Коэффициент теплопроводности жаростойкого бетона

Обновлено: 06.05.2024

Коэффициент теплопроводности жаростойкого бетона

Общие технические условия

Castable refractories. General specifications

Дата введения 2019-04-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2015 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Обществом с ограниченной ответственностью "Научно-технический центр "Огнеупоры" (ООО "НТЦ "Огнеупоры")

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 28 сентября 2018 г. N 112-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Беларусь

4 Приказом Федерального агентства по техническому регулированию и метрологии от 9 ноября 2018 г. N 979-ст межгосударственный стандарт ГОСТ 34470-2018 введен в действие в качестве национального стандарта Российской Федерации с 1 апреля 2019 г.

5 ВВЕДЕН ВПЕРВЫЕ

1 Область применения

Настоящий стандарт распространяется на огнеупорные бетоны, предназначенные для изготовления огнеупорных изделий и для изготовления и ремонта футеровок различных тепловых агрегатов, и устанавливает общие технические требования к ним.

Примечание - К огнеупорным бетонам относят огнеупорные бетонные смеси и массы, предназначенные для изготовления огнеупорных бетонных изделий и для изготовления и ремонта огнеупорных футеровок, а также огнеупорные бетонные изделия и огнеупорные футеровки на разных стадиях затвердевания (схватывания).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.3.009-76 Система стандартов безопасности труда. Работы погрузочно-разгрузочные. Общие требования безопасности

ГОСТ 12.4.010-75 Система стандартов безопасности труда. Средства индивидуальной защиты. Рукавицы специальные. Технические условия

ГОСТ 12.4.253-2013 (EN 166:2002) Система стандартов безопасности труда. Средства индивидуальной защиты глаз. Общие технические требования

ГОСТ 17.0.0.01-76 Система стандартов в области охраны природы и улучшения использования природных ресурсов. Основные положения

ГОСТ 17.2.3.02-2014 Правила установления допустимых выбросов загрязняющих веществ промышленными предприятиями

ГОСТ 2409-2014 Огнеупоры. Метод определения кажущейся плотности, открытой и общей пористости, водопоглощения

ГОСТ 2642.0-2014 Огнеупоры и огнеупорное сырье. Общие требования к методам анализа

ГОСТ 2642.1-2016 Огнеупоры и огнеупорное сырье. Методы определения содержания влаги

ГОСТ 2642.2-2014 Огнеупоры и огнеупорное сырье. Метод определения относительного изменения массы при прокаливании

ГОСТ 2642.3-2014 Огнеупоры и огнеупорное сырье. Методы определения оксида кремния (IV)

ГОСТ 2642.4-2016 Огнеупоры и огнеупорное сырье. Методы определения оксида алюминия

ГОСТ 2642.5-2016 Огнеупоры и огнеупорное сырье. Методы определения оксида железа (III)

ГОСТ 2642.6-2017 Огнеупоры и огнеупорное сырье. Методы определения оксида титана (IV)

ГОСТ 2642.7-2017 Огнеупоры и огнеупорное сырье. Методы определения оксида кальция

ГОСТ 2642.9-2018 Огнеупоры и огнеупорное сырье. Методы определения оксида хрома (III)

ГОСТ 2642.10-2018 Огнеупоры и огнеупорное сырье. Методы определения оксида фосфора (V)

ГОСТ 2642.11-2018 Огнеупоры и огнеупорное сырье. Метод определения оксидов калия и натрия

ГОСТ 2642.12-2018 Огнеупоры и огнеупорное сырье. Методы определения оксида марганца (II)

ГОСТ 2642.13-2018 Огнеупоры и огнеупорное сырье. Метод определения оксида бора

ГОСТ 2642.14-86 Огнеупоры и огнеупорное сырье. Метод определения двуокиси циркония

ГОСТ 2991-85 Ящики дощатые неразборные для грузов массой до 500 кг. Общие технические условия

ГОСТ 4069-69 Огнеупоры и огнеупорное сырье. Методы определения огнеупорности

ГОСТ 4070-2014 Изделия огнеупорные. Метод определения температуры деформации под нагрузкой

ГОСТ 4071.1-94 (ИСО 10059-1-92) Изделия огнеупорные с общей пористостью менее 45%. Метод определения предела прочности при сжатии при комнатной температуре

ГОСТ 4071.2-94 (ИСО 8895-86) Изделия огнеупорные теплоизоляционные. Метод определения предела прочности при сжатии при комнатной температуре

ГОСТ 5402.2-2000 (ИСО 2477-87) Изделия огнеупорные теплоизоляционные. Метод определения остаточных изменений размеров при нагреве

ГОСТ 5959-80 Ящики из листовых древесных материалов неразборные для грузов массой до 200 кг. Общие технические условия

ГОСТ 7875.0-2018 Изделия огнеупорные. Общие требования к методам определения термической стойкости

ГОСТ 7875.1-2018 Изделия огнеупорные. Метод определения термической стойкости на кирпичах

ГОСТ 7875.2-2018 Изделия огнеупорные. Метод определения термической стойкости на образцах

ГОСТ 7933-89 Картон для потребительской тары. Общие технические условия

ГОСТ 8179-98 (ИСО 5022-79) Изделия огнеупорные. Отбор образцов и приемочные испытания

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 12170-85 Огнеупоры. Стационарный метод измерения теплопроводности

ГОСТ 12730.1-78 Бетоны. Методы определения плотности

ГОСТ 24717-2004 Огнеупоры и огнеупорное сырье. Маркировка, упаковка, транспортирование и хранение

ГОСТ 26381-84 Поддоны плоские одноразового использования. Общие технические условия

ГОСТ 26565-85 Огнеупоры неформованные. Методы отбора и подготовки проб

ГОСТ 27707-2007 Огнеупоры неформованные. Методы определения зернового состава

ГОСТ 28584-90 Огнеупоры и огнеупорное сырье. Метод определения влаги

ГОСТ 30762-2001 Изделия огнеупорные. Методы измерений геометрических размеров, дефектов формы и поверхностей

ГОСТ 33757-2016 Поддоны плоские деревянные. Технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 огнеупорный бетон: Огнеупор в твердом, жидком или сыпучем состоянии, состоящий из огнеупорного заполнителя, вяжущего и, при необходимости, жидкости затворения и добавок.

3.1.1 огнеупорный керамобетон: Разновидность огнеупорного бетона, в котором вместо огнеупорного цемента используют высококонцентрированную вяжущую суспензию (ВКВС).

3.2 дефлокулирующая добавка (дефлокулянт): Поверхностно-активная добавка, предотвращающая слипание мелких частиц в огнеупорной бетонной массе и обеспечивающая ее текучесть.

3.3 огнеупорная бетонная смесь: Огнеупорная смесь, состоящая из огнеупорного заполнителя различных фракций, огнеупорного вяжущего и, при необходимости, добавок, требующая введения жидкости.

3.3.1 плотная огнеупорная бетонная смесь: Огнеупорная бетонная смесь, предназначенная для изготовления плотных огнеупорных бетонных изделий и футеровок.

3.3.2 теплоизоляционная огнеупорная бетонная смесь: Огнеупорная бетонная смесь, предназначенная для изготовления теплоизоляционных огнеупорных бетонных изделий и футеровок, как правило, с пористым или полым огнеупорным заполнителем.

3.4 огнеупорная бетонная масса: Огнеупорная масса, состоящая из огнеупорного заполнителя, огнеупорного вяжущего, жидкости и, при необходимости, добавок, готовая к использованию.

3.4.1 плотная огнеупорная бетонная масса: Огнеупорная бетонная масса, предназначенная для изготовления плотных огнеупорных бетонных изделий и футеровок, готовая к использованию.

Особенности огнеупорного бетона и его характеристики

Бетонный блок

Материалы

Огнеупорный бетон – один из лучших строительных материалов с точки зрения пожарной безопасности. В отличие от обычного, он не разрушается от высоких температур и открытого пламени. Огнеупорный состав подходит для конструкций, которые будут работать в горячих и огнеопасных условиях.

Содержание

Что такое огнеупорный бетон

Огнеупорный бетон

Бетон – негорючий материал, но при нагревании он теряет прочность и связи с арматурой, трескается, а при длительном нагревании – полностью разрушается. Перепад температур во время тушения огня разрушает бетонные конструкции еще быстрее. С обычным составом такой процесс происходит при 200°С. Жаропрочным считается бетонный блок, который выдерживает более высокие температуры – 2200°С и воздействие открытого пламени.

Квалификационные признаки, назначение

Жаростойкий бетон разрушается при нагреве от 1580°. Составы более высокого класса выдерживают нагрев до 1770° и 2200°. Потери прочности не происходит ни при нагреве, ни при резком охлаждении. Способность выдерживать высокие температуры позволяет относить смесь к тому или иному классу жаропрочности.

Бетонный дымоход

Из жаропрочных бетонных смесей делают печи, камины, дымоходы и бани – домашние и промышленные. Им укрепляют стены и пол частных жилых домов, чтобы избежать разрушения при пожаре. В промышленности из огнестойкого материала делают стены печей для обжига кирпича и других материалов, дымовые трубы, вентиляцию в горячих цехах.

Использовать жаропрочный бетон в строительстве вместо обычного нецелесообразно. Он значительно дороже и сложнее в производстве, хуже выдерживает морозы, а способность выдерживать нагрев выше 200° нужна крайне редко.

Виды, какой бывает

Разновидности огнестойкого бетона отличаются по составу, свойствам и рабочей температуре. Это накладывает отпечаток на их использование. По химическому составу составы делят на бесцементные, ультранизкоцементные, низкоцементные и среднецементные. Высокоцементных смесей среди огнеупорных составов не бывает. Это объясняет более низкую прочность и устойчивость к холодам.

Термостойкий бетон приобретает огнеупорные свойства не сразу при замешивании, а под воздействием высоких температур. Безобжиговая разновидность становится огнеупорной при 200°, которая разрушает обычный бетон. Такой материал хорошо использовать для небольших печей и дымоходов – он приобретает нужные свойства во время работы. Термообработанному составу требуется обжиг при температуре до 800°. Это делается на предприятиях, которые поставляют готовые бетонные блоки. Обожженным считается материал, который прошел обработку при температуре выше 800°.

По физическим свойствам

Физические свойства бетона зависят от его состава. Максимальное содержание цемента невысокое, применяются негорючие вяжущие составы и заполнители – именно они создают нужные огнеупорные свойства.

По цели применения и физическим свойствам бетон разделяют на:

  • Конструкционный (тяжелый). Обладает относительно низкой жаростойкостью, но выдерживает значительные механические нагрузки. Используется для создания опорных конструкций, обычно внутри помещения, заливки оснований печей и котлов, в том числе промышленных. Если предполагается использование при сверхвысоких температурах, требуется дополнительная изоляция.
  • Изоляционный (легкий). Обладает высокими огнеупорными свойствами, но низкой прочностью. Применяется для того, чтобы обезопасить от огня конструкции из других материалов, которые принимают на себя основную нагрузку.
  • Конструкционно-изоляционный (средний). Обладает средними огнеупорными качествами и умеренной механической прочностью. Может использоваться как для изоляции, так и для создания некоторых опорных конструкций.

Общая черта всех жаропрочных бетонов – низкая теплопроводность. Материал не только сохраняет свои свойства при высоких температурах и пожаре, но и не позволяет нагреваться другим конструкциям, менее устойчивым к огню. При работе с высокими температурами это снижает риск пожара и делает условия работы людей более комфортными. При пожаре – сдерживает распространение огня.

В зависимости от рабочей температуры эксплуатации

Типы огнеупорных составов по температурному режиму:

  • Умеренно жаропрочный (умеренные температуры) – до 1100°;
  • Жаропрочный (средние температуры) – до 1400°;
  • Огнеупорный (высокие температуры) – до 1700°;
  • Высокоогнеупорный (особо высокие температуры) – выше 1700°.

Применение каждой разновидности зависит от ее «любимой» температуры. Для большей прочности и безопасности можно сочетать несколько разных видов бетона. Так делают в промышленных печах, где основание сделано из умеренно жаропрочного материала, устойчивого к механическим нагрузкам, основа стен – из жаропрочного или огнеупорного, а внутренняя облицовка – из высокоогнеупорного материала.

Эксплуатационные характеристики, состав по ГОСТ 20910-90

В состав жаростойкого бетона входят 3 основных компонента – вяжущее средство, заполнитель и вода. Задача заполнителя – создать прочную основу бетонного блока, которая будет противостоять механическим нагрузкам. Для жаропрочных бетонов подходят:

Состав жаропрочного бетона

  • Шамотный песок;
  • Доменные шлаки;
  • Магнезит;
  • Пыль хромитовой руды;
  • Корунд;
  • Щебень;
  • Пемза.

Чем мельче элементы заполнителя, тем пластичнее бетон, а чем грубее – тем более он устойчив к нагрузкам.

Состав для термоустойчивого бетона

Вяжущее вещество соединяет частицы заполнителя между собой, дает дополнительную пластичность. Жаропрочность и устойчивость к морозам зависят от вида вяжущего. Для термоустойчивых бетонов применяются:

  • Глинозем (соединения алюминия);
  • Силикаты;
  • Портландцемент;
  • Жидкое стекло;
  • Пластификаторы.

Смеси для приготовления бетона продаются в строительных магазинах. Пропорции заполнителей и вяжущих веществ подобраны заранее, и хозяину или работникам остается только растворить смесь в воде и размешать ее. На упаковке указан состав и максимальные температуры, которые выдержит смесь.

Внимание! Портландцемент хорошо выдерживает нейтральную или щелочную среду, но плохо взаимодействует с кислой средой. Жидкое стекло без добавок портится от воды. Жидкое стекло с алюмосиликатами устойчиво к любым воздействиям.

Точный состав смеси регулирует ГОСТ. Он же определяет признаки, по которым готовый раствор можно отнести к жаропрочному или огнеупорному классу. Для этого измеряется деформация бетонного изделия при заданной температуре. Чем она сильнее, тем хуже теплозащитные свойства.

Как сделать своими руками

Проще всего сделать огнеупорный бетон из готовой сухой смеси. Тогда он будет сразу иметь нужные свойства, которые указаны на упаковке. Для приготовления достаточно развести смесь водой в заданных пропорциях. Добавлять какие-либо другие компоненты не нужно – это ухудшит свойства готовой смеси.

Если по каким-либо причинам нет возможности купить смесь в магазине, придется готовить ее самостоятельно из тех компонентов, которые имеются в распоряжении. Это менее желательный вариант – всегда есть риск ошибиться с пропорциями и получить недостаточно огнеупорный или недостаточно прочный бетон.

Состав и пропорции, особенности замешивания

Чтобы приготовить огнеупорный бетон своими руками, потребуются:

  • Заполнитель – керамзит, доменный шлак, кирпичный бой, базальт. Подойдет любой доступный негорючий твердый материал.
  • Вяжущее соединение – для печей и дымоходов в доме подойдет жидкое стекло, для бани и домашней печи – портландцемент. Сочетание жидкого стекла и алюмосиликатов подойдет для агрессивной среды;
  • Вода.
  1. Измельчить частицы заполнителя. Для этого подойдет любая высокая емкость и тяжелый предмет в качестве пестика. Получившиеся частицы должны быть не больше 25 мм, относительно одинакового размера. Чтобы получить результат, близкий к заводскому, нужно добиться 0,1-1 мм.
  2. Высушить заполнитель. Рассыпать частицы по ровному неглубокому строительному лотку. Если на улице сухо, тепло и безветренно, можно оставить лотки во дворе. Если погода не позволяет, лучше занести их в сухое теплое помещение. Обязательно исключить доступ детей и домашних животных. Заполнитель готов, когда при прикосновении к нему не мажется, сухой на ощупь.
  3. Внести вяжущее и тонкомолотые добавки. Их количество заранее отмеряется и вносится в заполнитель небольшими порциями. Работать нужно в респираторе и очках, чтобы бетонная пыль не попала в легкие.
  4. Внести воду и тщательно размешать. Воду отмеряют заранее, вливают кружкой. Для размешивания подойдет длинная деревянная палка. Размешивают плавными круговыми движениями в одну сторону, в перчатках, респираторе и очках. Готовая смесь должна быть однородной.

Огнеупорный бетон

Раствор остается жидким сутки. Если в помещении холодно и сухо, он твердеет быстрее, если жарко и влажно – медленнее. Замешивать раствор лучше прямо перед началом работы и в том количестве, которое будет потрачено за день.

Огнеупорный бетон – полезный, но сложный в изготовлении материал. Он подойдет для обустройства печи в частном доме или бане, но не годится в качестве основы для стен и потолка здания.

Сравнение теплопроводности строительных материалов


Материалы

Любой человек согласится, что дома должно быть всегда уютно: летом не жарко, зимой – тепло. За сохранение тепла и прохлады «отвечает» показатель теплопроходимости. Чем лучше перегородка проводит, то есть отдает тепло, тем быстрее он будет остывать и нагреваться. Стены и крыша дома должны иметь низкую проводность, а некоторые элементы, например, радиаторные батареи, могут быть хорошими проводниками. Узнать теплопроводность бетона и других смесей и блоков можно по таблицам или рассчитать по формуле.

Содержание

Что это такое

Теплопроводность строительных материалов играет важную роль при их выборе. Термин означает количество тепла, которое разные перегородки одинаковой толщины могут провести за единицу времени. Чем ниже показатель, тем хуже тепло проходит – плоскость плохо нагревается и медленно остывает.

Коэффициент проницаемости показывает, сколько тепла может пройти через 1 метр метровой стены при разнице температур в 1 градус. Единицей измерения является Вт/(м*С), где м – это метры, а С – градус Цельсия.

В зависимости от значения стройматериалы используют для разных целей: с низкой проводимостью применяют для утепления, чтобы дома не было холодно, с высокой – для отвода тепла и быстрого охлаждения, например, для батарей.

Обратите внимание! Плоскости с низким значением будут медленнее остывать. Это позволит сэкономить на отоплении.

Тепловое или термическое сопротивление – это величина, обратная теплопроходимости. Она отражает, насколько сильно перегородка мешает прохождению тепла. То есть чем выше сопротивление, тем ниже проводность – этот стройматериал можно использовать для утепления. Формула для расчета сопротивления

  • R – нормативное температурное сопротивление.
  • H – толщина в метрах.
  • λ – значение проводимости.

Величина измеряется в (м*С)/Вт, где м – метр, С- градус Цельсия.

Особенности выбора на основе этих показателей


Чтобы построить хороший, прочный дом важно не забывать про теплопроницаемость стен и потолков. Увидеть важность этого свойства можно в простом примере: стена из бетона толщиной в 30 сантиметров и перегородка из кирпича в 50 см одинаково справляются с теплопотерей. Плита из железобетона должна быть примерно в 3 раза толще плиты из керамзитобетона.

При выборе стоит помнить не только о показателе конкретного материала, но и об используемом утеплителе. Например, показатель пенополистирола – 0,031-0,05 Вт/(м*С), изолона – 0,031-0,037 Вт/(м*С). Для сравнения: теплопроводность железобетона плотностью 2,5 тонны на куб. метр – 1,7, а дерева – 0,2-0,23.

Стоит отметить, зачем вообще нужно определять этот показатель при строительстве. Специалистами рассчитана норма для разных климатических поясов России и для разных мест: для стен, крыш, перекрытий. Если выбранные стройматериалы не дотягивают до нормы СНиП, их необходимо утеплить.

Обратите внимание! Если при строительстве использовались несколько стройматериалов в одном месте (например, для крыши или пола), для определения итогового коэффициента все значения складываются.

Влияющие факторы

Если сравнить свойства одного и того же стройматериала в разных условиях, легко увидеть, что теплоизоляционный коэффициент будет разным. Различается величина также у разных марок, причем разница может быть довольно значимой.

На проводимость влияют следующие факторы:

  1. Плотность. При высокой плотности частицы расположены близко друг от друга, следовательно, передача тепла будет происходить довольно быстро. Легкие стройматериалы (например, керамзит) хуже отдают тепло, чем тяжелые.
  2. Пористость. Чем она выше, тем меньше тепла пропускается. Воздух отличается маленькой проводимостью, значит, чем больше отверстий в поверхности, тем слабее будет теплопередача.
  3. Структура самих пор. Большие, сообщающиеся между собой поры повышают проницаемость бетонной перегородки. Чтобы сохранить тепло внутри, лучше выбирать мелкие, замкнутые отверстия.
  4. Влажность. При намокании бетона или кирпича воздух вытесняется, заменяется жидкостью или становится влажным воздухом. Коэффициент увеличивается почти в 20 раз.
  5. Температура. Чем она выше, тем выше коэффициент.

Обратите внимание! Зимой, когда влага превращается в лед, теплопотери увеличиваются еще сильнее. Кроме того, промерзание ведет к разрушению.

Коэффициент материалов из бетона


Бетонный раствор – это неоднородная цементно-песчаная смесь, которая имеет сложную структуру. Его коэффициент зависит от конкретного состава.

Узнать теплопроводность бетона можно по таблицам или по характеристике конкретной марки. Средние значения следующие:

Точные данные теплопроводности бетонной стены зависят от конкретных марок и их характеристик.

Сравнение строительных материалов по толщине


Таблица теплопроводности строительных материалов позволит быстро просчитать, хватает ли коэффициента перекрытия, а также найти необходимую толщину. Также можно воспользоваться онлайн калькулятором на сайтах строительных материалов.

Обратите внимание! В таблицах зачастую присутствует не одно значение теплопроницаемости, а несколько. Основное дается для сухого стройматериала при испытании в лабораторных условиях по ГОСТу, другие – для различных условий эксплуатации, например, при сухом и влажном воздухе, при разных температурах.

Для самостоятельного расчета толщины стены можно воспользоваться формулой:

Показание R можно узнать в таблице «Строительная климатология», в которой для каждого региона даны свои значения. Показания λ даны в технических характеристиках материала.

Для Москвы R составляет 3,28. Если перегородки будут выполнены из железобетона (плотность 2,5 т/ куб. м, λ= 1,690), их толщина должна составить больше 5,5 метра.

Если взять керамзитобетон плотностью 1,8 т/куб. м. (λ = 0,66), величина «снизится» до 2,16 метров. Для пенобетона плотностью 1 т/куб. м. (λ = 0,29), размер составит меньше метра – 95 см.

Легко увидеть, что, чем выше показатель проводимости тепла, тем больше должна быть толщина. Чтобы уменьшить эту величину, их дополнительно оббивают более тонкими утеплителями.

При выборе материала для пола, стены, крыши или перегородки стоит обратить внимание на теплопроводность стройматериалов. Эта величина отвечает за проведение тепла через материал, то есть за то, как быстро будет нагреваться и остывать дом. Чем она ниже, тем хуже проходит тепло и тем медленнее здание будет промерзать.

СНиП 2.03.04-84. Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия . Часть 2

где М момент от собственного веса элемента.

1.23. Геометрические характеристики приведен­ного сечения предварительно напряженного железо­бетонного элемента (Ared, Sred, Ired) определяют по указаниям п. 1.15 с учетом продольной предвари­тельно напряженной арматуры S и S’ и влияния температуры на снижение модулей упругости арма­туры и бетона.

1.24. Усилия от воздействия температуры в ста­тически неопределимых предварительно напряжен­ных железобетонных конструкциях находят по указаниям пп. 1.32 и 1.33.

При определении усилий от воздействия темпера­туры жесткость элемента вычисляют по указаниям пп. 4.17 и 4.18.

1.25. При определении общего прогиба предвари­тельно напряженного железобетонного элемента необходимо учитывать прогиб, вызванный неравно­мерным нагревом бетона по высоте сечения эле­мента, по указаниям п. 4.16.

ДЕФОРМАЦИИ И УСИЛИЯ

ОТ ВОЗДЕЙСТВИЯ ТЕМПЕРАТУРЫ

1.26. Расчет деформаций, вызванных нагреванием и охлаждением бетонных и железобетонных эле­ментов, должен производиться в зависимости от наличия трещин в растянутой зоне бетона и распределения температуры бетона по высоте сечения элемента.

1.27. Для участков бетонного и железобетон­ного элемента, где в растянутой зоне не образуются трещины, нормальные к продольной оси элемента, деформации от нагрева следует рассчитывать согласно следующим указаниям:

а) сечение элемента приводится к более проч­ному бетону по указаниям п. 1.15, удлинение e t оси элемента и ее кривизну определяют по формулам:

Удлинение e ti оси i-той части бетонного сечения и ее кривизну (черт. 2) определяют по формулам:

Черт. 2. Схемы распределения

а — температуры бетона; б деформации удлинения от нагрева;

в — напряжения в бетоне от нагрева; г деформации укороче­ния от остывания;

д напряжения в бетоне от остывания при нелинейном изменении температуры

по высоте бетонного сечения элемента

Удлинение e s и e s соответственно арматуры S и S’ находят из формул:

В формулах (17) — (22): Ared, Ared,i, As,red, A’s,red, ybi, ys, y’s, Ired, Ired,i, yyi принимают по указаниям п. 1.15;

a bti и a bti+1 — коэффициенты, принимаемые по табл. 14 в зависимости от темпера­туры бетона более и менее нагретой грани i-той части сечения;

a st коэффициент, принимаемый по табл. 20 в зависимости от темпера­туры арматуры S и S’ ;

g t коэффициент надежности по темпера­туре, принимаемый при расчете по предельным состояниям: первой группы — 1,1; второй группы — 1.

При расчете бетонного сечения в формулах (17) и (18) удлинение арматуры e s и e s не учиты­вается;

б) при неравномерном нагреве бетона с прямо­линейным распределением температуры по высоте сечения элемента (черт. 3, а) удлинение оси эле­мента e е и ее кривизну допускается опреде­лять по формулам:

где tb и tb1 — температура бетона менее и более нагретой грани сечения, определяемая теплотехническим расчетом по указаниям пп. 1.34 -1.40;

a bt и a bt1 — коэффициенты, принимаемые в зависимости от температуры бетона менее и более нагретой грани сечения по табл. 14.

Черт. 3. Схемы распределения температур (1) и деформа­ций от неравномерного нагрева (2) и остывания (3) при прямолинейном изменении температур по высоте сечения элемента

а бетонного и железобетонного без трещин; б — железо­бетонного с трещинами в растянутой зоне, расположенной у менее нагретой грани; в то же, у более нагретой грани; г железобетонного с трещинами по всей высоте сечения

1.28. Для участков бетонного или железобетонного элемента, где в растянутой зоне бетона не образуются трещины, нормальные к продольной оси элемента, деформации от остывания следует рассчитывать согласно следующим указаниям:

а) сечение элемента приводится к более проч­ному бетону по указаниям п. 1.15; от усадки и ползучести бетона укорочение e csc оси элемента и ее кривизну определяют по формулам:

Укорочение e csc,i оси i-той части бетонного се­чения и ее кривизну находят по фор­мулам:

где Ared,i, Ared, ybi, Ired,i, Ired, hi, yyi — принимают по указаниям п. 1.15;

g t см. п. 1.27;

a csi и a csi+1 — коэффициенты, принимаемые по табл. 15 в зависимости от температуры более и менее нагретой грани i-той части сечения;

e ci — деформации ползучести бетона в i-той части сечения, определяе­мые по формуле (29) со зна­ком „ минус":

где s b,tem,i, s bi — напряжения сжатия в бетоне i-той части сечения от усилий, вызванных температурой и на­грузкой при нагреве, определяемые по формулам (32) и (33), в которых коэффициент принимается по табл. 12 для кратковременного нагрева с подъемом температуры 10 ° С/ч;

b bi коэффициент, принимаемый по табл. 10 в зависимости от температуры i-той грани сечения;

коэффициент, принимаемый по табл. 12 в зависимости от температуры i-той грани сечения для длительного нагрева;

б) при остывании неравномерно нагретого бетона с прямолинейным распределением температуры по высоте сечения элемента от усадки бетона укоро­чение e cs оси элемента и ее кривизну допускается определять по формулам:

где a cs и a cs1 — коэффициенты, принимаемые по табл. 15 в зависимости от температуры бетона менее и более нагретой грани сечения;

g t, tb, tb1 — принимают по указаниям п. 1.27.

1.29. Для участков бетонного и железобетонного элемента, где в растянутой зоне бетона не образу­ются трещины, нормальные к продольной оси элемента напряжения в бетоне грани i-той части сечения, следует определять:

растяжения при нагревании от нелинейного распределения температуры по формуле

сжатия при нагревании от кратковременных усилий по формуле

растяжения при остывании от усадки и ползу­чести бетона по формуле

где ybi, e t, — определяются соответственно по формулам (13), (17) и (18);

a bti, tbi принимают по указаниям п. 1.27;

Еb принимают по табл. 11;

a csi, b bi и — коэффициенты, принимаемые по табл. 10, 12 и 15 в зависи­мости от температуры бетона грани i-той части сечения;

M и N — момент и продольная сила, приложенная к центру тяжести сечения от воздействия нагруз­ки и температуры;

Аred и В — принимают соответственно указаниям пп. 1.15 и 4.17;

e ci, e csc и определяют соответственно по формулам (29), (25) и (26).

Если в формуле (32) напряжения имеют знак "минус", то в бетоне возникают напряжения сжатия и s btt,i заменяется s b,tem,i.

1.30. Для участков железобетонного элемента. где в растянутой зоне образуются трещины, нор­мальные к продольной оси элемента, деформации от нагрева следует рассчитывать согласно следую­щим указаниям:

а) для железобетонного элемента с трещинами в растянутой зоне, расположенной у менее нагретой грани сечения (черт. 3, б), удлинение e t оси эле­мента и ее кривизну определяют по фор­мулам:

б) для участков железобетонного элемента с трещинами в растянутой зоне бетона, расположен­ной у более нагретой грани сечения (черт. 3, в), удлинение e t оси элемента определяют по фор­муле (35) и ее кривизну — по формуле

в) для участков железобетонного элемента с трещинами по всей высоте сечения (черт. 3, г) удлинение e t оси элемента и ее кривизну определяют по формулам:

где ts, t’s температура арматуры S и S’;

tb — температура бетона сжатой грани сечения;

a stm, a ’stm — коэффициенты, определяемые по формуле (49) для арматуры S и S’;

a bt — коэффициент, принимаемый по табл. 14 в зависимости от температуры бетона более или менее нагретой грани сечения;

g t — принимается по указаниям п. 1.27;

a’ толщина защитного слоя более нагретой грани;

г) при равномерном нагреве железобетонною элемента кривизну оси элемента допуска­ется принимать равной нулю. В железобетонных элементах из обычного бетона при температуре арматуры до 100 ° С и из жаростойкого бетона при температуре арматуры до 70 ° С для участков с трещинами в растянутой зоне бетона допуска­ется определять удлинение оси элемента e t и ее кривизну по формулам (23) и (24) как для бетонных элементов без трещин.

1.31. Для участков железобетонных элементов, где в растянутой зоне образуются трещины, нор­мальные к продольной оси элемента от усадки бетона, при остывании укорочение e cs оси элемента и ее кривизну допускается находить по фор­мулам (30) и (31).

1.32. Определение усилий в статически неопреде­лимых конструкциях от воздействия температуры должно производиться по формулам строительной механики с принятием действительной жесткости сечений. При переменной эпюре моментов по длине пролета жесткость сечений вычисляют в зависи­мости от действующих усилий для достаточного числа участков, на которые разбивают пролет элемента, принимая на каждом участке жесткости сечения по указаниям пп. 4.17 и 4.18. При опреде­лении жесткости следует учитывать усилия от нагрузки и воздействия температуры согласно табл. 1 и 2.

Удлинение оси каждого участка длины элемента и ее кривизна от воздействия температуры должны вычисляться по указаниям пп. 1.26 — 1-30.

Расчет статически неопределимых железобетон­ных конструкций на воздействие температуры необходимо выполнять методом последовательных приближении до тех пор, пока величина усилия, полученная в последнем приближении, будет отли­чаться от усилий предыдущего приближения не более, чем на 5 %.

Расчет усилий в статически неопределимых кон­струкциях, как правило, следует выполнять с при­менением ЭВМ. При использовании малых вычис­лительных машин и ручном счете допускается при­нимать приведенные постоянные по длине элемента: жесткость сечений Bred, удлинение оси e red,t и ее кривизну

Приведенная жесткость сечения определяется по формуле

где В — жесткость сечения элемента с трещинами в растянутой зоне в месте действия наибольшего изгибающего момента М, определяемая по указаниям п. 4.18;

В1 жесткость сечения элемента без трещин, определяемая по указа­ниям п. 4.17.

Приведенное удлинение e red,t оси элемента и ее кривизну от нагрева определяют по фор­мулам:

М и Мcrc наибольший изгибающий момент и момент, воспринимаемый сече­нием, нормальным к продольной оси элемента при образовании трещин, определяемый по указа­ниям п. 4.3;

е — основание натуральных логарифмов;

— удлинение оси и ее кривизна эле­мента без трещин от воздействия температуры, определяемые по указаниям п. 1.27;

— удлинение оси и ее кривизна эле­мента с трещинами в растянутой зоне, определяемые по указаниям п. 1.30.

1.33. Изгибающий момент от неравномерного нагрева бетона по высоте сечения при равномер­ном нагреве бетона по длине элементе, заделанного на опоре от поворота, а также в замкнутых рамах кольцевого, квадратного и прямоугольного очер­тания, имеющих одинаковые сечения, определяют по формуле

а изгибающий момент при остывании от усадки и ползучести бетона

где — температурная кривизна оси элемента от кратковременного или длительного нагрева, определяемая по указаниям пп. 1.27 и 1.30;

— кривизна оси элемента при остывании от усадки и ползучести бетона, определяемая по формуле (26). Допускается кривизну определять по формуле

где — кривизна оси элемента при остывании от усадки бетона, определяемая по формуле (31);

— кривизна оси элемента при остывании от ползучести бетона определяется по формуле (47) со знаком "минус"

здесь Мt и Мt температурные моменты соответственно для кратковременного и длительного нагрева определя­ются по формуле (44), принимая температурную кривизну для кратковременного нагрева при значении a bt по табл. 14 для подъема температуры на 10 ° С/ч и более независимо от длитель­ности нагрева;

В — жесткость сечения, определяемая по указаниям пп. 4.17 и 4.18; в формуле (44) вычисляется для кратковременного или длитель­ного нагрева, а в формулах (45) и (47) — для кратковременного нагрева со скоростью 10 ° С/ч и более независимо от длительности нагрева..

ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУР

В СЕЧЕНИЯХ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ

1.34. Расчет распределения температур в бетон­ных и железобетонных конструкциях для устано­вившегося теплового потока следует проводить, пользуясь методами расчета температур ограждающих конструкций согласно СНиП 2.01.01-82.

Расчет распределения температур в ограждающих конструкциях сложной конфигурации сечений эле­ментов, в массивных конструкциях, в конструкциях, находящихся ниже уровня земли, а также при неустановившемся тепловом потоке .с учетом переменной влажности бетона по сечению должен производиться методами расчета температурных полей или теории теплопроводности либо по соответствующим нормативным документам.

Расчет распределения температур в стенках боровов и каналов, расположенных под землей, допускается производить:

для кратковременного нагрева, принимая сече­ние по высоте стен неравномерно негретым с прямо­линейным распределением температур бетона и величину коэффициента теплоотдачи наружной по­верхности стенки a е — по табл. 6;

Жаростойкие бетоны

Жаростойкие бетоны

01 февраля 2014

Жаростойкие бетоны в соответствии с ГОСТ 20910-90 в зависимости от степени огнеупорности подразделяются:

• по назначению — на конструкционные, теплоизоляционные;

• по структуре — на плотные, тяжелые и легкие, ячеистые;

• по виду вяжущего — на портландцементе и его разновидностях (быстротвердеющем портландцементе, шлакопортландце-менте), на алюминатных цементах (глиноземистом и высокоглиноземистом), на силикатных вяжущих (жидком стекле с отвердителем, силикат-глыбе с отвердителем);

• по виду тонкомолотой добавки — с шамотной, корднеритовой, золошлаковой, керамзитовой, аглопоритовой, магнезиальной, периклазовой, алюмохромитовой;

• по виду заполнителя — е шамотным, муллитокорундовым, корундовым, магнезиальным, карборундовым, кордиеритовым, кордиеритомуллитовым, шлаковым, золошлаковым, базальтовым, диабазовым, андезитовым, диоритовым, керамзитовым, аглопоритовым, перлитовым, вермикулитовым, из боя бетона.

Наименования бетонов должны включать основные признаки: вид бетона (BR — бетон жаростойкий); вид вяжущего (Р — портландцемент, А — алюминатный цемент, S—силикатное вяжущее); класс бетона по прочности на сжатие (В1— В40) и класс бетона по предельно допустимой температуре применения (ИЗ—И18).

Жаростойкие бетоны конкретного назначения характеризуются основными показателями назначения:

• прочностью на сжатие;• предельно допустимой температурой применения;• термической стойкостью;• водонепроницаемостью;• морозостойкостью;• средней плотностью;• усадкой.

Для бетонов установлены следующие классы по прочности на сжатие: Bl; Bl,5; В2; В2,5; В3,5; В5; В7,5; BIO; В12.5; В15; В20; В25; ВЗО; В35; В40.

Для жаростойких бетонов устанавливают следующие классы по предельно допустимой температуре применения согласно табл. 4.

Классификация бетонов по предельно допустимой температуре применения

Предельно допустимая температура применения, °С

Предельно допустимая температура применения, ° С

Классы бетонов по предельно допустимой температуре применения И13 — И18 устанавливают только для несущих изделий и конструкций.

Класс бетонов по предельно допустимой температуре применения определяют по значениям остаточной прочности и температуры деформации под нагрузкой, указанным в табл. 5.

Физико-механические свойства жаростойких бетонов Таблица 5

Класс бетона по предельно допустимой температуре применения

Остаточная прочность, %, не менее

Температура , соответствующая проценту деформации под нагрузкой, °С

Не менее 40 или по разрушении

Примечание. Для бетонов классов ИЗ—И8 температуры деформации под нагрузкой не определяют, для И15—И18 определяют температуру 4 %-ной деформации.

Остаточная прочность бетона зависит от вида вяжущего, температуры нагрева и характеризуется процентным отношением прочности бетона после нагрева до предельно допустимой температуры применения для бетонов классов ИЗ— И7 и после нагрева до температуры 800° С для бетонов классов И8—И18 к прочности бетона в проектном возрасте.

Для жаростойких бетонов устанавливают следующие марки по термостойкости: Т(1)5, Т (1)10, Т (1) 15, Т (1)20, Т (1)30, Т (1)40 (1 -водные теплоемены), Т(2)10, Т(2)15, Т (2)20, Т (2)25 (2 — воздушные теплосмены).

Для легких жаростойких бетонов устанавливают следующие марки по средней плотности в сухом состоянии: D300, D400, D500. D1600, D1700, D1800.

Материалы для приготовления жаростойких бетонов

В качестве вяжущих применяют:

• портландцемент, быстротвердеющий портландцемент, шлакопортландцемент по ГОСТ 10178;

• глиноземистый цемент по ГОСТ 969;

• высокоглиноземистый цемент по ТУ 21-20-60 или ТУ 6-03-339;

• жидкое стекло по ГОСТ 13078;

• силикат-глыбу по ГОСТ 13079.

В основном в отечественной практике в технологии жаростойких бетонов в качестве вяжущего применяются портландцементы. Цементный камень в таких бетонах приобретает жароупорные свойства благодаря введению в него различных тонкомолотых добавок, которые должны, связывая свободную окись кальция, не образовывать легкоплавкие вещества с минералами портландцемента.

В жаростойких бетонах тонкомолотые добавки следует вводить, уменьшая количество мелкого и крупного заполнителей и оставляя расход портландцемента неизменным без снижения класса бетона.

При действии высокой температуры на цементный камень происходит обезвоживание кристаллогидратов и разложение гидро-ксида кальция с образованием СаО. Оксид кальция при воздействии влаги гидратируется с увеличением объема и вызывает растрескивание бетона. В жаростойкий бетон на портландцементе для связывания оксида калия вводят тонкоизмельченные материалы, содержащие активный кремнезем Si02, который, реагируя с СаО при температуре 700—900°С, связывает оксид кальция.

В качестве тонкомолотых добавок, устойчивых к воздействию высоких температур, для бетонов на портландцементе и жидком стекле принимают:

• шамотные по ГОСТ 23037;• кордиеритовые по ГОСТ 20419;• золошлаковые смеси ТЭС по ГОСТ 25592;• керамзитовые по ГОСТ 9757;• бетонные из дробленых жаростойких бетонов.

Для бетонов на жидком стекле, кроме указанных добавок, допускается применять магнезиальную добавку по ГОСТ 23037.

В качестве заполнителей применяют шамотные, муллитокорун-довые и магнезиальные материалы по ГОСТ 23037, а также другие материалы (табл. 6).

В качестве заполнителей, устойчивых к воздействию высоких температур, допускается также применять:

Читайте также: