рис. 1.1. Получение электроэнергии на угольной ТЭС: 1 — угольная шахта; 2 — паровой котел; 3 — паровая турбина, 4 — электрогенератор; 5 — повышающий трансформатор; 6 — конденсатор; 7 — канал охлаждающей воды; 8 — электрофильтр; 9 — дымовая труба

      Кроме паровых котлов, на некоторых электростанциях можно встретить пиковые водогрейные котлы, в которых, опять же за счет сжигания органического топлива, вода только нагревается, не превращаясь в пар. Горячая вода может быть использована для технологических целей, но главное её назначение — отопление жилых и производственных помещений в холодное время года.

      Таким образом, все котлы используют одно и то же рабочее тело — воду, но делятся на паровые и водогрейные. Паровые котлы, в свою очередь, можно разделить на промышленные (в них получают насыщенный или слегка перегретый пар для технологических нужд и отопления) и энергетические, перегретый пар которых используют в паровых турбинах.

      В дальнейшем мы будем рассматривать только паровые котлы тепловых электростанций, то есть современные агрегаты для получения перегретого пара за счет сжигания органического топлива. Речь пойдет не только о котлах, но и котельных установках, в состав которых, кроме собственно котлов, входят вспомогательные устройства и механизмы, обеспечивающие нормальную работу основного агрегата.

      Технология получения перегретого пара предполагает последовательность нескольких физических процессов. Всё начинается с подогрева питательной воды, которая поступает в котел при определенном давлении, создаваемом питательным насосом. Этот процесс происходит при однократном прохождении воды через трубы конвективной поверхности нагрева, называемой экономайзером (рис. 1.2). Подробнее о конструкции и условиях эксплуатации этого элемента котла рассказано в главе 4 .

      После экономайзера вода поступает в барабан, а затем в испарительные поверхности нагрева, которые располагают, как правило, в топочных камерах паровых котлов. Здесь происходит образование пара, который затем поступает в пароперегреватель (подробнее см. в гл. 4 ). Через обогреваемые дымовыми газами трубы пароперегревателя пар проходит однократно, а парообразующие поверхности нагрева могут быть разными. В котлах барабанного типа пароводяная смесь многократно проходит через обогреваемые трубки топочных экранов за счет естественной циркуляции или в результате многократно-принудительной циркуляции (с использованием специального насоса). В котлах, которые называют прямоточными, пароводяная смесь проходит через испарительные поверхности нагрева однократно, за счет давления, создаваемого питательным насосом.

      Остановимся подробнее на особенностях процесса получения пара в котлах с естественной циркуляцией и в прямоточных котлах.

      На рис. 1.2 приведена схема барабанного котла с естественной циркуляцией, выполненного по традиционной П-образной схеме (о других схемах компоновки паровых котлов будет рассказано ниже). Питательная вода, как показано на этой схеме, поступает в экономайзер, расположенный в конвективной шахте. Экономайзер — первая часть водопарового тракта котла: нагретая в нем вода поступает в барабан, который соединен как с необогреваемыми опускными, так и с обогреваемыми подъемными трубами и является замыкающим звеном контура циркуляции. По необогреваемым трубам котловая вода опускается к коллекторам, размещенным у нижней кромки топочной камеры. Из этих коллекторов вода поступает в вертикальные трубки топочных экранов. Именно здесь благодаря мощному тепловому потоку от сгорания органического топлива начинается собственно процесс парообразования. При однократном прохождении через топочные экраны испаряется не вся вода: в барабан возвращается пароводяная смесь. Доля пара в данной смеси (паросодержание) характеризует тепловую нагрузку испарительной поверхности нагрева. Величину, обратную этой доле, принято называть кратностью циркуляции (К). В объеме барабана происходит разделение (сепарация) воды и пара (подробнее см. в гл. 8 ). Пар выходит во входной коллектор пароперегревателя, а котловая вода вновь попадает в опускные трубы циркуляционного контура.


      Рис. 1.2. Схема барабанного котла с естественной циркуляцией, работающего на пылевидном топливе: 1 — горелки; 2 — топочная камера; 3 — топочный экран; 4 — барабан; 5 — опускные трубы; 6 — фестон; 7 — пароперегреватель; 8 — конвективный газоход; 9 — экономайзер; 10 — трубчатый воздухоподогреватель; 11 — нижние коллекторы топочных экранов

      Подъемно-опускное движение по контуру естественной циркуляции (то есть по необогреваемым опускным и обогреваемым подъемным трубам) происходит вследствие разности плотностей котловой воды и пароводяной смеси. Подробнее о закономерностях естественной циркуляции рассказано в главе 6 , посвященной гидродинамике водопарового тракта котельной установки.

      Для повышения надежности циркуляции на барабанных котлах повышенного давления (17–18 МПа) применяют принудительное движение пароводяной смеси в топочных экранах (рис. 1.3,б). Как показано на приведенных схемах, котел с принудительной циркуляцией (controlled circulation) отличается от котла с естественной циркуляцией (natural circulation) (рис. 1.3,а) наличием специального насоса для котловой воды.

      На рис. 1.3,в представлена схема прямоточного котла (once through).

      Прямоточные котлы отличаются от котлов с естественной и принудительной циркуляцией отсутствием барабана и однократным движением нагреваемой среды через испарительные поверхности нагрева. Можно сказать, что кратность циркуляции в прямоточных котлах К = 1, а гидравлическая система является разомкнутой (в отличие от барабанных котлов с естественной циркуляцией, гидравлическая система которых — замкнутая).


      Рис. 1.3. Схема движения воды и водяного пара: а — барабанный котел с естественной циркуляцией; б — барабанный котел с принудительной циркуляцией; в — прямоточный котел; 1 — питательный насос; 2 — экономайзер; 3 — верхний барабан котла; 4 — опускные трубы; 5 — испарительные подъемные трубы; 6 — пароперегреватель; 7 — циркуляционный насос; 8 — нижний коллектор

      Еще одна особенность прямоточных котлов — отсутствие постоянной (фиксированной) границы между экономайзерной, парообразующей и пароперегревательной поверхностями нагрева. По мере повышения давления в водопаровом тракте котла сокращается испарительная зона котла, и после достижения критического давления в котле остаются практически только экономайзерная и пароперегревательная части, а между ними сохраняется только зона фазового перехода.

      В последние годы в Европе, США и Японии разрабатывают или уже появились котлы, рассчитанные на давление 30 и даже 35 МПа. Для таких котлов используют новый термин: «ультрасверхкритическое давление».

      Большое значение имеет конфигурация котла, то есть взаимное расположение радиационных и конвективных поверхностей нагрева. Чаще всего встречаются котлы с П-образной компоновкой, когда топочная камера является первым газоходом (обычно с восходящим движением продуктов сгорания), а конвективные поверхности нагрева располагаются во втором, опускном газоходе (рис. 1.4,а). Топочную камеру с конвективной шахтой соединяет горизонтальный газоход, в котором обычно размещаются конвективные пакеты пароперегревателя или промпароперегревателя (при наличии в тепловой схеме энергоблока промежуточного перегрева пара). Важным достоинством такой компоновки является нижнее расположение мест ввода топлива в котел и выхода дымовых газов. Это позволяет расположить тягодутьевые механизмы и размольные устройства пылеугольных котлов на нулевой отметке.


      Рис. 1.4. Схемы компоновок котлов: а — П-образная; б — Т-образная; в — башенная; г — U-образная (инвертная); д — плечевая

      Основной недостаток П-образной компоновки — наличие поворотов на выходе из топки и на входе в опускную шахту котла. Эти повороты ухудшают омывание поверхностей нагрева, а на крупных котлах приводят к значительной неравномерности температуры продуктов сгорания по высоте горизонтального газохода. Для лучшего омывания поверхностей нагрева в котлах с П-образной компоновкой, как правило, устанавливают аэродинамический выступ на заднем экране.

      В 1970–1980-е гг. российские энергетики начали выпускать котлы с Т-образной компоновкой, в которых продукты сгорания после топочной камеры опускались по двум газоходам, расположенным по обе стороны от топки (рис. 1.4,б). Такое решение увеличивает сечение (а следовательно — снижает скорость запыленных дымовых газов) в конвективной шахте, что уменьшает интенсивность износа труб пароперегревателя и экономайзера, расположенных в этой части котла. Для высокозольных углей (например, для экибастузского угля) такое решение было оправданным, хотя металлоемкость Т-образных котлов выше, чем у котлов с другой компоновкой.

      Дополнительными преимуществами котлов с Т-образной компоновкой можно считать уменьшение высоты выходного окна топки (что улучшает температурный режим труб пароперегревателя), а также возможность использовать глубоковыдвижные обдувочные аппараты ограниченной длины (благодаря уменьшению ширины котла).

      Примерно в те же годы европейские котлостроительные фирмы, преследуя ту же цель (снижение износа конвективных поверхностей), а также стараясь сократить размеры котельной ячейки, стали выпускать котлы башенного типа, в которых практически все конвективные поверхности нагрева (кроме регенеративного воздухоподогревателя) располагались непосредственно над топочной камерой. Такая компоновка, безусловно, требует существенного увеличения высоты главного корпуса, внутри которого устанавливается котельный агрегат (рис. 1.4,в). Но зато, наряду с уменьшением площади, удается обеспечить равномерное омывание конвективных поверхностей нагрева благодаря отсутствию поворотов, неизбежных при П — и Т-образных компоновках. Кроме того, подъемное движение продуктов сгорания несколько снижает газовое сопротивление. Правда, для мощных котлов башенного типа, сооружаемых в Европе, Японии и Южной Корее в последние годы, пришлось всё же после башенного котла выполнять опускной, свободный от поверхностей нагрева газоход, так как регенеративный воздухоподогреватель, дымосос и газоочистное оборудование могли быть установлены только на нулевой отметке.

      Еще один вариант компоновки котельной установки — U-образный котел с топкой инвертного типа (рис. 1.4,г). Такие котлы сравнительно небольшой мощности устанавливали в Европе и США еще в первой половине прошлого века. Верхнее расположение регенеративного воздухоподогревателя позволяло существенно сократить протяженность воздушных коробов до горелок, а факел очень хорошо заполнял топочную камеру. При повышении мощностей котлов всё более ощутимыми становились недостатки такой компоновки: топливо от мельниц приходилось поднимать на большую высоту, а размещение тягодутьевых механизмов и золоуловителей на опорных конструкциях вызывало большие сложности.

      В последние десятилетия котлостроительные заводы практически прекратили выпуск таких котлов, но внезапно интерес к ним снова возродился. Дело в следующем. При разработке котлов на ультрасверхкритические параметры с температурой свежего пара и промперегрева 600–700 °С, паропроводы от котла к турбине становятся настолько дорогими, что оправданными оказываются любые усложнения компоновки котла, если их результатом станет сокращение расстояния от выхода из пароперегревателя до стопорного клапана турбины.

      Используемое топливо также оказывает влияние на конструкцию котельного агрегата. Так, например, некоторые европейские котлостроительные фирмы при сжигании малореакционных углей (тощих или антрацитов) удачно используют плечевые топки (рис. 1.4,д).

      При сжигании твердого топлива в большинстве случаев нижняя часть топки представляет собой холодную воронку, в которой расплавленные в ядре горения золовые частицы охлаждаются до нужной температуры. Такие топки — с твердым шлакоудалением (ТШУ) — используют при сжигании бурых и большинства каменных углей. Но для небольшой группы углей с малым выходом летучих (антрациты и тощие угли) часто применяют топки с жидким шлакоудалением (ЖШУ). В таких топках вместо холодной воронки устанавливают слабонаклонный под. Трубы пода и нижней части топочной камеры покрывают шипами, на которые наносят огнеупорную массу. Всё это приводит к появлению пленки жидкого шлака, образовавшегося из минеральной массы угля. Шлак вытекает через летку в нижней части пода и гранулируется в шлаковой ванне. О целесообразности использования и конструктивных особенностях топок с жидким шлакоудалением подробнее рассказано в последующих разделах.

      Газомазутные котлы не нуждаются в холодной воронке: нижняя часть топочной камеры у них представляет собой слабонаклонный под, закрытый экранными трубами. Конструкция конвективных поверхностей нагрева учитывает отсутствие золовых частиц в дымовых газах. Легче решаются проблемы очистки дымовых газов (особенно при сжигании природного газа, когда в топливе отсутствуют серосодержащие вещества).

      В конструкции конвективных поверхностей нагрева угольных котлов необходимо учитывать наличие в дымовых газах золовых частиц, которые создают проблемы загрязнения и (или) износа труб пароперегревателя и экономайзера. За пылеугольным котлом обязательно должен быть установлен золоуловитель (например, электрофильтр), а в некоторых случаях — еще и весьма дорогие аппараты для очистки дымовых газов от сернистого ангидрида SO2 и оксидов азота NOx (подробнее — в гл. 11–12 ).

      Для преодоления аэродинамического сопротивления конвективных поверхностей нагрева, а также аппаратов для очистки дымовых газов, котельная установка оборудуется дымососом (или дымососами). Исключение составляют только небольшие водогрейные котлы башенного типа, работающие обычно на природном газе. У таких котлов (типа ПТВМ) эвакуация дымовых газов из топочной камеры осуществляется за счет самотяги (рис. 1.5).


      Рис. 1.5. Компоновка модернизированного котла ПТВМ — 100М: 1 — пакеты из мембранных панелей; 2 — пакеты из труб с наружным спиральным оребрением; 3 — экраны мембранные; 4 — горелки (6 шт.); 5 — вентиляторы; 6 — газопроводы рециркуляции

      Но в крупных энергетических котлах, даже при использовании башенной компоновки, преодолеть аэродинамическое сопротивление котла и очистного оборудования удается только с помощью мощного дымососа, который подает продукты сгорания к дымовой трубе.

      Читайте также: