Коэффициент линейного расширения бетона

Обновлено: 18.05.2024

Коэффициент теплового расширения бетона

Плотность бетона. Усадка и набухание бетона. Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Плотность бетона. Усадка и набухание бетона. Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Плотность бетона.

Усадка и набухание бетона.

Изменение размера бетонных конструкций из-за изменения влажности бетона это усадка и набухание. Происходит даже при неизменной температуре.

Поэтому, даже для работы бетонной конструкции в условиях постоянной температуры необходимо преусматривать усадочные швы.

Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Изменение линейного размера бетона под действием температуры характеризуется линейным коэффициентом теплового (температурного) расширения. Характерной величиной коэффициента для бетона является 0,00001 (°С) -1 , следовательно, при изменении температуры на 80 °С (-40/+40 °С) расширение достигает примерно 0,8 мм/м. Таким образом, в любой бетонной конструкции необходимы температурные швы.

Теплопроводность монолитного бетона в воздушно-сухом состоянии 1,35 Вт/(м*°С) = 1,5 ккал/(ч*м*°С). Высокая теплопроводность тяжелого бетона требует обязательного утепления наружных бетонных стен.

Как рассчитывают коэффициент линейного расширения бетона?

Для того чтобы построить прочное здание, специалисты определяют коэффициент линейного расширения бетона. Так строитель может узнать, на сколько изменится в длину материал после нагревания. Такие расчеты позволяют избежать преждевременной деформации постройки, появление трещин и увеличить эксплуатационную стойкость сооружения.


  1. Что это такое?
  2. Как рассчитать показатель температурного расширения?
  3. Температурный показатель
  4. Теплоемкость
  5. Как регулировать?

Что это такое?

Термин коэффициент расширения бетона обозначает, как сильно расширяется строительный материал при увеличении температуры.

Понятие связано с теплоемкостью и теплопроводностью раствора. Бетон, который может расширяться, имеет в составе добавки или напрягающий цемент. Таким образом, в результате получается стойкая смесь, которая способна изменяться в размере. Кроме этого, для создания конструкции необходимы швы, поддерживающие блоки. Если возникает слишком большой температурный перепад, то бетон может потрескаться. Для этого стараются правильно подобрать состав материала с высоким коэффициентом, поэтому можно предотвратить появление трещин.

Как рассчитать показатель температурного расширения?

Можно самостоятельно измерить расширение. Для этого измеряется исходная длина. После температура повышается на 1 градус. Стоит помнить, что уровень тепла должен быть одинаковый по всему периметру. После уточняют величину удлинения. Для микроизменений используют микроскоп. Кроме этого, коэффициент теплового расширения бетона можно вычислить по формуле: l=l0(1+α⋅ΔT). В этом уравнении l обозначает расширение, ΔT — температуру, при которой произошли изменения, а l0 — начальная длина.

Температурный показатель

Коэффициент можно найти в таблице, в которой даются средние значения. По табличным данным для бетона этот показатель равен 0,00001 (ºС)-1. Так, при 80 градусах увеличение будет 0,8 мм/м. Но такие табличные данные не являются довольно точными, так как во всех схемах предоставлены усредненные значения. Потому желательно самостоятельно измерять или рассчитывать показатели.


Данный показатель для каждого вида материала будет отличаться.

Теплоемкость

Коэффициент температурного расширения неразрывно связан с теплоемкостью, используемых при строительстве. Под этим термином подразумевает определенное количество тепла, которое нужно смеси для того, чтобы поднять температуру. Так как выделяют несколько типов растворов, то и коэффициент будет меняться от наполнителей. Так, теплоемкость воздушно-сухого бетона равняется 1,35 Вт (м*°С). Это говорит о том, что показатель высокий и потому нужен дополнительный утеплитель. У пористых смесей значение теплоемкости низкое (0,35—0,75 ВТ).


Данный коэффициент зависит и от теплоемкости материала.

Как регулировать?

Значение зависит от таких факторов:

  • температуры;
  • класс;
  • наполнителя.

Заполнитель и цемент имеют разный температурный коэффициент. Потому при нагревании и расширении может происходить деформация и появляются трещины. Для того чтобы это не произошло применяют специальные швы. Кроме этого, увеличивают армирование строительной конструкции. Бетон делят на отдельные блоки. Но эти методы дорогостоящие и не всегда эффективны. Потому для результата используют напрягающие и расширяющие вяжущие.

ГЛАВА 7. Долговечность бетона

Коэффициент термического расширения бетона

Величина коэффициента термического расширения бетона зависит от состава бетонной смеси и влажности в период изменения температуры. Цементный камень и заполнитель имеют разные коэффициенты термического расширения, а коэффициент термического расширения бетона отражает соотношение материалов в составе бетона.

Коэффициент термического расширения цементного камня колеблется в пределах от 10ХЮ

6 на 1°С. Он больше, чем у заполнителя. Коэффициент термического расширения бетона зависит от количества заполнителя в смеси (табл. 7.10) и коэффициента расширения заполнителя.

Влияние влажности обусловлено составляющими цементного камня и определяется тем, что коэффициент термического расширения слагается из двух частей: действительного кинетического термического коэффициента и давления набухания.

Последнее увеличивается с уменьшением капиллярного давления воды в цементном камне при повышении температуры. Набухание невозможно, если образец сухой, т.е. не содержит воды, и если он насыщен. Следовательно, при этих двух предельных состояниях коэффициент термического расширения меньше, чем при частичном насыщении.

На рис. 7.25 и 7.26 приведены данные для цементного камня. В бетоне мы наблюдаем те же зависимости, хотя коэффициент термического расширения меняется меньше, так как только цементный камень реагирует на изменение влажности и возраст. В табл. 7.11 приведены значения коэффициентов термического расширения бетона состава 1 :6, твердевшего на воздухе при 64%-ной относительной влажности, в воде и увлажненного после воздушного твердения.

Только величины, определенные на насыщенных и высушенных образцах, дают действительные значения коэффициента термического расширения, но величины при промежуточных значениях влажности необходимы, так как они отражают реальные условия эксплуатации бетона Ьсли повышение температуры при переходе от зимы к лету сопровождается высыханием, появляется усадка и чистое расширение меньше чем при отсутствии потери бетоном воды.

Читать еще: Установка бетонных колец вручную

Химический состав и тонкость помола цемента влияют на величину коэффициента термического расширения лишь постольку, поскольку они влияют на свойства в раннем возрасте. Наличие воздушных пор влияния не оказывает.

Все сказанное относится к нормальным температурам ниже 40° С.

Более высокие температуры могут встречаться, например, в аэродромных покрытиях при действии отходящих газов реактивных двигателей и в производственных условиях. На рис. 7.27 показано, что при температуре выше 320°С коэффициент термического расширения бетона возрастает, возможно, вследствие дегидратации цементного камня. Значения коэффициента термического расширения приведены в табл. 7.12.

Лабораторные испытания показали, что бетоны с большим коэффициентом термического расширения менее стойки к изменениям температуры, чем бетоны с меньшим значением коэффициента расширения. На рис. 7.28 показаны результаты испытаний бетона, подвергавшегося повторному нагреванию и охлаждению в интервале температур 4,4—60° С со скоростью 2,4° в минуту. Однако коэффициент термического расширения не может служить количественной характеристикой долговечности бетона, подвергающегося частым или быстрым изменениям температуры.

Но более быстрое изменение температуры, чем в обычных условиях, может вызвать разрушение бетона. На рис. 7.29 показано влияние быстрого охлаждения после нагревания до указанной температуры.

7. РАСЧЕТ ЭЛЕМЕНТОВ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ

КОНСТРУКЦИЙ НА ТЕМПЕРАТУРНЫЕ

И ВЛАЖНОСТНЫЕ ВОЗДЕЙСТВИЯ

7.1. Учет температурных воздействий следует производить:

а) при расчете бетонных конструкций по прочности в соответствии с п. 5.1, а также при расчете их по образованию (недопущению) трещин в случаях, когда нарушение монолитности этих конструкций может изменить статическую схему их работы, вызвать дополнительные внешние силовые воздействия или увеличение противодавления, привести к снижению водонепроницаемости и долговечности конструкции;

б) при расчете статически неопределимых железобетонных конструкций, а также при расчете железобетонных конструкций по образованию (недопущению) трещин в случаях, указанных в п. 6.1;

в) при определении деформаций и перемещений элементов сооружений для назначения конструкций температурных швов и противофильтрационных уплотнений;

г) при назначении температурных режимов, требуемых по условиям возведения сооружения и нормальной его эксплуатации;

д) при расчете тонкостенных железобетонных элементов непрямоугольного сечения (тавровые, кольцевые), контактирующих с грунтом.

Температурные воздействия допускается не учитывать в расчетах тонкостенных конструкций, если обеспечена свобода перемещений этих конструкций.

7.2. При расчете бетонных и железобетонных конструкций следует учитывать температурные воздействия эксплуатационного и строительного периодов.

К температурным воздействиям эксплуатационного периода относятся климатические колебания температуры наружного воздуха, воды в водоемах и эксплуатационный подогрев (или охлаждение) сооружения.

Температурные воздействия строительного периода определяются с учетом экзотермии и других условий твердения бетона, включая конструктивные и технологические мероприятия по регулированию температурного режима конструкции, температуры замыкания строительных швов, полного остывания конструкции до среднемноголетних эксплуатационных температyp, колебаний температуры наружного воздуха и воды в водоемах.

Конкретный перечень температурных воздействий, учитываемых в расчетах бетонных и железобетонных конструкций основных видов гидротехнических сооружений, должен устанавливаться нормами на проектирование соответствующих видов сооружений.

7.3. В расчетах бетонных и железобетонных конструкций гидротехнических сооружений на температурные воздействия при соответствующем обосновании допускается учитывать тепловое влияние солнечной радиации.

7.4. Учет влажностных воздействий при расчете бетонных и железобетонных конструкций должен быть обоснован в зависимости от возможности развития усадки или набухания бетона этих конструкций.

Допускается не учитывать усадку бетона в расчетах:

тонкостенных конструкций, находящихся под водой, контактирующих с водой или засыпанных грунтом, если были предусмотрены меры по предотвращению высыхания бетона в период строительства.

7.5. Температурные и влажностные поля конструкций рассчитываются методами строительной физики с использованием основных положений, принятых для нестационарных процессов.

7.6. Данные о температуре и влажности наружного воздуха и другие климатологические характеристики должны приниматься на основе метеорологических наблюдений в районе строительства. При отсутствии таких наблюдений необходимые сведения следует принимать по СНиП 2.01.01-82 и по официальным документам Государственной гидрометеорологической службы.

Температура воды в водоемах должна определяться на основе специальных расчетов и по аналогам.

7.7. Для сооружений I класса теплофизические характеристики бетона устанавливаются на основании специальных исследований. Для сооружений других классов и при предварительном проектировании сооружений I класса указанные характеристики бетона допускается принимать по табл. 1 и 2 рекомендуемого приложения 2.

7.8. Деформативные характеристики бетона, необходимые для расчета термонапряженного состояния конструкций, допускается принимать:

начальный модуль упругости бетона в возрасте 180 сут и более следует принимать в соответствии с п. 2.15.

Характеристики ползучести бетона следует принимать по табл. 4 рекомендуемого приложения 2.

Для сооружений I класса деформативные характеристики бетона следует уточнять исследованиями на образцах из бетона производственного состава.

7.9. Расчет бетонных и железобетонных конструкций по образованию (недопущению) температурных трещин следует производить по формулам:

а) при проверке образования трещин и определении их размеров

б) при недопущении трещин в конструкциях, рассчитываемых по второй группе предельных состояний,

в) при недопущении трещин в конструкциях, рассчитываемых по первой группе предельных состояний,

7.10. Коэффициент определяется по формуле

В проектах бетонных и железобетонныx конструкций гидротехнических сооружений следует принимать = 0,135 при = 0,95, = 0,17 при = 0,90.

7.11. Значение в зависимости от возраста бетона следует принимать для строительного периода по табл. 5 рекомендуемого приложения 2, для эксплуатационного периода, как правило, равным 1,0.

Для сооружений I и II классов коэффициент следует уточнять исследованиями на крупномасштабных образцах из бетона производственного состава.

Читать еще: Сушка бетона электричеством

При определении коэффициента значения следует принимать равными длине участка эпюры растягивающих напряжений в пределах блока. В расчетах по формуле (79) следует принимать при см или при наличии на участке эпюры растягивающих напряжений зоны с нулевым градиентом напряжений.

ОСНОВНЫЕ БУКВЕННЫЕ ОБОЗНАЧЕНИЯ

Усилия от внешних нагрузок и воздействий

в поперечном сечении элемента

Характеристики положения продольной арматуры

в поперечном сечении элемента

в) для внецентренно растянутых элементов-наименее удаленной от точки приложения внешней продольной оси;

-рабочая высота сечения ( );

-относительная высота сжатой зоны бетона, равная

-площадь сечения отогнутых стержней, расположенных в одной наклонной к продольной оси элемента плоскости, пересекающей наклонное сечение;

ХАРАКТЕРИСТИКИ БЕТОНА ДЛЯ РАСЧЕТА КОНСТРУКЦИЙ

Коэффициент линейного расширения бетона

Коэффициенты линейного расширения строительных материалов

В таблице представлены значения коэффициента линейного расширения строительных материалов (КТЛР) и некоторых металлов при температуре до 100°С. Размерность коэффициента расширения в таблице — м/(м·°С) или 1/град (К-1).

В таблице рассмотрены: алюминий Al, медь Cu, сталь, гранит, базальт, кварцит, песчаник, известняк, стеновой кирпич, клинкерный кирпич, силикатный кирпич, легкобетонные камни, газобетонные блоки, бетон, железобетон, цементный раствор, известковый раствор, сложные штукатурки, дерево, параллельно волокнам, стекло.

Из указанных строительных материалов наиболее низким коэффициентом теплового линейного расширения обладает клинкерный кирпич (его КТЛР равен 3,5·10-6 1/град), а также древесина, штукатурки, стеновой кирпич и базальт. Следует отметить, что высокий коэффициент теплового расширения свойственен металлам таким, как алюминий, медь или сталь. Например, коэффициент линейного расширения алюминия равен 24·10-6 1/град, что в 2 раза больше, чем у стали.

Коэффициент теплового линейного расширения показывает на сколько (относительно размера тела) удлинится материал при увеличении его температуры на 1 градус.

Чтобы вычислить увеличение линейных размеров материала за счет теплового расширения, необходимо умножить значение температурного коэффициента линейного расширения на линейный размер материала и на разность температур в градусах Цельсия или Кельвина. Например, стеновой кирпич (КТЛР= 0,000006 град-1) длиной 240 мм при нагревании на 100 градусов удлинится на 0,144 мм.


По значениям коэффициентов теплового расширения в таблице видно, что указанные строительные материалы и металлы имеют положительный коэффициент линейного расширения, то есть увеличивают свои размеры (расширяются) при нагревании.

Источник: В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2004.

Плотность бетона. Усадка и набухание бетона. Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Плотность бетона. Усадка и набухание бетона. Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Усадка и набухание бетона.

Изменение размера бетонных конструкций из-за изменения влажности бетона это усадка и набухание. Происходит даже при неизменной температуре.

Поэтому, даже для работы бетонной конструкции в условиях постоянной температуры необходимо преусматривать усадочные швы.

Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Изменение линейного размера бетона под действием температуры характеризуется линейным коэффициентом теплового (температурного) расширения. Характерной величиной коэффициента для бетона является 0,00001 (°С)-1, следовательно, при изменении температуры на 80 °С (-40/+40 °С) расширение достигает примерно 0,8 мм/м. Таким образом, в любой бетонной конструкции необходимы температурные швы.

Читать еще: Скульптурный бетон своими руками

Теплопроводность монолитного бетона в воздушно-сухом состоянии 1,35 Вт/(м*°С) = 1,5 ккал/(ч*м*°С). Высокая теплопроводность тяжелого бетона требует обязательного утепления наружных бетонных стен.

Теплоемкость бетона Коэффициент расширения бетона


При строительстве домов с использованием бетона, всегда производятся расчеты, так вот для этого обязательно нужно знать удельную теплоемкость бетона. Удельная теплоемкость или просто теплоемкость бетона, очень важна и без нее не обойтись, в строительстве, когда например рассчитывается теплопроводность конструкции, для того что определить расходы на ускорение твердения строения из бетона.

Теплоемкость бетона — это количество тепла, которое нужно передать бетону, для того что бы его температура изменилась, на одну единицу.

Связанные статьи: Преимущества пенобетона

Коэффициент расширения бетона

Меняющийся размер бетона, из за влияния температуры, обозначается коэффициентом расширения бетона. Размер этого коэффициента расширения бетона равен 0.00001 (ºС)-1, а это означает, что если температура изменится на 80 ºС, то расширение будет около 0.8 мм/м. Получается, что для любой бетонной постройки требуются температурные швы.

Температурно усадочные швы

Температурно усадочные швы, в России должны быть начиная от 1.1 мм на 1м, делая вывод из расчета 0.3 мм — это усадка + 0.8 — температурный коэффициент. В строительных нормах и правилах (СНИП), размеры больше, так же стоит учитывать и то, что изменения температур порядка 80 ºС и больше, вызывают трещины в бетоне, который имеет жесткий наполнитель внутри, потому что существует разница коэффициентов расширения раствора и внутреннего наполнителя.

  • Дома из пенобетонных блоков
  • Сколько цемента в кубе бетона
Теплоемкости бетонов

Теплопроводность монолитных бетонов при условии что он воздушно-сухой составляет порядка 1.35 Bт/(m*ºC) = 1.5 ккал/(ч*м*ºС). Высокие характеристики теплопроводности такого тяжелого бетона, заставляют обязательно использовать утепление наружных стен из монолитного бетона.

Теплопроводность пористого бетона и его разновидностей — составляет порядка 0.35 — 0.75 Bт/(m*ºC)= 0.3-0.6 ккал/(ч*m*ºC), учитывайте, что прочность таких бетонов значительно ниже.

Удельная теплоемкость тяжелых и пористых бетонов (сухих) — около 1кДж/(кг*ºС) = 0.2 ккал/(кг*ºC)

Объемная теплоемкость тяжелых бетонов — около 2.5 кДж/(м3*К), пористых же зависит и изменятся от их плотности.

Смотрите так же: Керамзитобетон состав и пропорции

Удельная теплоемкость бетонной смеси (жидкой)- около 1.5 кДж/(кг*ºC) = 0.3 kkal/(kg*ºC), не забывайте, что такая смесь легче, чем тяжелый бетон и тяжелее чем пористый.

  1. Значит, теплоемкость бетона чаще всего от 0.17 и до 0.22 ккал/кг. Как и теплоемкость у многих каменных материалов.
  2. Становится понятно, почему дерево теплое, а бетон холодный, все из за низкой теплоемкости бетона. Теплопроводность дерева 0.6-0.7, что почти в 3 раза больше.
  3. Коэффициент расширения бетона — показывает изменение бетона. Для бетона он равняется 10*10^-6. Почти как и у коэффициента расширения стали (в зависимости от марки они так же изменяются), в связи с чем железобетонные конструкции очень распространены.


Температурный коэффициент линейного расширения

Коэффициент линейного теплового расширения

Примечание: источниками справочных данных являются публикации в Интернете, поэтому они не могут считаться «официальными» и «абсолютно точными». Как правило, в Интернет справочниках не приводятся ссылки на научные работы, являющиеся основой опубликованных данных. Мы стараемся брать информацию из наиболее надежных научных сайтов. Однако если кого-то интересуют ссылки на эксперименты, советуем произвести самостоятельно углубленный поиск в Интернете. Будем признательны за любые комментарии к нашим справочным таблицам, а особенно за уточнения существующей информации или дополнение справочных данных.

Вас также может заинтересовать:

Коэффициент объемного расширения

ТКЛР материалов, используемых в электронике

Коэффициент линейного расширения базальтопластика

С.П.Оснос, В.Н.Садков, М.Н.Киселев

Тепловое расширение тел характеризуется линейным или объемным коэффициентом расширения.
Истинным коэффициент линейного расширения (истинным КТР) называется отношение увеличения линейного размера базальтопластикового стержня единичной длины к малому изменению температуры, вызвавшему изменение размера. На практике пользуются средним коэффициентом линейного расширения:

В таблице приводятся значения коэффициентов термического расширения некоторых материалов в интервале температур от 15°С до 200°С.

Коэффициенты термического расширения

Стекло листовое оконное

Стекло свинцовое (хрусталь)

Массивное стекло алюмобороси-
ликатное

Стеклянное волокно алюмоборо-
силикатное

Коэффициент линейного расширения базальтопластика равен 46*10 -7 град -1 , стеклопластика 50*10 -7 град -1 (см.табл.)

В ы в о д

При определении коэффициента термического расширения базальтопластика в сравнении со стеклопластиком на эпоксиполиэфирном связующем установлено, что КТР обоих материалов находится в пределах 45*10 -7 50*10 -7 град -1 .
Следовательно, изделия из базальтопластика могут применяться также, как и изделия из стеклопластика в качестве арматуры для бетонных изделий.

Коэффициент расширения бетона

Коэффициент линейного расширения бетона связан с характеристиками теплопроводности и теплоемкости. Он определяет изменение линейного размера материала при воздействии на него высокой или низкой температуры. При строительстве домов с применением бетонирования производят расчеты с учетом удельной теплоемкости.

K = 0,00001 * (ºC)^-1

Коэффициент расширения бетона равен 0,00001*градусы по Цельсию в минус первой степени. Если температура изменяется в пределах от -40ºС до +40ºС, то расширение бетона может достигать 0,8 мм/м. Для снижения риска растрескивания поверхность разделяют температурно-усадочными швами.

Теплоемкость

Под теплоемкостью бетона понимают количество тепла, которое необходимо передать материалу для изменения его температуры на одну единицу. Размер бетона, изменяющийся под воздействием температуры, называют коэффициентом температурного расширения.

Теплопроводность

Теплопроводность – одна из важнейших теплофизических характеристик. Высокая теплопроводность тяжелого бетона является его недостатком. Панели для наружных стен производят из тяжелого материала с включением внутреннего слоя утеплителя.

Раствор и крупный заполнитель в составе материала различаются коэффициентом температурного расширения. При изменении температурного режима они деформируются по-разному. В случае существенных колебаний может возникнуть внутреннее растрескивание бетона из-за разного теплового расширения раствора и крупного заполнителя. Трещины образуются на поверхности заполнителя, в растворе и в слабых зернах заполнителя.

Если подобрать состав правильно, с коэффициентами температурного расширения, близкими по значению, то можно избежать растрескивания.

Бетоны с высоким коэффициентом теплового расширения менее устойчивы к температурным изменениям, чем смеси с меньшим значением. При этом данный коэффициент не является характеристикой долговечности материала, который подвергается быстрым и частым изменениям температуры. Быстрое изменение температурного режима может стать причиной разрушения.

Андрей Васильев

Автор: Андрей Васильев
  • Строитель с 20-летним стажем
  • Эксперт завода «Молодой Ударник»

В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.

Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.

Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.

Расчет теплового расширения бетона

Тепловое расширение бетона - это изменение линейных размеров и формы бетона при изменении его температуры.

Формула теплового расширения:

l - длина удлиненная;
l0 - начальная длина;
α - коэффициент теплового расширения;
t - изменение температуры.

Коэффициент теплового расширения бетона = 0.000012 1/К

Быстро выполнить эту математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.

На этой странице представлен самый простой онлайн калькулятор расчета теплового расширения бетона по простой математической формуле в зависимости от начальной длины, коэффициента теплового расширения и температуры. С помощью этой программы вы в один клик сможете рассчитать тепловое расширение бетона.

Что такое коэффициент расширения бетона?

Вопрос. Здравствуйте! Подскажите пожалуйста, что такое коэффициент расширения бетона? Какое его практическое применение? Спасибо!

Ответ. Добрый день! В строительной практике применяется коэффициент температурного расширения бетона. Его значение определяет отклонение линейных размеров бетонной плиты (бетонного блока) при изменении температуры окружающей среды.

Чтобы узнать на сколько увеличится размер бетонного блока необходимо перемножить: величину линейного размера, коэффициент теплового расширения бетона и разницу температуры. Например, бетонный блок длиной 550 мм, при нагреве на 40 градусов Цельсия увеличится на: 550х0,00001х40=0,22 мм.

Практическое применение коэффициента расширения бетона

Долговечность бетонных сооружений испытывающих значительные перепады температуры зависит от коэффициента линейного расширения заполнителя (щебень, гравий, известняк, мраморная крошка и пр.) и разницы между коэффициентами линейного расширения заполнителя и цементного теста.

При этом коэффициент расширения заполнителя определяет коэффициент теплового расширения бетона. Следовательно, для строительства бетонных сооружений работающих в условиях значительного перепада температуры, необходимо подбирать горные породы (заполнитель) обладающие коэффициентом расширения ниже, чем коэффициент расширения цементного камня.

К таким горным породам относится широко применяемый гранит (коэффициент расширения 0,0000074 °С-1), базальт (коэффициент расширения 0,0000065 °С-1)и известняк (коэффициент расширения 0,000008). К не рекомендованным горным породам относятся: калиевые полевые шпаты, кальцит, мрамор и другие горные породы с большим количеством монокристаллов.

Вывод. Так как в частном строительстве в качестве наполнителя, как правило, используется гранитный, гравийный или известняковый щебень вы можете не обращать внимания на коэффициент расширения бетона – долговечность вашего сооружения не зависит от данной характеристики.

Как рассчитывают коэффициент линейного расширения бетона?

Для того чтобы построить прочное здание, специалисты определяют коэффициент линейного расширения бетона. Так строитель может узнать, на сколько изменится в длину материал после нагревания. Такие расчеты позволяют избежать преждевременной деформации постройки, появление трещин и увеличить эксплуатационную стойкость сооружения.


Содержание

Что это такое?

Термин коэффициент расширения бетона обозначает, как сильно расширяется строительный материал при увеличении температуры.

Понятие связано с теплоемкостью и теплопроводностью раствора. Бетон, который может расширяться, имеет в составе добавки или напрягающий цемент. Таким образом, в результате получается стойкая смесь, которая способна изменяться в размере. Кроме этого, для создания конструкции необходимы швы, поддерживающие блоки. Если возникает слишком большой температурный перепад, то бетон может потрескаться. Для этого стараются правильно подобрать состав материала с высоким коэффициентом, поэтому можно предотвратить появление трещин.

Как рассчитать показатель температурного расширения?

Чтобы определить данный показатель, нужно сделать замер длины изделия до повышенного термического воздействия.

Можно самостоятельно измерить расширение. Для этого измеряется исходная длина. После температура повышается на 1 градус. Стоит помнить, что уровень тепла должен быть одинаковый по всему периметру. После уточняют величину удлинения. Для микроизменений используют микроскоп. Кроме этого, коэффициент теплового расширения бетона можно вычислить по формуле: l=l0(1+α⋅ΔT). В этом уравнении l обозначает расширение, ΔT — температуру, при которой произошли изменения, а l0 — начальная длина.

Температурный показатель

Коэффициент можно найти в таблице, в которой даются средние значения. По табличным данным для бетона этот показатель равен 0,00001 (ºС)-1. Так, при 80 градусах увеличение будет 0,8 мм/м. Но такие табличные данные не являются довольно точными, так как во всех схемах предоставлены усредненные значения. Потому желательно самостоятельно измерять или рассчитывать показатели.


Данный показатель для каждого вида материала будет отличаться.

Теплоемкость

Коэффициент температурного расширения неразрывно связан с теплоемкостью, используемых при строительстве. Под этим термином подразумевает определенное количество тепла, которое нужно смеси для того, чтобы поднять температуру. Так как выделяют несколько типов растворов, то и коэффициент будет меняться от наполнителей. Так, теплоемкость воздушно-сухого бетона равняется 1,35 Вт (м*°С). Это говорит о том, что показатель высокий и потому нужен дополнительный утеплитель. У пористых смесей значение теплоемкости низкое (0,35—0,75 ВТ).


Данный коэффициент зависит и от теплоемкости материала.

Как регулировать?

Значение зависит от таких факторов:

  • температуры;
  • класс;
  • наполнителя.

Заполнитель и цемент имеют разный температурный коэффициент. Потому при нагревании и расширении может происходить деформация и появляются трещины. Для того чтобы это не произошло применяют специальные швы. Кроме этого, увеличивают армирование строительной конструкции. Бетон делят на отдельные блоки. Но эти методы дорогостоящие и не всегда эффективны. Потому для результата используют напрягающие и расширяющие вяжущие.

Читайте также: