Проверка прочности бетона ультразвуком

Обновлено: 12.05.2024

Современные методы испытания бетона

Пренебрегать методами контроля бетона означает подвергать жизнь людей опасности. Чтобы не допустить брак при строительстве любых объектов на каждом этапе создания и созревания бетона устанавливаются определенные методы контроля. В статье рассмотрены эти методы с указанием соответствующих регламентирующих документов.

Как определяется прочность бетона

Проверки начинаются ещё до создания формовочной смеси. Проверяют параметры и дозировку составляющих компонентов при замешивании смеси. Также проверке по ряду параметров подвергается сама бетонная смесь, а именно: удобоукладываемость, средняя плотность, расслаиваемость, пористость, температура, сохраняемость свойств во времени, объем вовлеченного воздуха.

Формирование заданной прочности бетона зависит от совокупности физических и химических факторов на протяжении каждого этапа. Для понимания всего процесса разделим эти этапы на:

  1. Подготовку компонентов для приготовления каждой партии бетонной смеси.
  2. Замешивание бетонной смеси в растворном узле.
  3. Заливку готовой смеси в формы или опалубку на объекте.
  4. Набор прочности.
  5. Эксплуатацию сооружения.

От чего зависит получение заданного класса бетона

Что проверяют на первом этапе? Перед запуском производства и подачей компонентов бетонной смеси в смеситель технолог подбирает состав и таким образом задает характеристики будущей смеси, далее вводит параметры исходного сырья на пульт управления бетоносмесительного узла. Автоматика современных БСУ производит дозирование компонентов в необходимых пропорциях с учётом естественной влажности, температуры и применяемых добавок. Каждая партия бетонной смеси должна быть испытана на производстве, а также иметь документ о качестве по ГОСТ 7473-2010 (Приложение Б), который должен отражать следующие основные параметры:

  • наименование, адрес и телефон производителя и поставщика бетонной смеси;
  • дата и время отгрузки бетонной смеси;
  • вид бетонной смеси и ее условное обозначение;
  • проектный класс бетона по прочности;
  • применяемые добавки:
    • пластификаторы;
    • ускорители;
    • гидрофобизаторы;
    • антифризы;

    Примечание: На деле, зачастую, производитель может пытаться умолчать о некоторых пунктах документа о качестве по собственному усмотрению или по просьбе подрядчика, поэтому приходится следить и требовать корректного составления данного документа.


    После смешения компонентов испытатели берут смесь одного номинального состава из бетоносмесителя. Из нее отливают стандартные образцы для испытаний.

    Лаборанты учитывают разницу в физическом и химическом воздействии на бетонную смесь, которая отправлена на объект, с той, что поступила к ним на испытания в лабораторию. Причина в том, что существует зависимость набора прочности бетона от дополнительных факторов:

    • время от замешивания смеси до укладки в опалубку;
    • вибрационное воздействие на смесь;
    • равномерность заполнения формы или опалубки;
    • температура окружающей среды;
    • изменение водоцементного соотношения рабочими на объекте.

    Эти факторы будут различаться между лабораторными условиями и стройкой. Чтобы получить точные показатели, также берут пробы непосредственно на стройплощадке. Образцы представляют собой кубы с длиной ребра 10 см. Их маркируют, а после доставляют на исследование. Иногда проверку проводят прямо на объекте. Все работы выполняют согласно принятой в отрасли НТД (нормативно-технической документации).

    Классификация методов испытания бетона на прочность

    В XXI веке применяют два способа тестирования: разрушающие и неразрушающие методы испытаний. Общая цель этих способов — получить показания приборов и соотнести их с характеристиками, заявленными в ГОСТ 22690, ГОСТ 17624 и 10180. Затем, на основании полученных результатов, определить класс бетона по прочности.


    Разрушающие методы

    Испытания механическим разрушением предварительно отформованных образцов проводят для проверки предельных параметров:

    • на сжатие;
    • на растяжение при раскалывании;
    • на растяжение при изгибе;
    • на осевое растяжение.

    В лабораторных условиях проверяют прочность по кубикам или балочкам определенных размеров. Их отливают в формы для бетонной смеси (регулируется ГОСТ 10180). Образцы для испытаний также отбирают из готовых конструкций (регулируется ГОСТ 28570). При проведении испытания кубик давят в гидравлическом прессе до разрушения. Важно, что в процессе проверки раздавливают не единичный экземпляр, а серию образцов. Полученные измерения усредняют, а результаты заносят в протокол испытаний. Этим достигается уменьшение погрешности.

    Перед испытаниями образцов бетона происходит сбор информации о материале, запрашиваются паспорта качества и исходя из этого подбирается оптимальный режим проведения испытаний. Но иногда случается так, что прочность оказывается в 1,5 – 2 раза выше расчётной. Последствия данной неожиданности мы и отразили в данном ролике.

    Неразрушающие методы

    ГОСТ 22690 объединяет в эту группу прямые и косвенные механические методы проверки прочности. Первые основаны на замерах механических воздействий на испытуемый материал. Вторые – на сравнении показаний приборов, т.е. косвенных характеристик с прочностными показателями разрушающих методов.

    Прямые:

    • Отрыв металлических дисков. Позволяет исследовать параметры местного разрушения бетона в месте отрыва приклеенного к нему металлического диска. Приложенное для отрыва усилие фиксируют прибором типа «Оникс». Полученный показатель делят на площадь диска. Затем число сверяют со справочной информацией.
    Используется для проверки армированных конструкций. Но в России этот способ встречается редко. Он не получил распространения из-за сложности с наклейкой дисков эпоксидным клеем в холодную погоду.

    Косвенные:

    • Ультразвуковой контроль прочности бетона.Принятое сокращение — УЗК. Это метод базируется на разной скорости прохождения ультразвуковых волн через бетоны различной прочности. Проверку производят методом сквозного и поверхностного прозвучивания. Работы регламентируют ГОСТом 17624. В этом документе зафиксированы требования к технологии проведения испытаний на объектах строительства. Также указаны формы протоколов испытаний. Преимущество этого способа заключается в точности (при использовании современных приборов) и быстроте получения показателей. Но при применении УЗК необходимо произвести дополнительные вычисления и построить градуировочную зависимость, которая свяжет полученные данные с прочностью материала.


    • Ударно-импульсный способ. При проведении испытания прибор считывает энергию удара и ее изменение в момент соударения бойка с поверхностью бeтона. Точность измерений при этом способе невысокая и несравнима с показателями лабораторных тестов. Зато есть преимущества в простоте процесса.
    • Метод упругого отскока. Метод основан на связи прочности бетона со значением отскока бойка от поверхности бетона. Измеряют величину единицы отскока и далее, вычисляют прочность по заранее построенной градуировочной зависимости. Для работы применяют компактный прибор — молоток Шмидта, инструмент, который изобретен ещё в 1948 году. Из несущественных минусов отметим необходимость предварительной подготовки площадки, на которой проводят измерения.


    • Метод пластической деформации. Это тоже способ, которым проверяют прочность бетонной поверхности. Используется ударный инструмент — молоток Кашкарова. Им ударяют по листам бумаги с копиркой, которые выкладывают на исследуемую поверхность. Затем замеряют параметры отпечатка на бумаге, который оставляет эталонный стержень на конце молотка. Показатели соотносят со справочными цифрами, взятыми из нормативных документов. Является довольно экзотическим методом, который редко применяется на практике, ввиду сложности с воспроизводимостью измерений разными испытателями.

    Другие виды испытаний

    Строительные нормативы при возведении зданий предписывают застройщикам проверять различные параметры бетонных конструкций. Для этого они пользуются услугами строительных лабораторий. Чаще всего определяют следующие характеристики:

    • степень карбонизации;
    • диаметр и расположение арматуры в готовой конструкции;
    • измерение величины защитного слоя;
    • влажность поверхности;
    • плотность.

    Также в лабораториях, для определения важных характеристик, обязательно тестируют образцы на водонепроницаемость и морозостойкость.

    Испытание бетона на водонепроницаемость

    От показателя водонепроницаемости бетона зависит его прочность и морозостойкость. Все исследовательские процедуры на определение марки по водонепроницаемости выполняют по регламенту ГОСТ 12730.5.

    Образцы заливают в формы-цилиндры с диаметром 150 мм или формы-кубы с ребром 150 мм. После созревания их вынимают и тестируют водяным давлением на лабораторном оборудовании. Для уменьшения погрешности показателей в лабораториях исследуют не менее 6 образцов. В зависимости от требований применяют различные способы испытаний бетонных образцов на пропускание влаги:

    • используют метод «мокрого пятна»;
    • вычисляют коэффициент фильтрации;
    • определяют глубину проникания воды под давлением;
    • проводят экспресс-тест по воздухопроницаемости.

    Техническое оснащение показывает уровень лаборатории и ее возможности по получению результатов проверок.

    Определение параметров морозостойкости

    Требования к морозостойкости бетона вызваны климатическими факторами на территории России. Проектировщики указывают этот параметр в проектах, а службы контроля включают его в список испытаний на предварительном этапе строительства. Морозостойкость зависит от плотности смеси и отсутствия пор, в которых может скапливаться вода.

    Испытания на морозостойкость проводятся только в лабораториях. Работы регламентируются ГОСТ 10060-2012. Образцы замораживают в холодильных камерах до температуры от -18 С до -50 С. Затем бетонный кубик размораживают на воздухе или в водно-солевом растворе при t=+20C. Это считается полным циклом. После определенного количества циклов бетонный камень подвергают стандартной проверке на прочность с помощью гидравлического пресса.

    Лаборанты определяют количество циклов, при котором сохраняется марочная прочность. Результаты заносят в протокол испытаний. Без подписи ответственного лица документ не действителен.

    Маркировка смесей и готового бетона

    Маркировка бетона регулируется ГОСТ 7473. Она отражает свойства, которые заложены производителем. Разберём принятые обозначения на одном примере:

    БСТ В15 П4 F150 W6

    Аббревиатуры БСТ, БСМ, БСЛ означает тип бетонной смеси: тяжёлая, мелкозернистая или лёгкая. Эти сокращения приняты в отрасли и закреплены в ГОСТе.

    Буквой B обозначается класс по прочности в МПа.

    Буквой П, Ж, Р обозначают принадлежность смесей к группам по удобоукладываемости: подвижные, жёсткие, растекающиеся.

    Латинской буквой F маркируют параметр морозостойкости. Показывает, какое количество циклов замораживания-оттаивания выдерживает насыщенный водой бетон без потери прочности или массы.

    Латинская буква W в маркировке означает водонепроницаемость. Она сочетается с четными числами от 2 до 20. Единицей измерения этого параметра принято считать давление в МПа×10⁻¹. Этим показателем характеризуют максимальный водный напор, при котором бетон не пропускает воду.

    Проверка прочности бетона ультразвуком

    Ультразвуковой метод определения морозостойкости

    Concretes. Ultrasonic method of frost resistance determination

    Дата введения 2017-07-01

    Предисловие

    Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

    Сведения о стандарте

    1 РАЗРАБОТАН Акционерным обществом "Научно-исследовательский, проектно-конструкторский и технологический институт ВНИИжелезобетон" (АО "ВНИИжелезобетон") и Закрытым акционерным обществом "Институт "Оргэнергострой" (ЗАО ОЭС)

    2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

    3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 22 ноября 2016 г. N 93-П)

    За принятие проголосовали:

    Сокращенное наименование национального органа по стандартизации

    Минэкономики Республики Армения

    4 Приказом Федерального агентства по техническому регулированию и метрологии от 28 ноября 2016 г. N 1807-ст межгосударственный стандарт ГОСТ 26134-2016 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2017 г.

    6 ПЕРЕИЗДАНИЕ. Ноябрь 2019 г.

    Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

    В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

    1 Область применения

    Настоящий стандарт распространяется на тяжелые и мелкозернистые бетоны, а также на легкие бетоны марок по средней плотности D1500 и выше на цементном вяжущем по классификации ГОСТ 25192 и устанавливает ультразвуковой метод определения их морозостойкости.

    2 Нормативные ссылки

    В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

    ГОСТ 1942 1,2-Дихлорэтан технический. Технические условия

    ГОСТ 2874* Вода питьевая. Гигиенические требования и контроль за качеством

    * В Российской Федерации действует ГОСТ Р 51232-98 "Вода питьевая. Общие требования к организации и методам контроля качества".

    ГОСТ 10060 Бетоны. Методы определения морозостойкости

    ГОСТ 10180 Бетоны. Методы определения прочности по контрольным образцам

    ГОСТ 17622 Стекло органическое техническое. Технические условия

    ГОСТ 17624 Бетоны. Ультразвуковой метод определения прочности

    ГОСТ 25192 Бетоны. Классификация и общие технические требования

    3 Термины и определения

    В настоящем стандарте применены термины по ГОСТ 10060, а также следующие термины с соответствующими определениями:

    3.1 ультразвуковой метод определения морозостойкости бетона: Метод, основанный на оценке морозостойкости по точке перелома графика зависимости "число циклов замораживания и оттаивания - время распространения ультразвука".

    3.2 база прозвучивания: Расстояние между центрами рабочих поверхностей ультразвуковых преобразователей (излучателя и приемника) за вычетом толщины контактной среды (при ее наличии).

    3.3 критическое число циклов замораживания и оттаивания: Число циклов, соответствующее точке перелома (пересечения) прямых на графике зависимости "число циклов замораживания и оттаивания - время распространения ультразвука".

    3.4 контрольное число циклов замораживания и оттаивания: Число циклов замораживания и оттаивания, соответствующее марке бетона по морозостойкости.

    4 Общие положения

    4.1 Морозостойкость бетона определяют по результатам измерения времени распространения ультразвука в образцах в процессе их попеременного замораживания и оттаивания.

    4.2 Морозостойкость бетона оценивают по критическому числу циклов замораживания и оттаивания, начиная с которого происходит резкое увеличение времени распространения ультразвука в испытуемых образцах, соответствующее началу интенсивного разрушения бетона.

    4.3 Марку бетона по морозостойкости, определенной ультразвуковым методом, устанавливают сравнением критического числа циклов замораживания и оттаивания с контрольным числом циклов замораживания и оттаивания, приведенным в таблице 2.

    4.4 Морозостойкость бетона допускается определять ультразвуковым методом при удовлетворительных сопоставительных результатах испытаний бетона по настоящему стандарту и по ГОСТ 10060. Методика проведения сопоставительных испытаний - в соответствии с приложением А.

    Коэффициент перехода от результатов испытаний по настоящему стандарту к результатам испытаний по ГОСТ 10060 допускается определять в соответствии с приложением Б ГОСТ 10060.

    5 Аппаратура и дополнительное оборудование для испытаний

    5.1 При определении морозостойкости бетона ультразвуковым методом применяют приборы, предназначенные для измерения времени распространения ультразвука в бетоне, или специальные стенды, оснащенные дополнительным оборудованием.

    Перечень рекомендуемых ультразвуковых приборов и стендов приведен в приложении Б.

    Требования к дополнительному оборудованию приведены в приложении В.

    5.2 Приборы для измерения времени распространения ультразвука в бетоне должны соответствовать требованиям ГОСТ 17624 и обеспечивать цифровую индикацию результатов измерения с дискретностью не более 1,0 мкс.

    5.3 Акустический контакт между контролируемым образцом и ультразвуковыми преобразователями может осуществляться:

    - концентраторами ультразвуковых преобразователей без применения контактной среды;

    - щелевым способом с помощью контактной среды при толщине слоя контактной среды не более 5 мм, используя специальные стенды (таблица Б.1 приложения Б). В качестве контактной среды применяют питьевую воду по ГОСТ 2874 температурой (18±2)°C или 5%-ный раствор хлорида натрия.

    5.4 Расположение точек ввода ультразвуковых колебаний в зависимости от размеров образцов должно соответствовать приведенному на рисунке 1.

    - точки ввода на видимых гранях образца; - точки ввода на невидимых гранях образца; - направление прозвучивания; - направление укладки бетонной смеси

    Рисунок 1 - Схема расположения точек ввода ультразвуковых колебаний

    6 Подготовка к испытанию

    6.1 Отбор проб бетонной смеси, изготовление и маркировку образцов бетона проводят в соответствии с ГОСТ 10180.

    6.2 Для каждого контролируемого состава бетона изготовляют три образца. При внутрисерийном коэффициенте вариации прочности бетона при сжатии по ГОСТ 10180 более 5% следует изготовлять шесть параллельных образцов.

    Размеры образцов должны соответствовать требованиям ГОСТ 10180.

    Разброс значений средней плотности отдельных образцов в серии до их насыщения не должен превышать допускаемый по приложению Б ГОСТ 10060.

    6.3 Режимы хранения и насыщения образцов водой или 5%-ным раствором хлорида натрия следует принимать в соответствии с ГОСТ 10060.

    6.4 Воду следует предварительно дегазировать путем отстаивания в течение не менее 48 ч.

    7 Проведение испытания и обработка результатов

    7.1 Направление прозвучивания образцов должно быть перпендикулярно направлению укладки бетонной смеси.

    7.2 При использовании концентраторов ультразвуковых преобразователей образцы помещают на лабораторный стол и определяют в каждой паре точек (каждом канале прозвучивания) время распространения ультразвука при сквозном прозвучивании.

    Для обеспечения соосности концентраторов ультразвуковых преобразователей следует использовать предварительную разметку образцов по схеме, приведенной на рисунке 1, или шаблоны из листового органического стекла толщиной 3-5 мм по ГОСТ 17622 (рисунок 2).

    Соосность концентраторов должна быть обеспечена с погрешностью не более ±2 мм.

    7.3 При использовании специальных стендов образцы помещают в испытательную ванну, наполненную водой или 5%-ным раствором хлорида натрия (в зависимости от метода испытания), и определяют время распространения ультразвука в них поочередно по всем каналам прозвучивания.

    7.4 Суммарное время распространения ультразвука t в каждом образце вычисляют по формуле

    где n - число каналов прозвучивания;

    - время распространения ультразвука по i-му каналу прозвучивания, мкс.

    d - диаметр отверстия, равный диаметру концевой части концентратора с отклонением +0,5 мм

    Рисунок 2 - Шаблон для обеспечения соосности концентраторов ультразвуковых преобразователей для образцов размерами 100х100х100 мм

    7.5 Образцы подвергают попеременному замораживанию и оттаиванию по первому базовому, второму базовому и ускоренному или третьему ускоренному методам по ГОСТ 10060. Через указанное в таблице 1 число циклов замораживания и оттаивания в образцах проводят ультразвуковые измерения и для каждого образца определяют суммарное время распространения ультразвука t по формуле (1).

    Проверка прочности бетона ультразвуком

    ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

    Ультразвуковой метод определения
    прочности

    Concrete. Ultrasonic method
    of strength determination

    _________________________________________________________________
    Текст Сравнения ГОСТ 17624-87 с ГОСТ 17624-2012 см. по ссылке.
    - Примечание изготовителя базы данных.
    ____________________________________________________________________

    1. РАЗРАБОТАН И ВНЕСЕН Министерством промышленности строительных материалов СССР

    Ю.Н.Мизрохи, канд. техн. наук (руководитель темы); З.М.Брейтман; А.Я.Гойхман, канд. физ.-мат. наук; С.Р.Котляр, канд. техн. наук; А.С.Зальцман; П.С.Витюк; Д.М.Вайнблат; В.А.Клевцов, д-р техн. наук; Г.В.Сизов, канд. техн. наук; М.Г.Коревицкая, канд. техн. наук; В.В.Судаков, канд. техн. наук; В.Е.Гринберг; В.А.Волохов, канд. техн. наук; И.Э.Школьник, канд. техн. наук; Г.В.Шмаков, канд. техн. наук; И.И.Вайншток, канд. техн. наук; В.А.Дорф, канд. техн. наук; Р.О.Красновский, канд. техн. наук; М.Ю.Лещинский, канд. техн. наук; Г.Ф.Надарейшвили, канд. техн. наук; И.А.Нестеренко; И.Н.Нагорняк

    2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного строительного комитета СССР от 26.12.86 N 67

    4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

    Обозначение НТД, на который дана ссылка

    Номер пункта, подпункта, приложения

    3.3; 3.5; 3.14; приложения 3, 7

    Вводная часть; 4.1; 4.6; приложение 7

    * Здесь и далее по тексту. Не действует. В части определения прочности по образцам, отобранным из конструкций заменен ГОСТ 28570-90, в части определения прочности бетона по контрольным образцам заменен ГОСТ 10180-90 (заменен на ГОСТ 10180-2012). - Примечание изготовителя базы данных.

    5. ПЕРЕИЗДАНИЕ (август 1989 г.) с поправками.

    Настоящий стандарт распространяется на конструкционные тяжелый, легкий и плотный силикатный бетоны сборных и монолитных бетонных и железобетонных изделий, конструкций и сооружений (далее - конструкций) и устанавливает ультразвуковой импульсный метод (далее - ультразвуковой метод) определения прочности бетона классов В7,5 - В35 (марок М100 - М400) на сжатие, в том числе в процессе твердения бетонов в тепловых установках (кроме бетонов, изготовляемых автоклавной обработкой) или в естественных условиях.

    Прочность бетона монолитных конструкций определяют только способом сквозного прозвучивания.

    Контроль прочности бетона конструкций проводят по ГОСТ 18105.

    1. Общие положения

    1.1. Ультразвуковой метод применяют для определения прочности бетона: отпускной, передаточной, в установленном нормативно-технической и проектной документацией промежуточном и проектном возрастах, в процессе твердения, а также при экспертном контроле.

    1.2. Ультразвуковой метод основан на связи между скоростью распространения ультразвуковых колебаний и его прочностью.

    1.3. Ультразвуковые измерения в бетоне проводят способами сквозного или поверхностного прозвучивания в соответствии с приложением 1.

    1.4. Прочность бетона в конструкциях определяют по экспериментально установленным градуировочным зависимостям "скорость распространения ультразвука - прочность бетона" (далее - скорость - прочность) или "время распространения ультразвука - прочность бетона" (далее - время - прочность) в зависимости от способа прозвучивания.

    1.5. Прочность бетона определяют на участках конструкций, не имеющих видимых повреждений (отслоения защитного слоя, трещин, каверн и др.).

    1.6. Ультразвуковые испытания проводят при положительной температуре бетона.

    Допускается проведение ультразвуковых испытаний конструкций при отрицательной температуре бетона не ниже минус 10 °С при условии, что в процессе их хранения относительная влажность воздуха не превышала 70%.

    2. Средства контроля

    2.1. Ультразвуковые измерения проводят приборами, предназначенными для измерения времени распространения ультразвука в бетоне и аттестованными в установленном порядке по ГОСТ 8.383.

    2.2. Предел допускаемой абсолютной погрешности измерения времени распространения ультразвука на стандартных образцах, входящих в комплект прибора, не должен превышать значения

    где - время распространения ультразвука, мкс.

    2.3. Типы ультразвуковых приборов и их технические характеристики приведены в приложении 2.

    Допускается применение других ультразвуковых приборов, предназначенных для испытания бетона, удовлетворяющих требованиям пп. 2.1, 2.2.

    2.4. Приборы для контроля процессов ускоренного твердения бетона должны быть укомплектованы термостойкими преобразователями, которые крепят на бортоснастке формы, или акустическими зондами, погружаемыми в бетонную смесь.

    2.5. Между бетоном и рабочими поверхностями ультразвуковых преобразователей должен быть обеспечен надежный акустический контакт, для чего применяют вязкие контактные материалы (солидол по ГОСТ 4366, технический вазелин по ГОСТ 5774 и др.).

    Допускается применение переходных устройств или прокладок, обеспечивающих сухой способ акустического контакта и удовлетворяющих требованиям пп. 2.1, 2.2.

    Способ контакта должен быть одинаковым при контроле бетона в конструкции и установлении градуировочной зависимости, кроме случаев, предусмотренных п. 4.5.

    3. Подготовка испытания

    3.1. Подготовка испытания включает проверку используемых приборов в соответствии с инструкциями по эксплуатации и установку градуировочных зависимостей в соответствии с выбранным способом прозвучивания.

    3.2. Градуировочную зависимость "скорость - прочность" устанавливают при испытании конструкций способом сквозного прозвучивания. Градуировочную зависимость "время - прочность" устанавливают при испытании конструкций способом поверхностного прозвучивания.

    Допускается при испытании конструкций способом поверхностного прозвучивания использовать градуировочную зависимость "скорость - прочность" с учетом коэффициента перехода, определяемого в соответствии с приложением 3.

    3.3. Градуировочную зависимость устанавливают по результатам ультразвуковых измерений в бетонных образцах-кубах и механических испытаний тех же образцов.

    Механические испытания образца проводят по ГОСТ 10180 непосредственно после ультразвуковых измерений.

    При необходимости проведения ультразвуковых испытаний бетона конструкций непосредственно после термообработки (горячего) для определения отпускной прочности бетона этих конструкций после их остывания допускается устанавливать градуировочную зависимость по результатам ультразвуковых измерений горячих образцов и механических испытаний тех же образцов после их остывания.

    3.4. Градуировочную зависимость устанавливают отдельно по каждому виду нормируемой прочности, указанному в п. 1.1, для чего используют не менее 15 серий образцов-кубов.

    3.5. При установлении градуировочной зависимости для приемочного контроля образцы изготовляют в соответствии с требованиями ГОСТ 10180 в разные смены в течение не менее 3 сут из бетона того же номинального состава, по той же технологии, при том же режиме твердения, что и конструкции, подлежащие контролю.

    В случае применения на производстве способов и режимов уплотнения бетона конструкций, приводящих к изменению его состава за счет отжатия воды затворения, способ приготовления образцов необходимо указывать в нормативно-технической или проектной документациях на эти конструкции.

    Допускается изготовление до 40% общего числа образцов из бетонной смеси, состав которой отличается от номинального по цементно-водному отношению не более 0,4.

    3.6. При определении прочности бетона в процессе его ускоренного твердения для установления градуировочной зависимости в тепловую установку помещают образцы, число которых равно числу промежутков времени, на которое разбивают период изотермического прогрева. На каждом из этих этапов испытывают по одной серии образцов. Например, если период изотермического прогрева разбит на равные четыре промежутка времени, то в тепловую установку закладывают четыре серии образцов.

    Общее число образцов для установления градуировочной зависимости должно отвечать требованиям п. 3.4.

    3.7. При установлении градуировочной зависимости для определения прочности бетона в процессе естественного твердения сроки испытаний образцов необходимо выбирать из следующего параметрического ряда: 3, 7, 14, 28, 60, 90, 180, 365 сут. Образцы испытывают не менее чем в трех возрастах, один из которых является проектным. В каждом возрасте испытывают не менее 4 серий образцов.

    3.8. Время распространения ультразвука в образцах при установлении градуировочной зависимости "скорость - прочность" измеряют способом сквозного прозвучивания в соответствии с черт. 1.

    - схема испытания кубов способом сквозного прозвучивания; - схема испытания кубов
    способом поверхностного прозвучивания; - ультразвуковые преобразователи;

    1 - направление формования; 2 - направление испытания при сжатии; - база прозвучивания

    База прозвучивания должна быть не менее 100 мм. Допускается базу прозвучивания снизить до 70 мм при проведении контроля мелкозернистых бетонов и бетона на ранних стадиях твердения (скорость ультразвука менее 2000 м/с).

    3.9. Время распространения ультразвука в образцах при установлении градуировочной зависимости "время - прочность" измеряют способом поверхностного прозвучивания в соответствии с черт. 1.

    Минимальная база прозвучивания должна быть не менее 120 мм.

    Время распространения ультразвука следует измерять на поверхности, занимающей при изготовлении то же положение относительно формы и направления формования, что и контролируемая поверхность изделия.

    3.10. В зоне контакта ультразвуковых преобразователей с поверхностью бетона не должно быть раковин и воздушных пор глубиной более 3 мм и диаметром более 6 мм, а также выступов более 0,5 мм. Поверхность бетона должна быть очищена от пыли.

    3.11. Относительная погрешность измерения базы прозвучивания не должна превышать 0,5%.

    3.12. Число измерений времени распространения ультразвука в каждом образце должно быть при сквозном прозвучивании 3, при поверхностном - 4.

    3.13. Отклонение отдельного результата измерения времени распространения ультразвука в каждом образце от среднего арифметического значения результатов измерений для данного образца не должно превышать 2%.

    Результаты измерения времени распространения ультразвука в образцах, не удовлетворяющих этому условию, не учитывают при расчете среднего арифметического значения скорости распространения ультразвука в данной серии образцов. При наличии в серии двух образцов, не удовлетворяющих этому условию, результаты испытаний серии бракуют.

    3.14. Градуировочную зависимость устанавливают по единичным значениям скорости (времени) ультразвука и прочности бетона.

    За единичное значение прочности бетона принимают среднюю прочность бетона в серии образцов, определенную по ГОСТ 10180.

    За единичное значение скорости (времени) ультразвука принимают среднее арифметическое значение этих величин в серии образцов, используемых для определения единичного значения прочности.

    3.15. Установление, проверку градуировочной зависимости и оценку ее погрешности проводят в соответствии с методикой, приведенной в приложении 4.

    Примеры установления градуировочной зависимости и оценки погрешности определения прочности бетона приведены в приложении 5.

    3.16. Градуировочную зависимость устанавливают заново при изменении номинального состава бетона по ГОСТ 27006.

    Испытание прочности бетона при помощи ультразвука

    Ультразвуковое исследование бетона позволяет определять действительную прочность бетона с максимальной точностью. Данный метод по точности может уступить разве что разрушающему методу, но он гораздо более удобный и предоставляет более полную картину того, что происходит внутри бетона. Как уже говорилось ранее, некоторые приборы ультразвукового контроля прочности бетона имеют расширение в виде дефектоскопов, которые собирают данные обо всем объеме материала, т.е. они покажут внутренние трещины и пустоты в бетоне, о которых вы даже не подозревали, а они влияют на эксплуатационные характеристики здания. Эти приборы способны оценить не только однородность, но и пористость материала, а также зрелость бетона и наличие минеральных отложений внутри. Иначе говоря, вы знаете все, что происходит внутри бетона.


    Огромным преимуществом ультразвукового метода является то, что он совершенно не повреждает бетонную конструкцию, что позволяет отнести его к неразрушающим методам контроля бетона, о которых мы уже рассказывали вам ранее. Однако его отличие от прочих методов видно невооруженным глазом. Вам не надо бить, скалывать и отрывать бетон от поверхности. Да, прочностные характеристики от этого страдают минимально, поэтому существенных проблем при эксплуатации здания не возникает, однако некоторые эстетические повреждения все-таки имеются. Ультразвуковой же метод неразрушающего контроля бетона не оставляет никаких повреждений на поверхности исследуемого участка конструкции, тем самым становясь приоритетным для современных строителей.


    Рассмотрим же принцип работы прибора и весь процесс ультразвукового исследования бетона. Сначала в приборе генерируется импульс, который преобразовывается в волну и предается по бетону вплоть до приемника сигнала, который принимает, а затем усиливает сигнал, передавая данные на развертку, которая фактически отображает все данные исследования. За долгое время существования этого прибора были определены различные функции зависимости, в частности было написано более 10-ти уравнений, связывающих скорость передачи ультразвукового импульса и прочность бетона. В уравнениях присутствуют коэффициенты a, b и c, отражающие разные характеристики испытуемых конструкций. Нахождение этих параметров в уравнении делало их громоздкими, а также вынуждало проводить испытания образцов, полученных в лабораторных условиях из того же бетона, что и конструкция. Это создавало множество неудобств.


    Многие российские ученые думали над этим вопросом и в конце концов вывели следующую формулу: R=abV3,75. Коэффициент a выражал тип заполнителя, применяемого в конструкции, ведь для каждого заполнителя, будь то щебень или известняк, время распространения ультразвука разное. Коэффициент b является градуировочным. Для определения градуировочных зависимостей производится испытание не менее 15-ти кубов бетона с ребром 0,1 метра, которые твердеют в течение 5 суток.
    Но это все касается именно лабораторных испытаний бетона непосредственно перед производством строительных работ. Как применить этот метод для уже существующих конструкций? Лучше всего заказать услуги лаборатории, которая проведет точные исследования и даст вам полную картину прочностных характеристик бетонной конструкции. Если же вы сам решитесь на подобные исследования, то вам необходимо учитывать следующие моменты:
    1) Измерять конструкцию нужно таким образом, чтобы импульс был направлен перпендикулярно рабочей арматуре.
    2) Если производится поверхностное прозвучивание бетона, то необходимо провести 2 испытания, результаты должны отклоняться друг от друга не более чем на 1 %. Для сквозного – 1 прозвучивание.
    3) Необходимо получить градуировочные зависимости для исследуемого типа бетона, а для этого необходимо дополнительно провести испытания или разрушающим методом, или методом отрыва со скалыванием.
    4) Согласно ГОСТ 17624-2012, необходимо производить вычисления по формуле R=aH+b, где R – это прочность, H – скорость или время ультразвука, a и b – коэффициенты вычисляемой градуировочной зависимости.

    Схемы испытания бетона по ГОСТ 22690. Чем отличаются схемы А,Б,В и Г


    Коэффициент вариации показывает относительную изменчивость бетона, тем самым выявляя однородность величин. Он не должен превышать 33%, чтобы мы могли в точности знать однородность измерений или показателей прочности бетона.

    Рассчитать его достаточно сложно не искушенному в математических формулах человеку. Если говорить об этом простым языком, то нам нужно понимать, как прочность бетона, измеренная в конкретной точке, отличается от среднего арифметического показателя всех точек поверхности. Коэффициент даст нам возможность понять, насколько рискованно вводить такой бетон в конструкцию возводимого здания, соответствует ли класс бетона требованиям проекта. Это значит, что коэффициент вариации может дать нам информацию о качестве производства бетона, качестве самого материала и его реальной стоимости.

    Определение коэффициента вариации прочности бетона


    Бетон создается искусственным путем, при этом в нем редко используются только лишь однородные продукты (цемент, песок, вода). В большинстве случаев в бетон добавляется крупный заполнитель, который также влияет на прочностные характеристики в определенных точках. Фактически получается, что плотность бетона в различных его точках отличается от необходимой, и нам стоит провести проверку, чтобы убедиться, влияет ли это на качество бетона, и, если влияет, то каковы значения по разбросу этих показателей.

    Бетон классифицируется не только по структуре и плотности, но и по условиям уплотнения. В расчет также принимается назначение бетона и вид заполнителя. Все это определяет коэффициент вариации прочности бетона.

    Определение коэффициента вариации при производстве бетона непосредственно на заводе-изготовителе происходит путем отбора проб из массы в количестве 25-30 серий. Важную роль при заборе и подготовке образцов играют условия хранения: на этом этапе нам важно соблюсти условия по назначению бетона, иначе говоря, воссоздать условия твердения бетона непосредственно при возведении конструкции. В этом нам помогут специальные климатические камеры.

    По итогам испытания мы выводим коэффициент вариации, который есть частное от среднеквадратичного отклонения и среднего арифметического значения прочности бетона. Чем ниже этот показатель, тем однороднее, а значит, и прочнее будет бетон. По результатам испытания бетону присваивается класс, который влияет на проверку его соответствия проектным требованиям. Присвоенный класс фиксируется в акте испытания и прикрепляется к общему комплекту документов при возведении сооружения.

    Читайте также: