Золошлаковые материалы в дорожном строительстве

Обновлено: 01.05.2024

Применение зол уноса и золошлаковых смесей при строительстве автомобильных дорог

Химические и физические свойства зол и шлаков теплоэлектростанций, их классификация. Применение зол сухого улавливания в дорожном строительстве в качестве самостоятельного медленно твердеющего вяжущего материала или гидравлической добавки к цементу.

Рубрика Строительство и архитектура
Вид научная работа
Язык русский
Дата добавления 17.12.2013
Размер файла 179,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ПРИМЕНЕНИЕ ЗОЛ УНОСА И ЗОЛОШЛАКОВЫХ СМЕСЕЙ ПРИ СТРОИТЕЛЬСТВЕ АВТОМОБИЛЬНЫХ ДОРОГ

Обзорная информация отечественного и зарубежного опыта применения отходов от сжигания твердого топлива на ТЭС

1. Общие положения

2. Свойства зол и шлаков ТЭС

2.1 Химические и физические характеристики зол и шлаков

2.2 Классификация зол и шлаков

3. Технические требования к золошлаковым материалам

4. Отечественный и зарубежный опыт применения зол и золошлаковых смесей в дорожном строительстве

4.1 Применение зол сухого улавливания в качестве самостоятельного медленно твердеющего вяжущего материала или гидравлической добавки к цементу или извести

4.2 Применение зол сухого улавливания в качестве добавки к битумам или полимерно-битумным вяжущим

4.3 Применение - золошлаковых смесей для устройства земляного полотна

4.4 Применение золошлаковых смесей для устройства слоев дорожных одежд

4.5 Применение зол и золошлаковых смесей в асфальтобетоне

4.6 Применение золошлаковых смесей в цементобетоне

4.7 Зарубежный опыт применения зол и золошлаковых смесей в дорожном строительстве

5. Основные нормативные документы и методические рекомендации по применению зол и золошлаковых материалов в дорожном строительстве

Освещены вопросы применения зол и золошлаковых материалов при строительстве земляного полотна и слоев дорожных одежд; при укреплении грунтов различного состава как в виде самостоятельного вяжущего материала, так и в качестве компонента комплексного вяжущего.

Рассмотрены классификационные характеристики отходов от сжигания твердого топлива, приводимые в литературных источниках по их использованию в дорожном строительстве.

Даны результаты исследования свойств золошлаковых отходов от сжигания углей различных месторождений России применительно к условиям дорожного строительства.

Изложен отечественный и зарубежный опыт строительства земляного полотна и слоев дорожных одежд с применением зол сухого улавливания и отвальных смесей гидроудаления.

Перечислены действующие нормативные требования к таким отходам. - Табл. 11

В России около 70% всей электроэнергии вырабатывается при сжигании твердого топлива - углей, сланцев, торфа, в результате чего образуется около 50 млн. тонн в год отвалов золошлаковых смесей. К концу 2001 г. в отвалах ТЭС находилось свыше 1,2 млрд. тонн таких отходов, а уровень их утилизации составляет только около 10%. Поэтому использование отходов от сжигания твердого топлива - это не столько вопрос экономии материальных ресурсов, сколько проблема возрастающего загрязнения окружающей среды и, следовательно, здоровья нации.

В настоящее время во многих странах, в том числе в России, накоплен достаточно большой опыт применения золошлаковых материалов во многих отраслях народного хозяйства.

Обзор отечественного и зарубежного опыта использования зол и золошлаковых материалов освещает вопросы их применения при строительстве земляного полотна и слоев дорожных одежд. Так, золы сухого улавливания и золошлаковые материалы можно использовать при укреплении грунтов различного состава, как в виде самостоятельного вяжущего материала, так и в составе комплексного вяжущего (в сочетании с органическими и неорганическими вяжущими, смолами). Накоплен опыт применения этих материалов в асфальто- и цементобетонах.

Рассмотрены классификационные характеристики отходов от сжигания твердого топлива, приводимые в литературных источниках по их использованию в дорожном строительстве.

Даны результаты исследования свойств золошлаковых отходов от сжигания углей различных месторождений России применительно к условиям дорожного строительства.

Изложен отечественный и зарубежный опыт строительства земляного полотна и слоев дорожных одежд с применением зол сухого улавливания и отвальных смесей гидроудаления

Перечислены действующие нормативные требования к этим отходам.

Настоящая работа составлена Е.Н. Путилиным и B.C. Цветковым.

В сборе материалов по применению зол и шлаков в дорожном строительстве большую помощь оказали работники отдела научно-технической информации и международного сотрудничества Союздорнии, за которую авторы выражают им благодарность и искреннюю признательность

1. Общие положения

Потребление материальных ресурсов при строительстве автомобильных дорог чрезвычайно велико. На возведение 1 км автомобильной дороги в зависимости от ее категории и местных условий требуется:

- для сооружения земляного полотна - 6-60 тыс. м 3 грунта;

- для создания дренирующих и морозозащитных слоев - 1,6-6 тыс. м 3 песка;

- для строительства дорожных покрытий - 1,1-4,7 тыс. т асфальтобетона (что требует 55-235 т битума) или 1,2-4,8 тыс. м 3 цементобетона (480-1700 т цемента)

Уменьшение потребности в дорожно-строительных материалах и повышение эффективности их использования остается важнейшей проблемой. Многолетние научные исследования и практика дорожного строительства показали, что одним из путей ее решения является применение вторичных ресурсов - отходов промышленности, которые можно использовать или в качестве непосредственно дорожно-строительного материала или как исходный продукт для его получения.

К таким отходам относятся золы и шлаки - продукты сжигания на тепловых электростанциях (ТЭС) твердого топлива: угля, торфа, сланцев и других горючих материалов. Следует различать

1 - золу уноса сухого улавливания, когда зола, поступающая с электрофильтров и из циклонов ТЭС в золосборники, направляется специальным пневмотранспортом в силосные склады либо непосредственно в транспортные средства потребителей;

2 - золошлаковую смесь гидроудаления, когда при очистке золосборников с помощью воды зола и шлак в виде золопульпы удаляется в отвалы.

В России золы и золошлаковые смеси образуются на 200 ТЭС (ТЭЦ, ГРЭС), и только приблизительно на 20 из них имеются установки для сухого улавливания золы. Объем золошлаковых отходов после сжигания углей, сланцев и торфа, по данным Всероссийского теплотехнического научно-исследовательского института (ВТИ), составляет 40-50 млн. т в год. В отвалах энергосистем России к концу 2001 г. находилось около 1,2 млрд. т золошлаковых материалов (табл. 1).

Таблица 1 Сводная таблица образования и накопления золошлаковых отходов в энергосистемах России по состоянию на 31 декабря 2001 г. - (данные ВТИ)

Образовано ЗШО в 2001 году, тыс. т

Накоплено ЗШО к 31.12.01, тыс. т

ОЭС "Центрэнерго". Всего:

ОЭС "Волгаэнерго". Всего:

ОЭС "Севзапэнерго". Всего:

ОЭС "Уралэнерго". Всего:

ОЭС "Востокэнерго". Всего:

ОЭС "Южэнерго". Всего:

Уровень утилизации этих отходов в России составляет около 10%; в ряде развитых стран - около 50%, во Франции и в Германии - 70%, а в Финляндии - около 90% их текущего выхода. Там применяются в основном сухие золы, и проводится государственная политика, стимулирующая их использование. Так, в Польше резко повышена цена на землю под золоотвалы, поэтому ТЭЦ доплачивают потребителям с целью снизить собственные затраты на их складирование. В Китае золы доставляются потребителям бесплатно, а в Болгарии сама зола бесплатна. В Великобритании действуют пять региональных центров по сбыту зол [1].

Отвалы ТЭС в России занимают значительные территории (около 200 тыс. га), являются источником загрязнения воздушного и водного бассейнов и увеличивают минерализацию грунтовых вод. В ряде регионов эти отвалы значительно осложнили экологическую обстановку. Если учесть, что около 70% всей электроэнергии в стране вырабатывается при сжигании твердого топлива, то рост золошлаковых отходов будет продолжаться и, следовательно, возрастет их отрицательное воздействие на экологию. Таким образом, утилизация золошлаковых отходов становится уже не столько вопросом экономии материальных ресурсов, сколько проблемой безопасности населения страны. Научные исследования и практика дорожного строительства показали, что золы и шлаки от сжигания твердых видов топлива представляют собой материалы, пригодные для применения во многих отраслях народного хозяйства [42]:

- в сельском хозяйстве - как удобрение;

- в металлургии - как шихта для получения алюминия и концентрат для получения железа;

- в строительной индустрии золошлаковые смеси и золы сухого улавливания - как сырье для цементов и бесклинкерных вяжущих, бетонов (тяжелых, легких, ячеистых), пористых заполнителей, силикатных, керамических, теплоизоляционных и других материалов.

В дорожном строительстве золы и золошлаковые смеси используются при сооружении земляного полотна, для устройства укрепленных оснований, в качестве заполнителя и минерального порошка в асфальтобетонах. Золы сухого улавливания можно применять в качестве самостоятельного вяжущего, а также как активную добавку к неорганическим и органическим вяжущим веществам.

Широкий размах работы по использованию золошлаковых материалов в дорожном строительстве России приняли в 70-х годах. Связано это было с правительственными постановлениями по утилизации топливных отходов ТЭС.

В 1976 г. Министерство транспортного строительства СССР утвердило "Технические условия по использованию зол уноса и золошлаковых смесей от сжигания различных видов твердого топлива для сооружения земляного полотна и устройства дорожных оснований и покрытий автомобильных дорог" ВСН 184-75, в которых установлены требования к применению зол и золошлаковых материалов в дорожном строительстве.

В 80-х годах научно-исследовательские работы и практическое использование этих материалов были значительно активизированы. Это было связано с созданием и развитием сети автомобильных дорог в Западной Сибири, Нечерноземной зоне, где ресурсы традиционных дорожно-строительных материалов (высокопрочного щебня, песка, цемента) ограничены.

B 1976-1990 гг. был разработан ряд нормативных документов, развивающих возможности использования зол и золошлаковых смесей в дорожном строительстве. Их перечень приведен в разд. 5.

Строительство автомобильных дорог с применением зол и золошлаковых материалов осуществлялось в различных регионах России, особенно в районах, испытывающих дефицит традиционных дорожно-строительных материалов (щебня, песка, цемента). При строительстве автомобильных дорог Москва-Серпухов, Москва-Рига, Москва-Кашира с применением зол и золошлаковых смесей построено около 300 км дорог. На автомобильной дороге Алтай-Кузбасс на отсыпке слоев земляного полотна использовано 65 тыс. м 3 золошлаковых материалов. Алтайавтодор в 1999-2002 гг. применял золы уноса Барнаульской ТЭЦ в конструктивных слоях дорожных одежд на автомобильных дорогах III-IV категорий.

2. Свойства зол и шлаков ТЭС

2.1 Химическме и физически характеристики зол и шлаков

Зола - несгорающий остаток с зернами мельче 0,16 мм, образующийся из минеральных примесей топлива при полном его сгорании и осажденный из дымовых газов золоулавливающими устройствами. В зависимости от вида топлива зола подразделяется на антрацитовую, каменноугольную, буроугольную, сланцевую, торфяную и др. Содержание золы при сгорании топлива различно: в каменных и бурых углях - от 1 до 45%, в горючих сланцах - от 50 до 80%, в топливном торфе - от 2 до 30%. По способу удаления различают: золу сухого отбора (зола уноса) и мокрого (зола гидроудаления). Зола уноса получается в результате очистки дымовых газов золоуловителями и представляет собой тонкодисперсный материал с очень мелкими частицами, что позволяет использовать ее без дополнительного помола. Зола мокрого отбора образуется при удалении ее с помощью воды в виде пульпы по золопроводам.

Топливный шлак - это материал, скапливающийся в нижней части топочного пространства тепловых агрегатов и удаляемый в жидком или спекшемся состоянии. При совместном удалении золы и шлака гидротранспортом на тепловых электростанциях образуется золошлаковая смесь.

Химический и минерально-фазовый составы, строение и свойства золошлаковых материалов (ЗШМ) зависят от состава минеральной части топлива, его теплотворной способности, режима сжигания, способа их улавливания и удаления, места отбора из отвалов.

При высоких температурах (1200-1600°С) сжигания топлива минеральные примеси претерпевают изменения; в них протекают сложные физико-химические процессы: выделяется химически связанная вода силикатов и алюмосиликатов; разлагаются карбонаты; идут реакции в твердой фазе; происходят плавление, кристаллизация, силикатообразование, стеклообразование и др. Поэтому золы и шлаки ТЭЦ имеют сложный химический и минералогический составы.

Химический состав ЗШМ от сжигания углей в России и некоторых зарубежных странах приведен в табл. 2. Они представлены в основном SiO2 и Аl2Оз. Кроме того, в состав оксидов входят также Fe2O3, CaO, MgO, Na2O, K2O, TiO2, SO3 и др.

оксида кальция СаО - 10%, чтобы обеспечить равномерность изменения объема при твердении, свободного СаО - 5%;

- оксида магния MgO - не более 5%;

- верхний предел сернистых и сернокислых соединений в пересчете на SO3 по требованиям сульфатостойкости - 3-6% (в зависимости от вида исходного топлива);

- суммарное содержание щелочных оксидов Na2O и К2О - 1,5-3% (в зависимости от вида сжигаемого топлива) во избежание деформаций при их реакции с заполнителями.

В зависимости от вида топлива и условий его сжигания в ЗШМ могут содержаться несгоревшие органические частицы топлива. Потеря массы при прокаливании (п.п.п.) должна быть не выше 3-25% в зависимости от вида исходного топлива.

Минерально-фазовый состав включает неорганическую и органическую составляющие. Неорганическая фаза, в свою очередь, состоит из составляющих:

- аморфной, представленной стеклом и аморфизированным глинистым веществом;

- кристаллической, включающей слабоизмененные зерна минералов исходного топлива (кварц, полевые шпаты и другие, термически устойчивые минералы) и кристаллические новообразования, возникшие при сжигании топлива (муллит, гематит, алюмосиликат кальция и др.).

Стекло в золах может быть силикатного, алюмосиликатного и железисто-алюмосиликатного состава. Аморфизированные глинистые вещества - метакаолинит и слабоспекшееся аморфизированное глинистое вещество, а также спекшиеся и частично остеклованные частицы определяют химическую активность золы, форму и характер поверхности зольных частиц.

Частицы большинства зол имеют сферическую форму и гладкую остеклованную фактуру поверхности. Однородность частиц различна. Более однородны частицы, состоящие полностью из стекла. Имеются частицы, внутренняя часть которых не расплавилась и слагается из мельчайших минеральных и коксовых зерен. Встречаются и полые шарики в результате вспучивания стекла в момент образования частицы. Размер частиц - от нескольких микрон до 50-60 микрон.

Могут также образовываться стекловидные частицы неправильной формы. У некоторых частиц поверхность губчатая из-за различного количества пузырьков. Они также могут содержать во внутренней части большое количество кристаллических веществ.

При недостаточно высокой температуре сгорания топлива и высокой тугоплавкости его зольной части образуются золы, состоящие из аморфизированного глинистого вещества, представленного пористыми частицами неправильной формы. Эти частицы имеют высокое водопоглощение.

В крупных фракциях золы содержатся агрегаты, образовавшиеся в результате спекания множества мелких зерен. Они неоднородны и имеют низкую прочность.

Шлаки но сравнению с золами содержат меньше органических остатков и аморфизированного глинистого вещества, но больше стеклофазы (до 95%). Обусловлено это тем, что шлаки большее время находятся в высокотемпературной зоне топки. Кристаллическая фаза в них представлена кварцем, муллитом, магнетитом и т.д.

Важнейшими физическими свойствами ЗШМ являются зерновой состав, насыпная и истинная плотности, водонасыщение и способность к морозному пучению.

Зерновой состав определяется видом топлива, его подготовкой к сжиганию, режимом сжигания, способом улавливания золы, местом отбора (табл. 3 и 4).

Золошлаковые материалы в дорожном строительстве

СМЕСИ ЗОЛОШЛАКОВЫЕ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ ДЛЯ БЕТОНОВ

Mixes of fly-ash and slag of thermal plants for conctetes. Specifications

Дата введения 2020-06-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 144 "Строительные материалы и изделия"

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Госстандарт Республики Беларусь

4 Приказом Федерального агентства по техническому регулированию и метрологии от 12 ноября 2019 г. N 1109-ст межгосударственный стандарт ГОСТ 25592-2019 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2020 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

1 Область применения

Настоящий стандарт распространяется на золошлаковые смеси (далее - ЗШС), образующиеся на тепловых электростанциях при совместном гидроудалении золы и шлака или механическим способом (пневмотранспортом) в золоотвал в процессе сжигания углей в пылевидном состоянии и представляющие собой вторичные минеральные ресурсы (ВМР), применяемые в качестве компонентов для изготовления бетонов для всех видов строительства в соответствии с ГОСТ 25192, ГОСТ 26633, строительных растворов по ГОСТ 28013, сухих строительных смесей по ГОСТ 31357, минеральных вяжущих, смесей щебеночно-гравийно-песчаных для покрытий и оснований автомобильных дорог и аэродромов по ГОСТ 25607 и материалов, обработанных неорганическими вяжущими для дорожного и аэродромного строительства по ГОСТ 23558, а также для получения минерального порошка.

Рекомендуемые области и условия применения золошлаковых смесей представлены в приложении А.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 310.2 Цементы. Методы определения тонкости помола

ГОСТ 310.3 Цементы. Методы определения нормальной густоты, сроков схватывания и равномерности изменения объема

ГОСТ 3118 Реактивы. Кислота соляная. Технические условия

ГОСТ 4919.1 Реактивы и особо чистые вещества. Методы приготовления растворов индикаторов

ГОСТ 5578 Щебень и песок из шлаков черной и цветной металлургии для бетонов. Технические условия

ГОСТ 6709 Вода дистиллированная. Технические условия

ГОСТ 8269.0 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-механических испытаний

ГОСТ 8269.1 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы химического анализа

ГОСТ 8677 Реактивы. Кальция оксид. Технические условия

ГОСТ 8735 Песок для строительных работ. Методы испытаний

ГОСТ 8736 Песок для строительных работ. Технические условия

ГОСТ 9262 Реактивы. Кальция гидроокись. Технические условия

ГОСТ 9639 Листы из непластифицированного поливинилхлорида (винипласт листовой). Технические условия

ГОСТ 9758 Заполнители пористые неорганические для строительных работ. Методы испытаний

ГОСТ 11022 (ИСО 1171-97) Топливо твердое минеральное. Методы определения зольности

В Российской Федерации действует ГОСТ Р 55661-2013 (ИСО 1171:2010) "Топливо твердое минеральное. Определение зольности".

ГОСТ 20910 Бетоны жаростойкие. Технические условия

ГОСТ 22235 Вагоны грузовые магистральных железных дорог колеи 1520 мм. Общие требования по обеспечению сохранности при производстве погрузочно-разгрузочных и маневровых работ

ГОСТ 23227 Угли бурые, каменные, антрацит, горючие сланцы и торф. Метод определения свободного оксида кальция в золе

ГОСТ 23558 Смеси щебеночно-гравийно-песчаные и грунты, обработанные неорганическими вяжущими материалами, для дорожного и аэродромного строительства. Технические условия


ГОСТ 24104 Весы лабораторные. Общие технические требования

ГОСТ 24211 Добавки для бетонов и строительных растворов. Общие технические условия

ГОСТ 25137 Материалы нерудные строительные, щебень и песок плотные из отходов промышленности, заполнители для бетона пористые. Классификация

ГОСТ 25192 Бетоны. Классификация и общие технические требования

ГОСТ 25214 Бетон силикатный плотный. Технические условия

ГОСТ 25336 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 25485 Бетоны ячеистые. Технические условия

ГОСТ 25607 Смеси щебеночно-гравийно-песчаные для покрытий и оснований автомобильных дорог и аэродромов. Технические условия

ГОСТ 25818 Золы-уноса тепловых электростанций для бетонов. Технические условия

ГОСТ 25820 Бетоны легкие. Технические условия

ГОСТ 26633 Бетоны тяжелые и мелкозернистые. Технические условия

ГОСТ 28013 Растворы строительные. Общие технические условия

ГОСТ 28923 Регуляторы температуры, работающие без постороннего источника энергии. Общие технические требования и методы испытаний

ГОСТ 29251 (ИСО 385-1-84) Посуда лабораторная стеклянная. Бюретки. Часть 1. Общие требования

ГОСТ 30108 Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов

ГОСТ 30744 Цементы. Методы испытаний с использованием полифракционного песка

ГОСТ 30772 Ресурсосбережение. Обращение с отходами. Термины и определения

ГОСТ 31357 Смеси сухие строительные на цементном вяжущем. Общие технические условия

ГОСТ 31359 Бетоны ячеистые автоклавного твердения. Технические условия

ГОСТ 31384 Защита бетонных и железобетонных конструкций от коррозии. Общие технические требования

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 5578, ГОСТ 25137, ГОСТ 25818, ГОСТ 30772, а также следующие термины с соответствующими определениями:

3.1 гидравлическая активность: Прочность образцов из стандартных цементно-песчаных растворов, твердеющих в стандартных условиях в течение 28 суток.

3.2 минеральная добавка на основе ЗШС: Минеральная добавка, полученная в результате переработки зольной составляющей золошлаковой смеси без изменения химического и минералогического состава путем сепарации и измельчения.

3.3 инертная минеральная добавка (ИМД) на основе ЗШС: Минеральная добавка, не способная к взаимодействию с продуктами гидратации и щелочами цемента, применяемая в качестве микронаполнителя.

3.4 активная минеральная добавка (АМД) на основе ЗШС: Минеральная добавка, обладающая вяжущими свойствами или пуццоланической активностью.

3.5 вяжущие свойства добавки на основе ЗШС: Способность активной минеральной добавки, затворенной водой, после схватывания на воздухе твердеть в водной среде, в бетоне и/или строительном растворе.

Применение золошлаковых отходов в дорожном строительстве Кузбасса


Ключевые слова: дорожное строительство, золошлаковые отходы

По данным Росстата за 2017 год в Российской Федерации почти 40 % всей электроэнергии было выработано на тепловых электростанциях (ТЭС). При этом образовалось около 20 млн. т золошлаков, из которых утилизировано только 800 тыс. т, что составляет 4 %, причем ситуация с крайне низким уровнем утилизации многие годы остается неизменной [1]. Складирование такого объема золошлаковых материалов имеет негативные экологические аспекты: потребление воды, загрязнение почвы, сточные воды, отрицательное влияние на грунтовые воды, загрязнение воздуха при пылении отвалов. Поэтому решение проблемы утилизации золошлаков весьма актуально, особенно для Кузбасса.

Золошлаковые отходы теплоэлектростанций (ЗШО) — это твердые продукты сгорания углей, состоящие в основном из породообразующих компонентов. Минеральная часть угольного топлива на 85–95 % состоит из глинистых минералов, аргиллитов, алевролитов. Остальные 5–15 % — соединения, главным образом, железа, кальция и микроэлементов [2].

Золошлаковые отходы представляет собой мелкозернистый материал, у которого почти 30 % зёрен имеет размеры от 1 до 5 мм. Характеристики золошлаков различаются на разных ТЭС, так как определяются минералогическим составом угля, подготовкой топлива к сжиганию, технологией сжигания, системой очистки дымовых газов от золы и способом её транспортировки в золоотвалы.

Анализ зарубежного опыта показывает, что одной из наиболее перспективных сфер их утилизации может быть дорожное строительство, однако в России дорожники золошлаковые отходы используют крайне редко. Причем, дальше призывов к применению ЗШО и обвинений в нежелании решать проблему дело не идет. Необходима объективная оценка ситуации, которая позволит решить проблему.

В Западной Европе наиболее прогрессивной в решении проблемы применения отходов ТЭС для дорожного строительства считается Франция, где используется «сухое» удаление отходов. Вырабатываемая зола-уноса, в зависимости от своего состава и свойств, применяется для всех элементов дорожной конструкции, и может использоваться как для верхних слоев конструкции оснований в качестве компонента вяжущего, так и для нижних слоев как укрепленный минеральный материал. Также золошлаковые смеси (ЗШС) применяют в теле дорожной насыпи как техногенный грунт. Например, на севере Франции, в Ленс-ла-Бассе, трасса RN 47 длиной 7,5 км построена с использованием почти 50 000 тонн золы. Данная дорога почти на 70 % состоит из золы, и представляет собой пример эффективной утилизации ЗШО. Для организации процесса утилизации во Франции существуют государственные льготы для бизнеса, использующего золу, и введены запреты на использование других, более затратных строительных материалов, таких как грунт и песок. Поэтому почти сто процентов золы идет в дальнейшую переработку и утилизацию.

В США применяют для строительства золу-уноса и золу гидроудаления. Зола-уноса служит для замены портландцемента в бетонах и цементных растворах, а также заполнителем в дорожных основаниях и насыпях. Использование данного золы позволяет улучшить некоторые характеристики бетонов, в том числе повысить их прочность и увеличить долговечность готового бетонного изделия. Например, бетон, 50 % цемента которого заменили золой-уноса, называется бетоном с высокой концентрацией золы (HFC). Данный бетон обладает низким выходом температуры при гидратации, уменьшенной усадкой после высыхания и лучшей технологичностью. Зола гидроудаления утилизируется в качестве заполнителя для бетона и холодных асфальтобетонов, а также в качестве структурного заполнителя для насыпей и цементных оснований автомобильных дорог

Еще в 1983 г. в США были приняты нормы об обязательном применении зольных отходов в дорожном строительстве. Массовое использование золы в строительстве дорог началось с 1986 г. Сейчас, чтобы стимулировать более широкое использование продуктов сгорания угля, Федеральное агентство по охране окружающей среды, министерство энергетики и Федеральное управление автомобильных дорог, а также Американская ассоциация по производству золы угля и Группа по утилизации твердых бытовых отходов совместно спонсируют «Партнерство использования продуктов сжигания угля». Проект предназначен для того, чтобы помочь строительным организациям и энергетическим компаниям понять экологические преимущества и потенциальные последствия употребления продуктов сгорания угля в различных целях, а также стимулировать их полезное использование [5].

В Германии для продуктивного использования ЗШМ на многих электростанциях возводят силосы емкостью 40–60 тыс. т и обязательно строят небольшие силосы с суточной и двухсуточной ёмкостью, из которых впоследствии отбирают пробы для лабораторного анализа золы, и в которых она посредством технологических методов перемешивания и объёмного дозирования по фракционному составу приводится к необходимым нормативным требованиям, после чего зола загружается в основные силосы-хранилища. Побочные продукты ТЭС экспортируются в соседние страны. Для золы-уноса необходимо наличие сертификата о пройденных лабораторных испытаниях, если она идёт в стройиндустрию. Ежегодно в Германии 3,1 млн. т цемента заменяется ЗШО. Благодаря этому экономятся ресурсы и энергия, необходимая для производства цемента, а также окупаются затраты на силосы, транспорт и зарплату [7].

В Южной Африке золу-уноса усиливали различными видами цементов и утилизировали в качестве стабилизатора грунта для дорожного строительства. Результаты специальных исследований показали, что зола-уноса, обогащенная цементом, не является вредной для человека и окружающей среды. Кроме того, доказано, что смеси золы-уноса с инертными материалами (песок, рисовая шелуха и т. д.) достигают от 50 до 70 % прочности материалов, укрепленных цементом. В целом эксплуатация золы-уноса для стабилизации грунтов в дорожном строительстве имеет технические преимущества при правильном использовании. Сегодня в ЮАР, при финансовой государственной поддержке, проводится экспериментальное строительство трасс из золы-уноса [3].

Однако утилизация золошлаков в строительстве имеет проблемы технического и организационного характера. Зола неоднородна по своему составу и размеру, а строительная промышленность определяет чёткие требования к данным параметрам. Также, из-за неоднородности своего происхождения, в составе ЗШО могут находиться нежелательные для различных производств компоненты. К примеру, использование золошлаковых отходов в изготовлении пористых заполнителей лимитируется содержанием серы, углерода, оксидов железа, кальция и магния. В фабрикации кирпича нормируются оксиды кальция, серы, алюминия.

Для большинства производств требуется сухой материал, а в золоотвале он всегда влажный, что также добавляет трудностей строительным организациям. ЗШО, получаемые при сжигании углей различного происхождения, имеют разнящийся минералогический и химический состав и, поэтому, вынуждают подбирать индивидуальный процесс обработки и рациональный вид эксплуатации. Эти процессы подразумевают трудоёмкие лабораторные и заводские испытания [4].

Для определения влияния ЗШО на глинистые грунты Кемеровской области, в испытательной лаборатории ООО «Кузбасский центр дорожных исследований» (с применением поверенных средств измерений и аттестованного в установленном порядке испытательного оборудования) были проведены опыты по укреплению глинистых грунтов при помощи золошлаковой смеси Новокемеровской ТЭЦ и цемента М400 ЦЕМ II/A-Ш 32,5Б Топкинского завода.

Для испытаний использовалась мелкозернистая золошлаковая смесь гидроудаления (ЗШС) из отвала Новокемеровской ТЭЦ с оптимальной влажностью 33,35 % (по ГОСТ 22733–2016) и суглинок тяжелый пылеватый (получен на строительстве автомобильной дороги Ленинск-Кузнецкий — Кемерово, км 255 — км 274). Физико-механические показатели суглинка, укрепленного золошлаковой смесью, приведены в табл. 1. испытания проведены в возрасте 28 суток по ГОСТ 23558–94.

Наименование

пробы

Прочность на сжатие воздушно-сухих образцов, МПа

Прочность образцов на сжатие, подверженных полному водонасыщению втечение 48 ч, МПа

Водостойкость образцов при полном водонасыщении

Водонасыщение образцов при полном водонасыщении,%

Суглинок тяжелый пылеватый, укрепленный ЗШС (расход 15 % от массы грунта)

Образцы испытание не выдержали (при полном водонасыщении полностью разрушились)

Суглинок тяжелый пылеватый, укрепленный ЗШС (расход 20 % от массы грунта)

Суглинок тяжелый пылеватый, укрепленный ЗШС (расход 25 % от массы грунта)

В результате испытаний установлено, что применение ЗШС в качестве стабилизатора оказывает незначительное влияние на прочностные показатели грунта. Укрепленные образцы не достигли показателей минимальной марки по прочности на сжатие по ГОСТ 23558–94. В то же время, образцы грунта, укрепленного 15 % и 20 % ЗШС, не обладают стойкостью к воздействию воды (теряют форму и разрушаются при полном насыщении водой), в отличие от образцов грунта, укрепленного 25 % ЗШС, которые при водонасыщении незначительно теряют прочностные характеристики и сохраняют форму при воздействии воды.

Результаты испытаний суглинка тяжелого пылеватого, укрепленного золошлаковой смесью и цементом марки 400 ЦЕМ II/A-Ш 32,5Б, приведены в табл. 2 (испытания выполнены по ГОСТ 23558–94; ГОСТ 22733–2016).

Содержание золошлаковой смеси (ЗШС) ицемента (в% от массы грунта)

Прочность на сжатие воздушно-сухих образцов, МПа

Прочность на сжатие, после водонасыщения втечение 48 ч, МПа

Водостойкость образцов при полном водонасыщении

Водонасыщение образцов при полном водонасыщении,%

Применение золоминеральных смесей в основаниях дорожной одежды при реконструкции ул. Ленина


В статье обобщен материал по исследуемой теме — перспективы использования в дорожном строительстве золошлаковых отходов, образующихся при сжигании углей на ТЭЦ-4, ТЭЦ-5 в г. Омске. Дана оценка экономической эффективности. Основное содержание исследования составляет анализ нормативных документов, регламентирующих применение золы и шлака в дорожном строительстве и позволяет выявить варианты использования золошлаковых отходов в качестве заменителей традиционных дорожно-строительных материалов.

Ключевые слова: золоминеральная смесь, золоотвал, золошлаки

На современном этапе научно-технической революции дальнейшее развитие промышленности связано с необходимостью тщательного учета экологической ситуации. Наша страна располагает значительными запасами сырья, тем не менее реализация вторичных материальных и энергетических ресурсов необходима, за счет этого стабилизируется и улучшается общая экологическая обстановка. Одними из самых распространенных видов твердых отходов являются металлургические и топливные шлаки. Проблема переработки промышленных отходов, с учетом ухудшения экологической обстановки в г. Омске является — актуальной. В регионе накопилось огромное количество отходов в виде зол и шлаков, которые занимают большие площади сельскохозяйственных земель, ухудшающую экологическую обстановку и наносят вред омичам.

Особенностью сжигания экибастузских углей на ТЭЦ-4 и ТЭЦ-5 является большой объем твердых отходов в виде золошлаков до 37 %. В зависимости от вида и свойств золошлаковых отходов их можно использовать в земляном полотне, при строительстве дорожных одежд, а так же при изготовление различных строительных материалов для промышленного и гражданского строительства.

Ежегодный объем сброса золы от Омской ТЭЦ-5 составляет около 1 050 тыс. м3, от Омской ТЭЦ-4 — около 540 тыс. м3. В настоящее время на золоотвалах Омских ТЭЦ скопилось более 20 млн. т. отходов. [1]

Для строительства автомобильных дорог требуется большое количество дорожно-строительных материалов. Так для строительства 1 км автомобильной дороги в зависимости от ее категории и местных условий требуется:

− для сооружения земляного полотна от 6 до 60 тыс. м 3 грунта (золошлаков);

− для создания дренирующих и морозозащитных слоев от 1,6 до 6 тыс. м 3 песка;

− для строительства дорожного основания от 0,8 до 5,4 тыс. м 3 — щебня или грунта, укрепленного вяжущими материалами;

− для строительства дорожных покрытий от 1,1 до 4,7 тыс. т асфальтобетона.

Заменой грунтов, песков щебеночных материалов могут быть отходы промышленности.

К таким отходам относятся золы и шлаки — продукты от сжигания тепловых электростанциях (ТЭС).

− золу уноса сухого улавливания, когда зола, поступающая с электрофильтров и из циклонов ТЭС в золосборники, направляется специальным пневмотранспортом в силосные склады либо непосредственно в транспортные средства потребителей;

− золошлаковую смесь гидроудаления, когда золошлаковые отходы в виде золопульпы удаляется в золоотвалы.

Химический и минерально-фазовый составы, строение и свойства золошлаковых материалов (ЗШМ) зависят от состава минеральной части топлива, его теплотворной способности, режима сжигания, способа их улавливания и удаления, места отбора из отвалов. При высоких температурах (1200–1600°С) сжигания топлива минеральные примеси претерпевают изменения; в них протекают сложные физико-химические процессы: выделяется химически связанная вода силикатов и алюмосиликатов; разлагаются карбонаты; идут реакции в твердой фазе; происходят плавление, кристаллизация, силикатообразование, стеклообразование и др. Поэтому золы и шлаки ТЭЦ имеют сложный химический и минералогический составы.

Омские ТЭЦ-4 и ТЭЦ-5 работают на Экибастузских углях. Золошлаковые отходы этих ТЭЦ относятся к кислым неактивным и не могут быть использованы в чистом виде в качестве самостоятельного вяжущего.

Химический состав отходов Омских ТЭЦ представлены в таблице 1.

Химический состав золошлаковых отходов ТЭЦ-4 иТЭЦ-5г. Омска

Анализ способов утилизации золошлаковых отходов


В статье рассмотрены возможные способы утилизации золошлаковых отходов (ЗШО) как на территории Российской Федерации, так и в европейских странах. Проанализирован химический состав и предложен наиболее перспективный способ переработки данного вида отхода  производство строительных материалов. Для данного применение отхода необходимо, чтобы его компонентный состав соответствовал определенным техническим требованиям. С этой целью следует провести ряд лабораторных исследований по выявлению физико-химических свойств ЗШО.

Ключевые слова: зола, золошлаковые отходы, компонентный состав, строительные материалы, переработка отходов.

Золошлаковые отходы (ЗШО) — вид отхода, образованный в процессе сжигания угля, имеющего большую зольность, в котле на тепловых электростанциях (ТЭЦ).

Классификация золошлаковых отходов [1], как правило, зависит от вида сжигаемого угля, способа сжигания, температуры факела, способа золоудаления, сбора и хранения золы на ТЭС. В связи с этим выделяют следующие виды:

− Зола-уноса при сухом золоудалении с осаждением частиц золы в циклонах и электрофильтрах и накоплением в силосах.

− Топливные шлаки при полном плавлении минеральной части топлива, осаждении расплава в нижней части топки котла и грануляции расплава водой аналогично придоменной грануляции доменных шлаков.

− Золошлаковая смесь при совместном мокром удалении уловленной обеспыливающими устройствами золы–уноса и топливных шлаков, образующихся в котле. Золошлаковая смесь в виде пульпы направляется в золоотвал.

По данным Минприроды России [2], ежегодно на российских угольных электростанциях образуется примерно 22 млн тонн золошлаковых отходов, из которых лишь 10–15 % находят своё дальнейшее применение, из-за чего общий объём накоплений ЗШО неуклонно растёт и сегодня составляет примерно 1,5 млрд. тонн. По словам заместителя председателя комитета Госдумы по энергетике Дмитрия Исламова, золоотвалы в России занимают примерно 30 тыс. га территории. По сравнению с зарубежными странами, утилизация ЗШО в России находится на сравнительно низком уровне.

Актуальность данной проблемы [3] непосредственно связана с отрицательным влиянием золошлаковых отходов на окружающую среду, выраженным:

− в образовании пылений;

− в выделении в атмосферу загрязняющих химических элементов и их соединений (в том числе CO, NOX, SOX);

− в использовании огромных площадей под золоотвалы.

На основе вышеизложенного можно сделать вывод, что переработка данного вида отхода необходима, так как это позволит не только снизить негативное воздействие окружающей среды на население, но и приведёт к сокращению расходов природных ресурсов.

II. Постановка задачи

Целью настоящей работы является рассмотрение возможных способов использования золошлаковых отходов на территории Российской Федерации, а также проанализировать, как эту проблему решают зарубежные страны.

− Изучение компонентного состава золы;

− Рассмотрение всевозможных способов переработки ЗШО;

− Анализ мирового опыта по переработке золошлаковых отходов.

В настоящее время существуют два основных направления переработки золошлаковых отходов, первый из которых — извлечение металлов [4], другой — вторичная переработка отхода для его дальнейшего использования. Извлечение металлов является нерациональным способом обращения с отходом, поскольку проблема уменьшения площадей золоотвалов не решается, поэтому с эколого-экономической точки зрения разумно будет прибегнуть к вторичной переработке отхода.

На сегодняшний день активно развиваются следующие основные отрасли применения золошлаковых отходов, продукция которых должна соответствовать определенным техническим характеристикам, указанным в нормативных документах (рис. 1) [5–6]:

− строительные материалы (цемент, кирпич, блоки);

− дорожное строительство (наполнители для дорожного полотна);

− строительные проекты (стеновой материал);

− производство различных наполнителей;

− сельское хозяйство (стабилизаторы почвы).


Рис. 1. Отрасли применения ЗШО

Химический состав золы [7], в зависимости от месторождения сжигаемого угля, будет иметь следующий компонентный состав, как показано в таблице 1.

Читайте также: