Кремний для производства цемента

Обновлено: 14.05.2024

Минеральные компоненты для производства цемента

Минеральные компоненты для производства цемента можно классифицировать следующим образом:

  • Инертные добавки-наполнители – не участвуют в процессе гидратации, вводятся для улучшения гранулометрического состава цемента, уплотнения его структуры (известняк)
  • Активные минеральные добавки – не обладают гидравлическими свойствами, но имеют пуццоланическую активность, т.е. взаимодействуют с гидроксидом кальция, который образуется в значительном количестве (15-20%) при гидратации основных клинкерных минералов, с образованием низкоосновных гидросиликатов кальция гелевидной структуры, которые уплотняют и упрочняют структуру цементного камня (трепел, опока, микрокремнезем, кислая зола-уноса)
  • Добавки со скрытыми гидравлическими свойствами – потенциально обладают вяжущими свойствами, но необходим активатор (щелочной или сульфатный), инициирующий процесс гидратации (доменный гранулированный шлак, основная зола-уноса)

96151781244466ff72d47faabf9f2a2c.jpg

Химический состав минеральных компонентов определяет их свойства. Чем больше оксида кальция и меньше оксида кремния содержит минеральный компонент, тем выше его гидравлическая активность. И наоборот, чем меньше оксида кальция и больше оксида кремния содержит минеральный компонент, тем выше его пуццоланическая активность. Ниже представлена диаграмма, в основании которой находятся три основных оксида (кальция, кремния и алюминия), которые определяют свойства активного минерального компонента.

Кислая зола-уноса

c990b1a009072819b5c48c54452ae8e4.jpg

35cea547869a27f8ca27c8a66101a12f.jpg

Доменный гранулированный шлак

Доменный гранулированный шлак является наиболее широко распространенным материалом в мировой практике для производства цемента, поскольку обладает уникальным сочетанием ряда свойств:

  • Скрытая гидравлическая активность
  • Пуццоланическая активность
  • Стабильность химического состава
  • Пониженное тепловыделение при гидратации
  • Положительно влияет на прочность цемента в поздний период

img-state3.jpg

Активность шлаков определяется их химическим составом, содержанием стекловидной фазы и тонкостью помола. Наиболее важное значение имеет химический состав шлаков, к которому предъявляются определенные требования по содержанию основных оксидов, в частности кальция, кремния, магния и титана. Основность шлака определяется отношением количества основных оксидов (кальция и магния) к кислым (кремния, алюминия и железа). Чем выше основность шлаков, тем выше их гидравлическая активность. Но наибольшее влияние на гидравлическую активность шлаков оказывает оксид титана, содержание которого должно быть минимальным. В таблице ниже представлены характеристики шлаков, основных российских производителей.

c1a558c26427641088443450a4b43de7.jpg

3c3b488ae34dc52a13174a7ccfb031a6.jpg

Химический состав шлаков определяет их гидравлическую активность, которая представлена в таблице ниже (испытания проводились по ГОСТ 30744 при водоцементном отношении равном 0.5).

Для выпуска цемента оптимальными по химическому составу являются шлаки производства Тулачермет и Уральская Сталь, поскольку они имеют высокое содержание оксида кальция при минимальном количестве оксида титана и, как следствие, высокую активность и лучшую размалываемость. Наименее пригодны для производства цемента шлаки Мечел и Северсталь, которые имеют высокое содержание оксида титана и низкую активность. Кроме того, шлак Мечел имеет низкое содержание аморфной фазы по причине отсутствия придоменной грануляции.

Известняк

Известняк является инертным минеральным компонентом, который также широко используется для производства цемента в мировой практике. Основная функция известняка состоит в оптимизации гранулометрического состава цемента, в уплотнении его структуры, снижении пустотности. Качество известняка оказывает большое влияние на качество цемента и может меняться в зависимости от сырьевой базы разных производителей. Чем выше содержание оксида кальция в известняке и меньше оксида магния и кремния, тем выше качество известняка. В таблице ниже представлены характеристики известняков заводов Ферзиково и Щурово, которые демонстрируют высокое качество известняка завода Ферзиково.


c4bd4a3c29255c22f651464ed0b3a9ae.jpg

Пуццоланы

Пуццоланы также используются при производстве цемента в качестве минерального компонента. Однако они распространены значительно меньше, чем зола, шлак и известняк, по причине повышенной водопотребности, которая негативно влияет на прочность и долговечность цемента.

Цемент: его состав и свойства

Сегодня существует огромное количество различных стройматериалов, которые имеют свои преимущества и недостатки. Но, пожалуй, самым популярным из них является цемент. Его используют практически на всех этапах строительства, начиная от монтажа фундамента и заканчивая внутренней отделкой стен. Объяснить его популярность достаточно просто: он обладает высокой прочностью, вяжущим эффектом, позволяет скрыть любые дефекты, с легкостью выдерживает повышенные нагрузки, не боится отрицательных температур. Можно смело сказать, что до сих пор аналогов цементу просто не существует. Именно поэтому он еще долгое время будет оставаться №1 среди всех видов стройматериалов.

Что такое цемент?

Цемент – это стройматериал, который выступает в качестве вяжущего элемента в различных растворах. В целом он представляет собой серый порошок. В отдельно взятых случаях он может иметь изумрудный оттенок. Итоговый цвет цементного порошка зависит от добавок, которые в нём содержатся.

Чтобы получить бетонную смесь, необходимо смешать цемент, воду, песок. При необходимости могут добавляться и другие компоненты. Их выбор зависит от целей и задач, которые необходимо решить. После добавления воды все компоненты образуют пластичную массу, которая со временем начинает затвердевать и трансформироваться в высокопрочный искусственный камень.

История появления цемента

Первое упоминание о цементе появилось примерно 2200 лет назад. В те времена цемент готовили из извести, пемзы, туфа и вулканического пепла. Полученный состав использовали в качестве скрепляющего вещества при строительстве каменных зданий. Также из цемента изготавливали цельнолитые конструкции. Но они были недостаточно прочными, из-за чего их надёжность оставляла желать лучшего.

С каждым столетием качество цемента повышалось, и в 1824 г. Джозеф Аспдин разработал аналог современного портландцемента. Он отличался прекрасным вяжущим эффектом, благодаря чему его можно было использовать для приготовления бетона. Затвердевший материал отличался повышенной прочностью и износостойкостью.

Однако, несмотря на то, что он прекрасно выдерживал сжатие, растяжения бетона приводили к его разрушению. Инженеры обратили внимание на тот факт, что металлические балки, наоборот, не боятся растяжений, но плохо работают на сжатие. В итоге практически одновременно несколько специалистов пришли к выводу, что необходимо объединить эти две особенности.

В начале 1850-ых годов французский инженер Жан-Луи Ламбо построил небольшие лодки. В качестве исходного материала он использовал бетон, который армировал железной сеткой. Спустя несколько лет Уильям Уилкинсон стал первым, кто решил армировать металлическими балками бетонные панели. Полученные ЖБ-конструкции использовали при строительстве 2-этажного дома.

В 1854-м г. инженер-строитель Франсуа Куанье также проводил эксперименты с железобетоном. Он первым решил связать стальную арматуру перекрытий с боковыми панелями. Однако в массовом производстве железобетон начал использовать человек, который вообще не имел отношения к строительству, – это Джозеф Монье. В 1846-ом г. его назначили садовником в саду неподалёку от Лувра. Для пересадки апельсиновых деревьев на зиму в теплицу ему нужны были прочные и надежные кадки. Монье решил сделать их из бетона, но у него ничего не получалось. Полученные кадки все время трескались, даже не застыв. В итоге он решил укрепить их металлическими стержнями.

Тогда цемент не отличался прочностью и разрушался при малейших перепадах температур. Но на удивление Монье, его изобретение за 3 года интенсивной эксплуатации так и не вышло из строя – ни одна кадка не растрескалась. После этого садовник начал изготавливать из бетона и другие элементы ландшафтного дизайна.

Через несколько лет на парижской выставке он получил патент за использование армированного бетона в искусственных водоёмах. После этого последовало еще несколько патентов, в том числе за открытие ЖБ- балок, шпал, мостовых конструкций и других изделий. Через несколько лет вчерашний садовник стал самым узнаваемым человеком во Франции. Под его руководством был построен мост в замке Шазелье и еще много других конструкций.

Спустя некоторое время Монье продал все патенты инженеру-строителю Густаву Вайсу. Он, в свою очередь, сместил арматуру в сторону, что позволило повысить прочность и износостойкость железобетонных панелей. Можно смело сказать, что изобретение армированного бетона стало одним из важнейших событий в истории строительства.

Что такое микрокремнезем?

Конденсированный микрокремнезем (сокращенно мк), если совсем просто, то это материал серого цвета от темного до светло-серого, не имеющий ярко выраженного запаха. С виду ничем не примечательная. пыль, но с характером и весьма полезными свойствами.

Размер частиц микрокремнезема очень маленький, они легко поднимаются и разносятся потоком воздуха. МК может слеживаться и стоять комом, налипая на оборудование и забивая трубопроводы. А еще он не встречается в природе. Конденсированный микрокремнезем получают в металлургическом производстве в виде побочного продукта или, проще говоря, в виде отхода.

Часть процесса переработки неуплотненного микрокремнезема. Транспортирование материала с помощью шнека из бункера.

Визуально мк чем-то напоминает цемент, но не более того, различий между материалами больше, чем сходства. Здесь важно другое. Благодаря своим особым химическим и физическим свойствам микрокремнезем активно используется в производстве изделий из бетона. Материал относится к группе пуццоланов, обладает т.н. пуццолановой активностью и активно взаимодействует с цементом, позволяя получить более прочный и долговечный бетон.

Микрокремнезем применяется совместно с пластификаторами, т.к. он поглощает достаточно большое количество воды, а это уменьшает подвижность и удобоукладываемость смеси и может в ряде случаев приводит к снижению прочностных характеристик бетона.

Химический состав микрокремнезема

Применение микрокремнезема

Работать с микрокремнеземом научились совсем недавно во второй половине 20 века. Изначально просто заменяя часть используемого цемента на такое же количество микрокремнезема, а в дальнейшем с развитием и совершенствованием технологий и получением более доступного и дешевого мк, как высокоактивную минеральную добавку. Теперь без его применения не обходится ни одна большая стройка по всему миру от строительства самых высоких небоскребов и мостов до морских сооружений и туннелей. Например, в Исландии уже на протяжении 30 лет весь бетон получают с добавлением микрокремнезема. Сказываются географическая расположенность и условия в которых должны работать бетонные сооружения.

К основным странам, поставляющим микрокремнезем, относятся Китай (мировой лидер), Норвегия, Южной Африка, США, Канада, Испания, страны СНГ (Россия, Казахстан и др.) и Франция.

Микрокремнезем в бетоне и строительстве

Одно из самых известных сооружений в котором активно использовался микрокремнезем - туннель под проливом Ла-Манш, соединяющий Англию с Францией, также материал использовался для строительства здания Бурдж-Халифа в ОАЭ (высота 828 метр), самого протяженного водный моста Гонконг — Чжухай — Макао и др.. В России микрокремнезем активно использовался и используется при строительстве комплекса небоскребов Москва-Сити, здания Лахта-Центра в Санкт-Петербурге, сухого дока для авианесущего крейсера Адмирал Кузнецов в Мурманске и многих других объектов.

Одним только крупным строительством использование микрокремнезема не ограничивается. МК активно применяют в создании сухих смесей и других различных строительных материалов. Различные элементы декора и оформления, такие как плитка (фасадная, тротуарная), мебель из бетона или, например, бетонные вазы также нередко изготавливают с добавлением микрокремнезема.

Из чего делают цемент

Чтобы создать цемент, применяют карбонатные (мел, известняк, мергель) и глинистые породы. При выборе породы учитываются их характеристики, определяющие стоимость и качество материала. Предпочтение отдается породам с аморфной структурой. В отличие от кристаллической она способна лучше контактировать с компонентами смеси.

Переходная порода, являющаяся чем-то средним между известняком и глиной, называется мергель. Ее плотность, рыхлость и влажность зависят от содержания глинистых элементов. Смеси, основой которых является мергель, используют для обустройства печей и каминов.

Мел представляет собой один из видов известняка. Это осадочная порода, отличающаяся мягкостью, поэтому ее очень легко измельчать и растирать. Благодаря этому мел широко используют в производстве цемента.

Также цемент производят из мергелистых и пористых известняковых пород, которые не имеют кремниевых примесей, а также не способны выдерживать слишком сильное сжатие. Кроме того, для изготовления цемента применяются суглинки, лесс, лессовидные суглинки, глинистый сланец.

В состав различных горных и глинистых пород входят минералы, разбухающие и становящиеся пластичными при добавлении жидкости. Если цемент производится сухим способом, то пластичность и вязкость глины позволяет формировать гранулы и брикеты. В случае высокого содержания песка и пыли в глине получается суглинок.

Глинистые сланцы – это один из видов горных пород, обладающих повышенной плотностью и твердостью. Они могут расслаиваться на тонкие пластины и отличаются низкой влажностью и постоянством состава.

Лессом называют горную породу, характеризующуюся рыхлостью и пористостью. Она состоит из тонких частичек кварца, полевого шпата и прочих силикатных соединений. Вещество имеет низкую пластичность.

Для изменения свойств цемента при его изготовлении применяют множество добавок. Речь идет о глиносодержащих, кремне- и глиноземистых компонентах. Также состав цемента зависит от расположения завода по его производству, от наличия сырья и от типа применяемого оборудования.

Кремний

image


Процессор? Песок? А какие у вас с этим словом ассоциации? А может Кремниевая долина?
Как бы там ни было, с кремнием мы сталкиваемся каждый день и если вам интересно узнать что такое Si и с чем его едят, прошу под кат.

Введение

Будучи студентом одного из московских вузов с специальностью «Наноматериалы», я хотел познакомить тебя, дорогой читатель, с самыми важными химическими элементами нашей планеты. Я долго выбирал с чего начать, углерод или кремний, и все таки решил остановиться именно на Si, потому что сердце любого современного гаджета основано именно на нем, если можно так выразиться конечно. Излагать мысли постараюсь предельно просто и доступно, написав этот материал я рассчитывал, в основном на новичков, но и более продвинутые люди смогут почерпнуть что-то интересное, так же хотелось бы сказать, что статья написана исключительно для расширения кругозора заинтересовавшихся. Итак, приступим.

Silicium

image

Кремний (лат. Silicium), Si, химический элемент IV группы периодической системы Менделеева; атомный номер 14, атомная масса 28,086.
В природе элемент представлен тремя стабильными изотопами: 28Si (92,27%), 29Si (4,68%) и 30Si (3,05%).
Плотность (при н.у.) 2,33 г/см³
Температура плавления 1688 K

Порошковый Si

Историческая справка

Соединения Кремния, широко распространенные на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений Кремния, связанное с их переработкой, — изготовление стекла — началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение Кремния — оксид SiO2 (кремнезем). В 18 веке кремнезем считали простым телом и относили к «землям» (что и отражено в его названии). Сложность состава кремнезема установил И. Я. Берцелиус. Он же впервые, в 1825, получил элементарный Кремний из фтористого кремния SiF4, восстанавливая последний металлическим калием. Новому элементу было дано название «силиций» (от лат. silex — кремень). Русское название ввел Г. И. Гесс в 1834.

image


Кремний очень распространен в природе в составе обыкновенного песка

Распространение Кремния в природе

По распространенности в земной коре Кремний — второй (после кислорода) элемент, его среднее содержание в литосфере 29,5% (по массе). В земной коре Кремний играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии Кремния важна исключительно прочная связь его с кислородом. Около 12% литосферы составляет кремнезем SiO2 в форме минерала кварца и его разновидностей. 75% литосферы слагают различные силикаты и алюмосиликаты (полевые шпаты, слюды, амфиболы и т. д.). Общее число минералов, содержащих кремнезем, превышает 400.

Физические свойства Кремния

Думаю тут останавливаться особо не стоит, все физические свойства имеются в свободном доступе, а я же перечислю самые основные.
Температура кипения 2600 °С
Кремний прозрачен для длинноволновых ИК-лучей
Диэлектрическая проницаемость 11,7
Твердость Кремния по Моосу 7,0
Хотелось бы сказать, что кремний хрупкий материал, заметная пластическая деформация начинается при температуре выше 800°С.
Кремний — полупроводник, именно поэтому он находит большое применение. Электрические свойства кремния очень сильно зависят от примесей.

Химические свойства Кремния

Тут много конечно можно сказать, но остановлюсь на самом интересном. В соединениях Si (аналогично углероду) 4-валентен.
На воздухе кремний благодаря образованию защитной оксидной пленки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400 °С, образуя оксид кремния (IV) SiO2.
Кремний устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот, легко растворяется в горячих растворах щелочей с выделением водорода.
Кремний образует 2 группы кислородсодержащих силанов — силоксаны и силоксены. С азотом Кремний реагирует при температуре выше 1000 °С, Важное практическое значение имеет нитрид Si3N4, не окисляющийся на воздухе даже при 1200 °С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, а так же для производства огнеупоров. Высокой твердостью, а также термической и химической стойкостью отличаются соединения Кремния с углеродом (карбид кремния SiC) и с бором (SiB3, SiB6, SiB12).

Получение Кремния

image

Я думаю это самая интересная часть, тут остановимся поподробнее.
В зависимости от предназначения различают:
1. Кремний электронного качества (т. н. «электронный кремний») — наиболее качественный кремний с содержанием кремния свыше 99,999 % по весу, удельное электрическое сопротивление кремния электронного качества может находиться в интервале примерно от 0,001 до 150 Ом•см, но при этом величина сопротивления должна быть обеспечена исключительно заданной примесью т. е. попадание в кристалл других примесей, хотя бы и обеспечивающих заданное удельное электрическое сопротивление, как правило, недопустимо.
2. Кремний солнечного качества (т. н. «солнечный кремний») — кремний с содержанием кремния свыше 99,99 % по весу, используемый для производства фотоэлектрических преобразователей (солнечных батарей).

3. Технический кремний — блоки кремния поликристаллической структуры, полученного методом карботермического восстановления из чистого кварцевого песка; содержит 98 % кремния, основная примесь — углерод, отличается высоким содержанием легирующих элементов — бора, фосфора, алюминия; в основном используется для получения поликристаллического кремния.

image

Кремний технической чистоты (95-98%) получают в электрической дуге восстановлением кремнезема SiO2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого кремния. Это требует предварительного синтеза чистейших исходных соединений кремния, из которых кремний извлекают путем восстановления или термического разложения.
Поликристаллический кремний («поликремний») — наиболее чистая форма промышленно производимого кремния — полуфабрикат, получаемый очисткой технического кремния хлоридными и фторидными методами и используемый для производства моно- и мультикристаллического кремния.
Традиционно поликристаллический кремний получают из технического кремния путём перевода его в летучие силаны (моносилан, хлорсиланы, фторсиланы) с последующими разделением образующихся силанов, ректификационной очисткой выбранного силана и восстановлением силана до металлического кремния.
Чистый полупроводниковый кремний получают в двух видах: поликристаллический (восстановлением SiCl4 или SiHCl3 цинком или водородом, термическим разложением SiI4 и SiH4) и монокристаллический (бестигельной зонной плавкой и «вытягиванием» монокристалла из расплавленного кремния — метод Чохральского).

Тут можно увидеть процесс выращивания кремния, методом Чохральского.

Метод Чохральского — метод выращивания кристаллов путём вытягивания их вверх от свободной поверхности большого объёма расплава с инициацией начала кристаллизации путём приведения затравочного кристалла (или нескольких кристаллов) заданной структуры и кристаллографической ориентации в контакт со свободной поверхностью расплава.

Применение Кремния

Специально легированный кремний широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, тиристоры; солнечные фотоэлементы, используемые в космических кораблях, а так же много всякой всячины).
Поскольку кремний прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике.
Кремний имеет разнообразные и все расширяющиеся области применения. В металлургии Si
используется для удаления растворенного в расплавленных металлах кислорода (раскисления).
Кремний является составной частью большого числа сплавов железа и цветных металлов.
Обычно Кремний придает сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании Кремний может вызвать хрупкость.
Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие кремний.
Кремнезем перерабатываются стекольной, цементной, керамической, электротехнической и другими отраслями промышленности.
Сверхчистый кремний преимущественно используется для производства одиночных электронных приборов (например процессор твоего компьютера) и однокристальных микросхем.
Чистый кремний, отходы сверхчистого кремния, очищенный металлургический кремний в виде кристаллического кремния являются основным сырьевым материалом для солнечной энергетики.
Монокристаллический кремний — помимо электроники и солнечной энергетики используется для изготовления зеркал газовых лазеров.

image


Сверхчистый кремний и продукт его производства

Кремний в организме

Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твердых скелетных частей и тканей. Особенно много кремния могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения оксида кремния (IV). В холодных морях и озерах преобладают биогенные илы, обогащенные кремнием, в тропических морях — известковые илы с низким содержанием кремния. Среди наземных растений много кремния накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание оксида кремния (IV) в зольных веществах 0,1-0,5%. В наибольших количествах кремний обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г кремния. При высоком содержании в воздухе пыли оксида кремния (IV) она попадает в легкие человека и вызывает заболевание — силикоз.

Из чего делают цемент: его состав и свойства

Цемент – распространенный строительный материал, используемый чаще всего в качестве вяжущего в строительных смесях и растворах. Представляет собой мелкодисперсный порошок серого цвета с зеленоватым или другим оттенком. После взаимодействия с водой цемент и продукты на его основе образуют пластичную массу, которая при твердении трансформируется в искусственный камень.


Сырье для изготовления цемента

Сырьем для производства цемента являются горные породы, добываемые открытым способом:

  • Карбонатные – мел, известняки, известняки-ракушечники, доломит, мергель, туф. В промышленном производстве используются в основном известняки. Точное количество компонента зависит от его свойств и минерального состава. Чем больше в составе породы веществ с кристаллической структурой, тем выше температура плавления.
  • Глинистые – глина, глинистые сланцы, лесс, суглинки, монтмориллонит. Этот компонент осадочного происхождения разбухает при контакте с водой. Цель применения глинистых веществ – повышение пластичности смесей и растворов на базе цементного вяжущего.
  • Добавки. Их перечень определяется в зависимости от свойств, которые необходимо получить. Обычно добавки содержать глинозем, железо, кремний. Для их изготовления используют различные производственные отходы – доменную пыль и другие.

Единой формулы химического состава цемента не существует, так как производители предлагают большое количество разновидностей этого строительного материала с различными эксплуатационными характеристиками.

Наиболее распространен в строительстве портландцемент – без минеральных добавок и с минеральными добавками.

Существуют определенные ограничения по минимально допустимым ических соединений, из которых состоит портландцемент:

Химические составы в процентах некоторых типов цементов

Химический состав, % Характеристика
CaO SiO2 Al2O3 Fe2O3 Другие оксиды
Портландцемент
63…66 21…24 4…8 2…4 3…5 Нормально твердеющий
Глиноземистый цемент
35…43 5…10 39…47 2…15 1,5…2,5 Быстро твердеющий

Что такое цементный клинкер?

Основной компонент производства цемента – клинкер. Это промежуточный полуфабрикат, получаемый обжигом смеси известняка (мела, мергеля или других пород) в количестве 75% и 25% глины. Сырьевые компоненты плавятся с образованием гранул. Клинкер перемалывают и соединяют с молотыми добавками.

Весь процесс изготовления цементного вяжущего можно условно разделить на 3 этапа:

  • изготовление клинкера обжигом – основной процесс, наиболее затратный и трудоемкий;
  • помол клинкера до образования тонкодисперсного порошка;
  • смешивание клинкерного порошка с порошкообразными добавками.

Изготовление клинкера делится на следующие этапы:

  • доставка сырья для клинкера на цементный завод;
  • измельчение сырьевых компонентов;
  • смешивание компонентов в пропорциях, указанных в техдокументации, для последующего обжига.

Технологии производства цемента

Существует несколько технологий производства цемента.


Конкретный вид производства определяется тем, из чего делают цемент:

  • Мокрый. Клинкер изготавливается из мела, глины и воды. К измельченным компонентам добавляют воду. Влажную смесь (шлам) отправляют на обжиг. Полученный после обжига продукт транспортируют в холодильник. После охлаждения его измельчают, смешивают с добавками для получения необходимых свойств вяжущего. Эта технология требует финансовых затрат, поэтому производители в основном применяют другие. Но при необходимости получения цемента с прекрасными эксплуатационными свойствами применяют именно этот способ, позволяющий тонко корректировать состав сырья. Корректировка состава осуществляется в специальных бассейнах при температуре 1000°C.
  • Сухой. Все компоненты – известняк, глина, добавки дробятся в сухом виде. Готовые порошки смешиваются в закрытых боксах с помощью подачи воздуха. Эта методика часто используется производителями, благодаря простоте реализации и относительно невысоким затратам. При производстве нет водяных испарений. Такой способ требует небольших затрат энергоносителей. Он оптимален для однородных сырьевых компонентов.
  • Комбинированный. Эта технология сочетает элементы сухого и мокрого способов. Одна из этих технологий является основной, а вторая дополнительной. Если основной является мокрая методика, то сначала изготавливают сырьевой шлам, корректируют его состав, затем его обезвоживают и обжигают в печи, предназначенной для сухой технологии.

Цемент, независимо от того, из чего он состоит и каким способом приготовлен, складируется в специальных башнях – силосах, в которых, благодаря проветриванию, материал не слеживается, сохраняя рабочие характеристики.


К потребителю цемент поступает навалом или расфасованным в бумажные мешки.

Производство бесклинкерного цемента

Сырьем для бесклинкерного цемента являются доменный или гидравлические шлаки, активаторы и другие дополнительные компоненты. Смесь из подготовленных и взятых в нужных пропорциях компонентов, дробят и перемалывают до мелкодисперсного со стояния. Для бесклинкерного цемента характерны:

  • устойчивость к различным воздействиям окружающей среды;
  • экономичность производства, благодаря невысоким энергозатратам;
  • утилизация отходов металлургических и других производств, что положительно влияет на состояние окружающей среды;
  • различные цвета и свойства конечного продукта, которые можно получать без изменения основных этапов технологического процесса и привлечения дополнительного оборудования.

Основное оборудование для изготовления цемента

При производстве вяжущего используются следующие основные виды оборудования:

  • техника для добычи сырья и его транспортировки к месту изготовления;
  • линия дробления сырья;
  • печи для высокотемпературной обработки;
  • линия дробления полученного клинкера, дозирования и смешивания молотого клинкера с добавками;
  • оборудование для фасовки готового продукта в бумажные мешки.


Типы цемента и сферы их использования

Выпускается множество разновидностей вяжущего с разными эксплуатационными и декоративными характеристиками. Основные виды:


  • Портландцемент. Этот тонкодисперсный порошок серого цвета с зеленоватым оттенком является наиболее распространенным строительным материалом, широко используемым в индивидуальном, масштабном жилищном и промышленном строительстве. Отдельно не применяется. Выступает компонентом строительных смесей и растворов. В сочетании с песком и щебнем используется при производстве бетонных смесей. Из цемента и песка изготавливают сухие строительные смеси, поступающие в продажу фасованными в мешки, или пластичные цементно-песчаные растворы, доставляемые на строительную площадку в виде, готовом к применению. Пластифицирующие добавки регулируют время схватывания раствора и другие характеристики конечного продукта.
  • Сульфатостойкий. Устойчив к химически активным средам. Применяется для бетонирования подземных и подводных конструкций.
  • Глиноземный. В состав добавляют гипс и глиноземистый шлак, благодаря котором вяжущее быстро схватывается и приобретает марочную прочность. Глиноземный цемент используется при строительстве конструкций, работающих в условиях высокой влажности.
  • Кислотоупорный. При его производстве используются кварцевый песок и кремнефтористый натрий. В качестве жидкости для затворения используется не вода, а жидкое стекло.
  • Шлакопортландцемент. В состав этого вяжущего добавляют гранулы шлака (примерно 25%). Материал применяется в крупномасштабном строительстве.

Андрей Васильев

Автор: Андрей Васильев
  • Строитель с 20-летним стажем
  • Эксперт завода «Молодой Ударник»

В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.

Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.

Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.

Из чего делают цемент: его состав и свойства

Цемент – распространенный строительный материал, используемый чаще всего в качестве вяжущего в строительных смесях и растворах. Представляет собой мелкодисперсный порошок серого цвета с зеленоватым или другим оттенком. После взаимодействия с водой цемент и продукты на его основе образуют пластичную массу, которая при твердении трансформируется в искусственный камень.


Сырье для изготовления цемента

Сырьем для производства цемента являются горные породы, добываемые открытым способом:

  • Карбонатные – мел, известняки, известняки-ракушечники, доломит, мергель, туф. В промышленном производстве используются в основном известняки. Точное количество компонента зависит от его свойств и минерального состава. Чем больше в составе породы веществ с кристаллической структурой, тем выше температура плавления.
  • Глинистые – глина, глинистые сланцы, лесс, суглинки, монтмориллонит. Этот компонент осадочного происхождения разбухает при контакте с водой. Цель применения глинистых веществ – повышение пластичности смесей и растворов на базе цементного вяжущего.
  • Добавки. Их перечень определяется в зависимости от свойств, которые необходимо получить. Обычно добавки содержать глинозем, железо, кремний. Для их изготовления используют различные производственные отходы – доменную пыль и другие.

Единой формулы химического состава цемента не существует, так как производители предлагают большое количество разновидностей этого строительного материала с различными эксплуатационными характеристиками.

Наиболее распространен в строительстве портландцемент – без минеральных добавок и с минеральными добавками.

Существуют определенные ограничения по минимально допустимым ических соединений, из которых состоит портландцемент:

Химические составы в процентах некоторых типов цементов

Химический состав, % Характеристика
CaO SiO2 Al2O3 Fe2O3 Другие оксиды
Портландцемент
63…66 21…24 4…8 2…4 3…5 Нормально твердеющий
Глиноземистый цемент
35…43 5…10 39…47 2…15 1,5…2,5 Быстро твердеющий

Что такое цементный клинкер?

Основной компонент производства цемента – клинкер. Это промежуточный полуфабрикат, получаемый обжигом смеси известняка (мела, мергеля или других пород) в количестве 75% и 25% глины. Сырьевые компоненты плавятся с образованием гранул. Клинкер перемалывают и соединяют с молотыми добавками.

Весь процесс изготовления цементного вяжущего можно условно разделить на 3 этапа:

  • изготовление клинкера обжигом – основной процесс, наиболее затратный и трудоемкий;
  • помол клинкера до образования тонкодисперсного порошка;
  • смешивание клинкерного порошка с порошкообразными добавками.

Изготовление клинкера делится на следующие этапы:

  • доставка сырья для клинкера на цементный завод;
  • измельчение сырьевых компонентов;
  • смешивание компонентов в пропорциях, указанных в техдокументации, для последующего обжига.

Технологии производства цемента

Существует несколько технологий производства цемента.


Конкретный вид производства определяется тем, из чего делают цемент:

  • Мокрый. Клинкер изготавливается из мела, глины и воды. К измельченным компонентам добавляют воду. Влажную смесь (шлам) отправляют на обжиг. Полученный после обжига продукт транспортируют в холодильник. После охлаждения его измельчают, смешивают с добавками для получения необходимых свойств вяжущего. Эта технология требует финансовых затрат, поэтому производители в основном применяют другие. Но при необходимости получения цемента с прекрасными эксплуатационными свойствами применяют именно этот способ, позволяющий тонко корректировать состав сырья. Корректировка состава осуществляется в специальных бассейнах при температуре 1000°C.
  • Сухой. Все компоненты – известняк, глина, добавки дробятся в сухом виде. Готовые порошки смешиваются в закрытых боксах с помощью подачи воздуха. Эта методика часто используется производителями, благодаря простоте реализации и относительно невысоким затратам. При производстве нет водяных испарений. Такой способ требует небольших затрат энергоносителей. Он оптимален для однородных сырьевых компонентов.
  • Комбинированный. Эта технология сочетает элементы сухого и мокрого способов. Одна из этих технологий является основной, а вторая дополнительной. Если основной является мокрая методика, то сначала изготавливают сырьевой шлам, корректируют его состав, затем его обезвоживают и обжигают в печи, предназначенной для сухой технологии.

Цемент, независимо от того, из чего он состоит и каким способом приготовлен, складируется в специальных башнях – силосах, в которых, благодаря проветриванию, материал не слеживается, сохраняя рабочие характеристики.


К потребителю цемент поступает навалом или расфасованным в бумажные мешки.

Производство бесклинкерного цемента

Сырьем для бесклинкерного цемента являются доменный или гидравлические шлаки, активаторы и другие дополнительные компоненты. Смесь из подготовленных и взятых в нужных пропорциях компонентов, дробят и перемалывают до мелкодисперсного со стояния. Для бесклинкерного цемента характерны:

  • устойчивость к различным воздействиям окружающей среды;
  • экономичность производства, благодаря невысоким энергозатратам;
  • утилизация отходов металлургических и других производств, что положительно влияет на состояние окружающей среды;
  • различные цвета и свойства конечного продукта, которые можно получать без изменения основных этапов технологического процесса и привлечения дополнительного оборудования.

Основное оборудование для изготовления цемента

При производстве вяжущего используются следующие основные виды оборудования:

  • техника для добычи сырья и его транспортировки к месту изготовления;
  • линия дробления сырья;
  • печи для высокотемпературной обработки;
  • линия дробления полученного клинкера, дозирования и смешивания молотого клинкера с добавками;
  • оборудование для фасовки готового продукта в бумажные мешки.


Типы цемента и сферы их использования

Выпускается множество разновидностей вяжущего с разными эксплуатационными и декоративными характеристиками. Основные виды:


  • Портландцемент. Этот тонкодисперсный порошок серого цвета с зеленоватым оттенком является наиболее распространенным строительным материалом, широко используемым в индивидуальном, масштабном жилищном и промышленном строительстве. Отдельно не применяется. Выступает компонентом строительных смесей и растворов. В сочетании с песком и щебнем используется при производстве бетонных смесей. Из цемента и песка изготавливают сухие строительные смеси, поступающие в продажу фасованными в мешки, или пластичные цементно-песчаные растворы, доставляемые на строительную площадку в виде, готовом к применению. Пластифицирующие добавки регулируют время схватывания раствора и другие характеристики конечного продукта.
  • Сульфатостойкий. Устойчив к химически активным средам. Применяется для бетонирования подземных и подводных конструкций.
  • Глиноземный. В состав добавляют гипс и глиноземистый шлак, благодаря котором вяжущее быстро схватывается и приобретает марочную прочность. Глиноземный цемент используется при строительстве конструкций, работающих в условиях высокой влажности.
  • Кислотоупорный. При его производстве используются кварцевый песок и кремнефтористый натрий. В качестве жидкости для затворения используется не вода, а жидкое стекло.
  • Шлакопортландцемент. В состав этого вяжущего добавляют гранулы шлака (примерно 25%). Материал применяется в крупномасштабном строительстве.

Андрей Васильев

Автор: Андрей Васильев
  • Строитель с 20-летним стажем
  • Эксперт завода «Молодой Ударник»

В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.

Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.

Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.

Читайте также: