Как рассчитать объем бетона для заливки свай

Обновлено: 15.05.2024

Фундаменты в частном домостроении. Расчет бетона на фундамент

Когда мы говорим о бетоне в строительной промышленности, мы имеем в виду железобетон. Железобетон — это бетон, который содержит стальные стержни, называемые арматурными стержнями или просто арматурой. Эта комбинация работает очень хорошо, так как бетон очень прочен в сжатии, а сталь очень сильна на разрыв.

Основные виды фундаментов в частном домостроении:

  • Ленточный.
  • Монолитная плита.
  • Фундамент из винтовых свай.

Ленточный фундамент

Ленточный фундамент – это железобетонная полоса (лента, ростверк), заливающаяся по периметру всего здания. Ленту закладывают под все внутренние и наружные стены застройки, обычно сохраняя одинаковую форму поперечного сечения по всему периметру фундамента.

Очень часто ленточный фундамент строят вместе с буро-набивными сваями. В Пермском крае зимы очень холодные, грунты имеют свойство промерзать и деформироваться, поэтому сваи в ленточном фундаменте делать попросту необходимо. При отсутствии свай фундамент и стены сильно нагруженного строения могут растрескаться. Глубина свай как правило порядка 2-х метров.

Ленточные относятся к самому распространенному типу фундаментов, их используют при строительстве частных домов, коттеджей, бань, гаражей, магазинов, ангаров, складов и прочих строений.

  • Простая и отработанная технология устройства.
  • Экономичность.
  • Не требует изъятия грунта под всем строением.
  • Ограниченность применения (не подходит для грунтов с низкой несущей способностью).
  • Трудоемкость при полном соблюдении технологии устройства.
  • Опасность растрескивания при отсутствии свай и подвижных грунтах.
  • Раскопка траншеи под ленту.
  • Бурение свай ямобуром.
  • Армирование свай и заливка их бетоном.
  • Выставление щитов из доски или фанеры для придания ровных и ограниченных форм ленте.
  • Завязывание арматурного каркаса в теле ленты и связывание его со сваями.
  • Заливка ленты бетоном.

Объем бетона на одну сваю рассчитывается по формуле объема цилиндра V =πR²H, где π=3,14, R=половина диаметра сваи или половина диаметра бура у ямобура (переводим в метры)., H– глубина бурения.
Пример: Глубина 2 метра, диаметр сваи 300 мм (R=0,15 метра).

Объем сваи: 3,14 * 0,15 ² * 2 = 0,14 м. куб. – объем бетона на одну сваю.

Так же всегда можно быстро произвести расчет онлайн, набрав в поиске «объем цилиндра».

Объем бетона на ленту рассчитывается путем вычисления периметра всей ленты (сумма длин всех сторон) помноженная на высоту ленты и помноженная на ширину ленты.

Дважды посчитанные углы, как правило, не вычитаются из полученного объема ввиду возможного перерасхода бетона, потому что размеры фундамента могут быть не одинаковыми в разных точках, при этом лента не всегда идеально укреплена и попросту может раздуться или вообще порваться. Поэтому лишние 3% при заказе бетона скорее страховка, чем просчет.

Пример: фундамент 6 м на 6 м плюс простенок посередине, ширина ленты 40мм, глубина 60 мм. Объем бетона на ленту: 6 метров * 5 стенок * 0,4 ширина ленты * 0,6 глубина = 7,2 м.куб.

Монолитная плита

Плитный фундамент отлично подходит для любого типа строения, особенно если на участке проблемный грунт и близкие грунтовые воды. Монолитная плита равномерно заливается под всю площадь строения, при этом часто является его полом. Такой фундамент при грамотном устройстве никогда не треснет, соответственно строение тоже в безопасности.

  • Надежность и долговечность даже на подвижных грунтах.
  • Высокая несущая способность.
  • Простота монтажа.
  • Водонепроницаемость.
  • Минусы.
  • Высокая стоимость строительства фундамента.
  • Невозможность устройства подвала.
  • Выкапывается котлован нужного размера и глубины.
  • Затем засыпается слой песка и щебня.
  • Кладутся коммуникации( трубы канализации и водопровода).
  • Сверху делается бетонная стяжка В7,5.
  • Утепление пенопластом или пеноплексом.
  • Укладывается полиэтиленовая пленка.
  • Выставление опалубки.
  • Устройство армированного пространственного каркаса.
  • Заливка бетона в плиту (обычно не ниже В20).

V = S * H либо Ширина * Длина * Высота (При измерении высоты необходимо учитывать тот факт, что при заливке и вибрировании бетона возможна небольшая усадка. Желательно брать запас 3%).

Пример: Ширина плиты 10 метров, длина 8 метров, высота 40 сантиметров.
Расчет: V = 10*8*0,4 = 32 м.куб.

Фундамент из винтовых свай

Винтовая свая представляет собой стальной столб, в нижней части которого находится винтовая лопасть. Конструкция лопасти винтовой сваи непостоянной ширины позволяет завинчивать сваю в грунт вручную либо с помощью ямобура.

Для устройства фундамента сваи погружаются в грунт методом завинчивания на глубину не менее 2,0 м (ниже уровня промерзания грунта). При залегании в верхних слоях грунтовых вод винтовая свая наращивается на необходимую длину и завинчивается до тех пор, пока не пройдет этот слой.

Онлайн калькулятор расчета размеров, арматуры и количества бетона монолитного ленточного фундамента

Онлайн калькулятор монолитного ленточного фундамента предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента. Для определения подходящего типа фундамента, обязательно обратитесь к специалистам.

Все расчеты выполняются в соответствии со СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 и ГОСТ Р 52086-2003

Л енточный фундамент представляет собой монолитную замкнутую железобетонную полосу, проходящую под каждой несущей стеной строения, распределяя тем самым нагрузку по всей длине ленты. Предотвращает проседание и изменение формы постройки вследствие действия сил выпучивания почвы. Основные нагрузки сконцентрированы на углах. Является самым популярным видом среди других фундаментов при строительстве частных домов, так как имеет лучшее соотношение стоимости и необходимых характеристик.

С уществует несколько видов ленточных фундаментов, такие как монолитный и сборный, мелкозаглубленный и глубокозаглубленный. Выбор зависит от характеристик почвы, предполагаемой нагрузки и других параметров, которые необходимо рассматривать в каждом случае индивидуально. Подходит практически для всех типов построек и может применяться при устройстве цокольных этажей и подвалов.

П роектирование фундамента необходимо осуществлять особенно тщательно, так как в случает его деформации, это отразится на всей постройке, а исправление ошибок является очень сложной и дорогостоящей процедурой.

При заполнении данных, обратите внимание на дополнительную информацию со знаком Дополнительная информация

Д алее представлен полный список выполняемых расчетов с кратким описанием каждого пункта.

Во сколько обойдётся заливка буронабивной сваи для забора или для фундамента

Продолжая работу над статьями, посвященными строительству ограждений, в частности, забора из профлиста и, в осбенности – кирпичного забора, автор обратил внимание на внушительное «белое пятно». Оно, в частности, касается вопросов создания надёжной основы под строительство этого сооружения – фундамента (необходимого в большинстве случаев) и столбов-опор (которые требуются всегда, безо всякого исключения).

Во что обойдётся заливка буронабивной сваи для забора или для фундамента

Во что обойдётся заливка буронабивной сваи для забора или для фундамента

Про фундамент, и в частности – оптимальный для забора ленточный, на страницах нашего портале рассказывается немало, и заинтересованы читатель наверняка отыщет нужную информацию. А вот как быть с опорами, которые обычно представляют собой заглублённые ниже уровня промерзания грунта сваи?

Для таких целей оптимальным выходом видится буронабивная технология, когда в пробурённую скважину опускается опалубка в виде цилиндра из гибкого материала (например, рубероида), из пластиковых труб или из металлической или асбестоцементной обсадной трубы. В этот цилиндр заводится армирующая конструкция (вариант – стальная труба в качестве стойки), а затем полость плотно заполняется бетоном. Армирующие прутья (или труба) выходят наверх, и становятся остовом будущей кирпичной опоры забора или же увязываются с армопоясом будущего фундамента.

А давайте подсчитаем, во что обойдётся заливка буронабивной сваи для забора или для фундамента – сколько потребуется и каких материалов, вплоть до стоимости их приобретения.

Сведения об устройстве буронабивной сваи


Мнение эксперта:

Под сваей чаще понимают какой-то жёсткий длинный объект, вколачиваемый вертикально в землю на определенную глубину, до достижения твердых несущих слоев грунта. С таким расчетом, чтобы свая была способна стать надежной опорой для дальнейшего строительства.

Свайные технологии использовались испокон веков во многих уголках Земли – там, где возведение жилья проводилось на неустойчивых, склонных к сезонным подвижкам, заболоченных, периодически заливаемых или даже постоянно находящихся под слоем воды участках.

Казалось бы, что общего между туземным поселком в Микронезии и столицей Голландии, Амстердамом? И тот и другой населенный пункт возведен на сваях!

Казалось бы, что общего между туземным поселком в Микронезии и столицей Голландии, Амстердамом? И тот и другой населенный пункт возведен на сваях!

Прекрасно зарекомендовали себя свайные технологии и в области индивидуального строительства. И, надо сказать, применяют такие опоры и на стабильных грунтах – они отлично подходят в качестве основы для возведения ограждений, навесов, лёгких подсобных построек. А на проблемных участках – становятся чуть ли не единственной альтернативой и для жилого дома. Очень выгоден бывает свайный фундамент при строительстве бани – с ним намного проще организовать систему отвода воды.

Но забивка сваи на глубину — очень непростая задача, если речь идет об индивидуальном загородном строительстве. Приходится использовать какие-то сложные специальные приспособления и вызывать спецтехнику – в любом случае это немалые физические и материальные затраты. Причем — даже еще без учета материала самой сваи.

Другой вариант – винтовые сваи, которые, в принципе, можно установить и самостоятельно. Но и здесь – не все так просто, как может показаться на первый взгляд.


Важная информация о свайно-винтовых фундаментах.

Про эту технологию много говорят и пишут, ее активно рекламируют, и создаётся впечатление, что она – проста и понятна, способна выручить в любой ситуации. Так ли все безоблачно? Разбору достоинств и недостатков свайно-винтового фундамента посвящена отдельная публикация нашего портала.

На сваю, оказывается, можно и не заколачивать, а, так сказать, «формировать» непосредственно по месту. Для этого в грунте бурится скважина требуемой глубины, в которую впоследствии будет заливаться бетон. Опалубка при этом может быть простейшей – очень часто используется обычный недорогой рубероид, свернутый «тубусом». Стенки скважины не дадут этому «тубусу» разойтись, а сам рубероид прекрасно предотвратит уход воды в грунт из залитого бетона, то есть обеспечит его нормальное созревание.


Мнение эксперта:

Нередко в скважину опускают обсадную трубу, в качестве которой в настоящее время в индивидуальном строительстве чаще применяют или асбестоцементную, или пластиковую. Металлическую тоже можно, конечно, но это выглядит излишне дорогим «удовольствием». Обсадная труба становится несъёмной опалубкой для заливки бетона, а если речь идет об асбестоцементной или металлической – то еще и каким-никаким усилением будущей сваи.

Впрочем, даже просто набитая бетоном свая с простейшей гибкой опалубкой (рубероидом), если все сделано правильно, становится вполне надежной опорой. И, кстати, далеко не только в тех случаях, когда речь идет о фундаментах или основаниях для возведения сравнительно лёгких сооружений – ограждений, навесов, хозпостроек и т.п. То есть на этом вполне можно неплохо сэкономить.

Свая, залитая в опалубке из рубероида. По достижении полной готовности она вряд ли в чем-то уступит залитой в ластиковой или асбоцементной трубе, а обходится дешевле.

Свая, залитая в опалубке из рубероида. По достижении полной готовности она вряд ли в чем-то уступит залитой в ластиковой или асбоцементной трубе, а обходится дешевле.

Интересно, что и особо мощного армирования такая свая тоже не требует. После того как свая будет нагружена, вертикальное ее армирование будет предохранять только от воздействия на срез, а оно не является сильно выраженным. Так что можно ограничиться даже и двумя прутками арматуры диаметром, например 10 или 12 мм. На многочисленных фотографиях чаще встречаются варианты с тремя или даже четырьмя прутками, но это делается, скорее, для того чтобы придать заводимому в скважину армирующему каркасу некоторую стабильную форму и пространственную жесткость.

Если исходить из норматива армирования вертикальных конструкций, устанавливающего, что суммарная площадь поперечного сечения прутьев должна быть не менее 0,25 % площади сечения железобетонной конструкции, то получаются очень даже «скромные» значения:

Диаметр сваи. ммПлощадь поперечного сечения сваи. мм²Норма площади поперечного сечения армирования. мм²Количество прутов 6 мм
(сечение - 28,26 мм²)
Количество прутов 8 мм
(сечение - 50,24 мм²)
Количество прутов 10 мм
(сечение - 78,5мм²)
Количество прутов 12 мм
(сечение - 113,04 мм²)
703846.59.616250.3480.190.1220.08
80502412.560.440.250.160.11
906358.515.896250.560.310.200.14
100785019.6250.690.390.250.17
1109498.523.746250.840.470.300.21
1201130428.2610.560.360.25
13013266.533.166251.170.660.420.29
1401538638.4651.360.760.490.34
15017662.544.156251.560.880.560.39
1602009650.241.7710.640.44
17022686.556.716252.001.120.720.50
1802543463.5852.251.260.810.56
19028338.570.846252.501.410.900.62
2003140078.52.771.5610.69
21034618.586.546253.061.721.100.76
2203799494.9853.361.891.210.84
23041526.5103.816253.672.061.320.91
24045216113.0442.251.441
25049062.5122.656254.342.441.561.085
26053066132.6654.692.641.691.17
27057226.5143.066255.062.841.821.26
28061544153.865.443.061.961.36
29066018.5165.046255.843.282.101.46
30070650176.6256.253.512.251.56

Обратите внимание – даже при использовании самой тонкой арматуры диаметром 6 мм необходимость применения второго прута возникает по нормативам только при диаметре сваи 120 мм, а трех – при свыше 170 мм. При арматуре 8 мм к двум прутьям приходится прибегать только при диаметрах свыше 160 мм, и в диапазоне свай диаметров до 200 мм – это максимум. «Десятки» до 200 мм достаточно одной, не говоря уже об арматуре 12 мм и выше – ее не стали приводить в таблице — уже и так все ясно.
Повторимся – применение трех или четырех прутьев при диаметрах свай до 200 мм включительно оправдано исключительно с позиций придания армирующей конструкции некоторой пространственной жесткости – так ее проще опустить в скважину и обеспечить временную стабильность – до заливки бетона. Но даже если вы будете использовать всего один прут диаметром 10 мм по центру – с точки зрения обеспечения прочности сваи (диаметром 200 мм и менее) и нормы ее армирования — ошибки не будет. Другое дело, что увязывать этот единственный прут с армирующим поясом, например, общей обвязки-ростверка — будет не слишком удобно.

Использование трех или четырех прутов вертикального армирования сваи – можете быть оправдано чисто с технологических позиций (так бывает удобнее для дальнейших операций). А вот с точки зрения обеспечения прочности конструкции – явное излишество.

Использование трех или четырех прутов вертикального армирования сваи – можете быть оправдано чисто с технологических позиций (так бывает удобнее для дальнейших операций). А вот с точки зрения обеспечения прочности конструкции – явное излишество.

На неустойчивых грунтах, а также в тех случаях, когда на свайное основание предполагается повышенная нагрузка, рекомендуется использовать буронабивные сваи с расширением в нижней их части. Этот подход имеет особое наименование – технология ТИСЭ. Считается, что сваи, выполненные по подобному методу, можно вообще считать практически универсальными.

В чем заключается эта технология:

Последовательность создания буронабивной сваи ТИСЭ

Последовательность создания буронабивной сваи ТИСЭ

1 — Вначале на нужную глубину (однозначно – ниже уровне промерзания грунта) бурится обычная скважина требуемого диаметра.

2 — Далее, в ход пускается специальная насадка на бур. Она оснащена управляемой ножом-лопастью, откидывающейся на глубине. При вращении эта лопасть начинает вырезать в нижней части скважины полусферическую полость.

3 — В скважину опускается цилиндрическая опалубка (из рубероида), заводится армирующая конструкция.

4 — Скважина заполняется бетоном (марочной прочности не менее М200). Заполнение сопровождается максимально возможным уплотнением раствора.

5 — После созревания залитого бетона получается свая с отменными несущими способностями – за счет расширенной подошвы. Кроме того, уширение внизу наверняка не позволит силам морозного вспучивания «выдернуть» сваю вверх.

Кстати, подобную «красоту» вполне можно делать самостоятельно, без привлечения мастеров и спецтехники со стороны. Для этого используются специальные ручные буры ТИСЭ, работать с которыми должен суметь любой физически хорошо развитый человек. Да, это довольно трудоёмкая задача — бурение таких скважин, но зато — и очень весомая экономия средств.

Бур ТИСЭ – позволяет самостоятельно проделывать скважины с полусферическим уширением внизу.

Бур ТИСЭ – позволяет самостоятельно проделывать скважины с полусферическим уширением внизу.

Итак, если стоит задача создать свайную основу под будущее возведение того или иного объекта, потребуется обзавестись буром (обычным или ТИСЭ – как позволяют грунты на участке строительства), бетономешалкой, разметочным и шанцевым инструментом. Ну и, конечно, приобрести необходимое количество материалов — о чем мы сейчас как раз и будем говорить.

Материалы для обустройства буронабивной сваи

Как, наверное, уже понятно, ассортимент материалов – не такой уж и большой. И общее количество их как на одну буронабивную сваю, так и на все «свайное поле» — вполне поддается подсчету.

Итак, считаем, что работы проводим самостоятельно. С механическим трудом проблем не ожидается – скважины будут буриться вручную. Что нужно далее?

Песок для подсыпки в скважину

Никогда не лишним будет расположить под сваей песчаную подушку. Для этого в нее порционно засыпается песок, который затем трамбуется до максимально плотного состояния. Ориентировочная рекомендуемая высота этой подсыпки – порядка 250 ÷ 300 мм. На глубине в скважине это проверить не столь просто, но можно заранее просчитать, сколько же песка понадобится для каждой из скважин. Благо – диаметр скважины известен, требуемая толщина слоя тоже.

Рубероид для опалубки

Никакие «изыски» здесь не требуются — вполне достаточно самого недорогого рубероида, для нижних слоев покрытия, с пылевидной посыпкой. Например, РПП-300.

Рулоны рубероида РПП-300, отлично подходящего для создания гибкой опалубки в скважине.

Рулоны рубероида РПП-300, отлично подходящего для создания гибкой опалубки в скважине.

Рубероид РПП-300

Для свертывания рубероида в трубки-тубусы нужного диаметра мастера используют какой-то цилиндрический шаблон.

Пластиковая канистра от воды послужила отличным шаблоном для сворачивания гильз из рубероида.

Пластиковая канистра от воды послужила отличным шаблоном для сворачивания гильз из рубероида.

Гильзы для опускания в скважину делаются не менее, чем двухслойными. Фиксируют их в нужном положении до установки на место любыми подручными способами – например, широким строительным скотчем, степлером, мягкой проволокой, мелкими саморезами и т.п.

Форма выпуска рубероида не позволяет подготовить гильзы длиннее, чем один метр. Кроме того, при наращивании опалубки по высоте обычно соблюдают перехлест хотя бы 100 мм. Но, в принципе, и скважины под буронабивные сваи глубже двух метров пракически не бурятся. Кроме того, можно встретить массу рекомендаций не опускать опалубку ниже, чем 300 ÷ 500 мм от утрамбованного песчаного дна скважины. Дело в том что там, ниже глубины промерзания грунта, желательно оставить сваю выраженно шероховатой, контактирующей с грунтом – это будет необходимо для противодействия выдёргивающим силам морозного вспучивания.

То есть для полноценной опалубки двух рубероидных цилиндров длиной в метр обычно бывает вполне достаточно. Частично опалубка выйдет наверх – здесь будет формироваться надземный участок сваи, необходимый для обвязки с фундаментом, ростверком и т.п.

Иногда планируют и выраженно высокий надземный участок, так, чтобы после застывания бетона получался практически готовый столб нужной высоты. Значит, опалубку размещают и выше уровня земли, предусматривая для этого какие-то удерживающие приспособления, например, такие, как на иллюстрации.

Сетчатые «корзины» удерживающую в нужных размерах высоко выступающую опалубку из рубероида.

Сетчатые «корзины» удерживающую в нужных размерах высоко выступающую опалубку из рубероида.

Зная диаметр скважины и высоту планируемых свай, подсчитать требуемое количество рубероида несложно.

Арматура

Про это уже много было рассказано выше. Правда, расчеты армирования могут вестись еще и с учетом какой-то особой или повышенной нагрузки на опору. В остальных же случаях при сваях диаметром до 200 мм достаточное количество прутьев было показано в таблице. Выбор – за владельцем

Кстати, интересная информация попалась на одном из известных строительных интернет-форумов. Там утверждается, что если свайный фундамент будет сразу же нагружаться, то есть обвязываться монолитным ростверком, то вполне достаточно двух прутьев на сваю. Но если он будет по плану строительства оставлен на зиму без нагрузки, «как есть», до следующего сезона – то лучше не пожалеть и всех четырех прутьев. За достоверность подобных суждений не поручусь, но некоторое здравое зерно здесь явно прослеживается.

Понятно, что если армирование идет в несколько прутьев, то они увязываются перемычками (хомутами) в общую конструкцию. Для хомутов может использоваться гладкий прут диаметром 6 мм. Либо неизбежно появляющиеся в процессе работы короткие обрезки той же арматуры, что используется для основных деталей.
Увязанная (сваренная) сборка заводится сверху в уже установленную в скважине рубероидную гильзу. При этом такую конструкцию нужно еще правильно позиционировать.

Сложно даже предположить – что планируется строить на базе таких свай, с их супермощным армированием (6 прутов) при столь небольшом диаметре скважины? Или просто металла не жаль?

Сложно даже предположить – что планируется строить на базе таких свай, с их супермощным армированием (6 прутов) при столь небольшом диаметре скважины? Или просто металла не жаль?

Прежде всего, никогда арматура не опускается на самое дно – там она попросту начнет вскорости разлагаться от коррозии. Защитный слой бетона – никто не отменял. Как минимум нужно не довести до дна миллиметров на 50, а так как основные сдвигающие (срезающие) нагрузки на сваю прикладываются значительно выше, в области поверхности грунта, то можно смело отступить от низа и побольше, порядка 200÷300 мм.

Выпуск арматуры сверху их готовой сваи нужно знать заранее. Если он и вовсе не нужен (такое случается), то тогда соблюдается хотя бы 50-миллиметровый защитный слой бетона. Но чаще наружу выводится нужный участок для увязки с армопоясом ростверка или, например, для армирования столбов кирпичного забора.

Зная «геометрию» армирования одной сваи, несложно просчитать и общее количество арматуры для всего «свайного поля». А потом — и перевести в денежное исчисление в соответствии с прайсом местного поставщика металлопроката.

Кстати, можно и вовсе обойтись без арматуры, если планируется установить трубы–столбы для опор ограждения. Просто труба нужного диаметра и длины устанавливается в скважину, становясь и армирующим компонентом, и необходимой технологической деталью. Такую трубу настоятельно рекомендуется тоже доверху заполнить бетонирующим раствором.

Просчитать количество трубы – даже проще, чем арматуры. Так как стандарт выпуска трубы обычно – 6 метров, то ее режут надвое, по три метра на сваю. Если «отдать в грунт» порядка 1,3 м, но выше поверхности земли остается еще 1.7, чего вполне бывает достаточно, например, для строительства довольно высокого забора (до 2.2 м).

Бетон для заливки

Здесь – все просто, используются классические «рецептуры» бетонов, с марочной прочностью не ниже М200 (класс В15). Оптимальным, наверное, можно считать показатель прочности М250 (класс В20).

Бетон можно заказать со стороны – если все скважины готовы к заполнению. Заливка с помощью насоса, кстати, упрощает и уплотнение раствора. Для заказа, безусловно, надо подсчитать общий необходимый объем (с учетом резерва порядка 5-10%).

Если все поле готово к заливке, то тогда выгоднее будет сразу заказать нужное количество бетона.

Если все поле готово к заливке, то тогда выгоднее будет сразу заказать нужное количество бетона.

Если заливка производится по мере подготовки очередных скважин, то бетон лучше готовить на месте, в бетономешалке. Для этого необходимый объем имеет смысл перевести в количество необходимых ингредиентов.

«Рецептура» бетона В20 секретом не является. В массовом соотношении ингредиентов она выглядит вот так:

1(Ц) – 2.1(П) – 3.9(Щ)

Если перевести в объемное исчисление, причем – с нормированным количеством воды (для оптимального водоцементного соотношения), то получится следующая пропорция:

На 1 м³ бетона В20 (М250) потребуется:

  • Цемента ПЦ (М) 400 — 0,233 м³, или ≈ 302 кг.
  • Песка строительного с влажностью до 10% — 0,442 м³
  • Щебня с фракцией 5÷20 мм (больше нежелательно, чтобы крупные фрагменты не мешали заливке сваи) — 0,792 м³.
  • Воды — 155 литров.
  • Можно использовать пластифицирующую добавку С-3, из расчета 4,9 литра готового ее раствора на 1 м³ бетона.

Посчитав объем будущих свай, несложно определить потребный объем бетона или количество ингредиентов для его самостоятельного изготовления.

Если заранее уточнить цены на указанные выше материалы и внести их в соответствующие поля калькулятора, то рассчитанное количество материалов будет «конвертировано» в денежное выражение.

Кстати, отпускные цены очень часто зависят от объема приобретаемой партии. Так что можно для начала произвести предварительный расчет – просто для уточнения количества материала. А затем – скорректировать цены и уже прийти к более точному итоговому значению.

Все это позволяет сделать наш онлайн-калькулятор, размещенный ниже.

Калькулятор расчета количества и стоимости материалов для буронабивных свай

Пояснения по пользованию калькулятором

Интерфейс программы довольно «дружественный», поэтому недопониманий, что же и где указывать, надо полагать, не предвидится.

Тем не менее, несколько замечаний-пояснений все же напрашиваются.

Как уже говорилось, калькулятор «заточен» под наиболее экономичный способ обустройств буронабивных свай. То есть без обсадной трубы, с применением гибкой несъемной опалубки из рубероида.

Пользователю предлагается указать следующие данные:

  • Диаметр сваи – по умолчанию указано 200 мм (0.2 м), но диапазон возможных значений – довольно широкий, и должен охватить все теоретически возможные в частном строительстве варианты.
  • Следующий пункт – высота сваи, от ее подошвы (уровень контакта с песчаной подсыпкой) до верхнего обреза бетонной заливки. Не путать нижнюю точку сваи с глубиной скважины – та может делаться глубже именно для песчаной подушки. Кроме того, в высоту сваи входит и возвышающийся над поверхностью грунта участок.
  • Далее, предлагается выбрать, планируется ли свая просто цилиндрическая, или же она будет оснащаться расширенной подошвой по технологии ТИСЭ.

Если выбран вариант с расширением, то следующим пунктом указывается диаметр этого полусферического расширения. Если же свая обычная цилиндрическая, то это поле можно просто проигнорировать, оставить как есть.

  • Про армирование буронабивных свай выше уже говорилось. В большинстве случаев при частном строительстве можно обойтись минимальным количеством прутов. Тем не менее, пользователю предлагается аж пять вариантов на выбор: от отсутствия армирования – и до четырёх прутьев, увязанных в пространственную конструкцию.

Если армирование предусматривается, то необходимо указать еще и длину выступающих сверху участков прутьев.

При определении общей длины вертикального армирования программа сама отнимет 200 мм — на обязательный отступ от подошвы сваи (об этом говорилось выше в тексте).

В программе учтена поправка на то, что при использовании нескольких прутов их увязка между собой будет производиться перемычками, вырезанными из той же арматуры – запас на это уже заложен.

Единственное, что не предусмотрено – это вязальная проволока. Но ее нужно не столь много, и «дырку в бюджете» она точно не пробьёт. Кроме того, судя по иллюстрациям, многие мастера предпочитают прихватывать детали армирующего каркаса сваркой.

  • Естественно, указывается общее количество — сколько таких свай нужно будет забетонировать.

Далее, целый блок окон посвящен ценам на используемые в такой технологии материалы. То есть необходимо будет предварительно выделить время на изучение предложений местных поставщиков стройматериалов, чтобы выбрать наиболее выгодные со всех точек зрения (стоимость, условия, скидки, доставка, разгрузка и т.п.)

  • Стоимость цемента (марки 400) запрашивается за стандартный 50-килограммовый мешок.
  • Песок и щебень оцениваются и отпускаются чаще всего в кубометрах – поэтому и в нашей программе взяты именно эти единицы.
  • Пластификатор С-3 – цена за литр. Его бывает нужно не так много – после проведения расчета можно будет выбрать оптимальный для себя объем расфасовки.
  • Арматура – оценивается в данном случае в погонных метрах. На сайте любой уважающей себя металлобазы есть таблицы перевода метража проката и в весовые единицы, в зависимости от типа и размеров изделия, так что разобраться и «конвертировать» при необходимости – несложно. Наша программа требует рубли за погонный метр.


Как перевести штучное количество арматуры в килограммы и тонны?

Для этого, кстати, можно далеко и не ходить. На страницах нашего портала имеется очень неплохой калькулятор-конвертер метража арматуры в весовой эквивалент .

  • Рубероид – цена за рулон. Тот материал, о котором шла речь в статье (РПП-300) в подавляющем большинстве случаев поступает в продажу в рулонах 1×15 метров.

Остается нажать клавишу расчета – и получить целый список рассчитанных параметров, от необходимого количества материалов на одну сваю – и до стоимости всего проекта.

В результатах все расписано очень подробно, так что особых пояснений, должно быть, не потребуется.

Да, при расчете общего количества и стоимости песка — суммируются объемы, затрачиваемые и на песчаную подушку, и на приготовление бетона.

После первичного расчета, как уже предлагалось, пользователь может подкорректировать стоимость материалов – она у поставщиков может варьироваться в зависимости от объема приобретаемой партии.

Если после проведения расчета указать в появившихся полях свое имя и электронный адрес, то подробный «протокол вычислений», с указанием всех исходных, промежуточных и итоговых величин, будет тут же выслан пользователю.

Про, собственно, технологию в этой публикации говорилось довольно кратко – цель все же ставилась другая. Но чтобы хоть немного восполнить этот пробел, чтобы у читателя не осталось недопонятых моментов – посмотрите предлагаемое видео.

Калькулятор расчета раствора для бетонирования сваи

При строительстве и жилых частных домов, и хозяйственных пристроек нередко прибегают к созданию для них свайного фундамента. К такому решению нередко приводят особенности участка под строительство: малая несущая способность грунтов в верхних слоях, склонность их к зимнему морозному вспучиванию, выраженно большая глубина промерзания, значительный перепад площадки по высоте. Впрочем, иногда свайный фундамент выбирается и из чисто экономических соображений, как наиболее рентабельный и простой в возведении для конкретного строения.

Калькулятор расчета раствора для бетонирования сваи

Калькулятор расчета раствора для бетонирования сваи

Сваи в таких фундаментах бывает разные. Чаще они имеют круглое сечение, и тогда в роли опалубки для их бетонирования выступают металлические асбестоцементные или пластиковые трубы или даже просто свернутые из рубероида «тубусы». Практикуется применение и прямоугольных в сечении свай – для их формирования могут применяться деревянные или пластиковые многоразовые опалубки, кирпичная «колодезная» кладка. Но общее у них одно – после установки армирующего каркаса, полость сваи заполняется доверху бетонным раствором.

А сколько потребуется подготовить бетона для заливки? На глаз определить бывает непросто – легко можно ошибиться, так как объёмы – «штука обманчивая». Предлагаем применить калькулятор расчета раствора для бетонирования сваи – он не только покажет необходимый объем бетона, но и подсчитает количество ингредиентов для его самостоятельного замешивания.

Ниже будет дано несколько кратких пояснений.

Калькулятор расчета раствора для бетонирования сваи

Пояснения по проведению расчетов

  • Для начала пользователю предлагается выбрать тип сечения сваи – прямоугольное или круглое. В зависимости от этого откроются соответствующие окна ввода данных.
  • Если выбрана прямоугольная свая, то необходимо будет указать размеры сечения – длину и ширину. После этого вводится высота сваи. Понятно, что под высотой подразумевается ее общий размер, включающий и заглубленную часть, и выступающую над поверхностью грунта на проектный уровень. Все значения вводятся в метрах.
  • При расчете раствора для круглой в сечении сваи будет предложено указать ее диаметр. Если в качестве внешней оболочки сваи используется толстостенная труба, то указывается ее внутренний диаметр. Высота указывается по аналогии со сваями прямоугольного сечения.
  • При возведении свайных фундаментов на грунтах с невысокой несущей способностью нередко делают уширение сваи в области ее пятки ( так называемая «технология ТИСЭ » ). С помощью специальных насадок на бур в грунте выбирается полусферическая полость, которая после заполнения бетоном и его полного созревания резко увеличивает способность опоры выдерживать вертикальные нагрузки. Естественно, расход бетона при такой технологии увеличивается, и весьма значимо.

Цены на винтовые сваи

винтовые сваи

Принцип создания сваи по технологии ТИСЭ

Принцип создания сваи по технологии ТИСЭ

Поэтому для круглых в сечении свай будет предложено два пути расчета :

— Первый: свая без уширения, и никаких дополнительных данных указывать не надо.

— Второй: свая с уширением в области подошвы. Откроется дополнительное поле ввода данных, где необходимо указать диаметр этого уширения. Как правило, для свай используются насадки, создающие «полусферы» диаметром 400, 500 или 600 мм.

  • Итоговое значение будет показано « с учетом 10% запаса ) :

— объемом бетонного раствора, необходимого для заливки сваи;

-— количеством исходных ингредиентов для самостоятельного изготовления этого количества бетона марочной прочности М 200.


Как провести самостоятельные расчеты свайно-винтового фундамента?

Одной из разновидностей свайных фундаментов является свайно-винтовой вариант. Кстати, при его строительстве также настоятельно рекомендуется полностью заполнять трубы бетоном. Об особенностях проектирования свайно-винтовых фундаментов – читайте в специальной публикации нашего портала.

Онлайн калькулятор расчета монолитного плитного фундамента (плиты, ушп)

Онлайн калькулятор монолитного плитного фундамента (плиты) предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента домов и других построек. Перед выбором типа фундамента, обязательно проконсультируйтесь со специалистами, подходит ли данных тип для ваших условий.

Все расчеты выполняются в соответствии со СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 и ГОСТ Р 52086-2003

П литный фундамент (ушп) – монолитное железобетонное основание, закладываемое под всю площадь постройки. Имеет самый низкий показатель давления на грунт среди других типов. В основном применяется для легких построек, так как с увеличением нагрузки существенно возрастает стоимость данного типа фундамента. При малом заглублении, на достаточно пучинистых грунтах, возможно равномерное приподнимание и опускание плиты в зависимости от времени года.

О бязательно наличие хорошей гидроизоляции со всех сторон. Утепление может быть как подфундаментное, так и располагаться в стяжке пола, и чаще всего для этих целей применяется экструдированный пенополистирол.

Г лавным преимуществом плитных фундаментов является относительно низкая стоимость и простота возведения, так как в отличии от ленточного фундамента нет необходимости в проведении большого количества земляных работ. Обычно достаточно выкопать котлован 30-50 см. в глубину, на дне которого размещается песчаная подушка, а так же при необходимости геотекстиль, гидроизоляция и слой утеплителя.

О бязательно необходимо выяснить какими характеристиками обладает грунт под будущим фундаментом, так это это является основным решающим фактором при выборе его типа, размера и других важных характеристик.

При заполнении данных, обратите внимание на дополнительную информацию со знаком Дополнительная информация

Д алее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Вы так же можете задать свой вопрос, воспользовавшись формой в правом блоке.

Расчет столбчатого фундамента

Калькулятор по расчету столбчатого фундамента из буронабивных столбов (свай). Расчет количества столбов, ростверка, расчет бетона и арматуры, состава бетона и кол-ва замесов в бетономешалке. За основу взяты: СП 22.13330.2011, СП 52-101-2003, книга В.П. Сизова: Руководство для подбора составов тяжелого бетона.

Пример расчета

Вес дома: 150 тонн

Вес дома необходимо указать без учета массы фундамента с учетом снеговой и эксплуатационной нагрузки на перекрытия и с коэф. запаса. Для примера взят одноэтажный каркасный дом.

Грунт: Суглинок. Коэффициент пористости [e]: 0.5. Показатель текучести грунта [IL]: 1

Тип столбов: с уширением пяты (ТИСЭ)

Высота ствола столба [h1]: 2.5м

Диаметр ствола столба [d1]: 0.25м

Высота уширения столба [h2]: 0.3м

Диаметр уширения столба [d2]: 0.6м

Глубина погружения столба в грунт: 1.5м

Конструктивная схема здания: пятистенок (с одной внутренней несущей стеной по длинной стороне дома)

Размеры дома: 10х12м

Высота ростверка: 0.4м

Ширина ростверка: 0.4м

Условия расчета

Для расчета количества столбов нам необходимо знать расчетное сопротивление грунта, нагрузки на фундамент (вес дома со снеговой и эксплуат. нагрузкой) и массу фундамента.

В связи с тем, что масса фундамента нам не известна расчет будем производить в два приема. Изначально находим кол-во столбов без учета массы фундамента (столб + ростверк либо только столбы), а затем, когда масса фундамента становится известной, находим кол-во столбов с учетом его массы.

Расчет столбчатого фундамента будем производить по второй группе предельных состояний (по деформациям основания). За основу взят СП 22.13330.2011 Основания зданий и сооружений.

Отступление: Стоит заметить, что многие застройщики называют данный тип свайно-ростверковым фундаментом. Если идти по строгой терминологии то это не верно и для расчета свайного фундамента используется СП 24.13330.2011. По нему будет составлен отдельный калькулятор.

Расчет сопротивление грунта основания

Если характеристики грунтов известны, то для расчета можно воспользоваться формулой из пункта 5.6.7 СП 22.13330.2011.



Определяем ширину подошвы фундамента. В нашем случае это столб, который имеет геометрию подошвы в виде круга. Поэтому в первую очередь находим площадь подошвы столба, которая будет опираться на грунт. Затем вычисляем ширину фундамента.

Площадь подошвы столба = Пи * Диаметр подошвы столба * Диаметр подошвы столба / 4 = 3.14 * 0.6 * 0.6 / 4 = 0.2826 м2 = 2826 см2

Ширина фундамента = квадратный корень (Площадь подошвы столба) = квадратный корень (2826см2) = 0.53 м

При неизвестной ширине фундамента можно найти расчетное сопротивление грунта по формулам через приложения В СП 22.13330.2011. Ширина фундамента в нашем случае задана конструктивно, но за основу можно взять данный расчет за счет минимальных требований к прочностным характеристикам грунта.

Формула при глубине заложения фундамента [d]<=2:

[R0] - расчетное сопротивление грунта основания (при d=2м и b=1м), кПа;

[k1] - коэффициент, принимаемый для оснований, сложенных крупнообломочными и песчаными грунтами, кроме пылеватых песков, — k1 = 0,125, пылеватыми песками, супесями, суглинками и глинами — k1 = 0,05;

[b] - ширина проектируемого фундамента, м;

[d] - глубина заложения проектируемого фундамента, м;

[b0] - ширина фундамента равная 1м (R0);

[d0] - глубина заложения фундамента равная 2м (R0).

R = 350*[1+0.05*(0.53-1)/1]*(1.5+2)/2*2 = 214 кПа = 21.82 т/м2 = 2.2 кг/см2

Точный расчет по расчетному сопротивлению грунта можно найти в калькуляторе в разделе «Расчет».

Расчет столбов

Определение кол-во столбов без учета массы фундамента

Допустимая нагрузка на столб = Площадь подошвы столба * Расчетное сопротивление грунта = 0.2826 м2 * 21.82 т/м2 = 6.2 т

Зная расчетное сопротивление грунта, площадь подошвы столба и вертикальные нагрузки на фундамент (вес дома) можно вычислить количество столбов на дом без учета массы фундамента.

Количество столбов (без фундамента) = Нагрузка на фундамент / Допустимая нагрузка на сваю = 150 т / 6.2 т = 24.2 Округляем = 25 столбов

Расчет массы столбов

Для определения массы столбов необходимо вычислить объем столба и умножить на плотность бетонной смеси. Массу арматуры в расчете учитывать не будем. Также стоит учесть, что уширение в калькуляторе имеет больший объем, чем у сваи ТИСЭ, поэтому будет запас по объему столба и, следовательно, по ее массе и расходу бетона.

Объем столба = [Высота ствола столба * Площадь сечения столба] + [Высота уширения столба * Площадь сечения уширения столба] = [2.5 * (3.14 * 0.25 * 0.25 / 4)] + [0.3 * (3.14 * 0.6 * 0.6/ 4)] = 0.21 м3

Расчет бетона осуществлен по методике, описанной в книге В.П. Сизова: Руководство для подбора составов тяжелого бетона. Алгоритм расчета можно посмотреть на странице калькулятора Бетон-Онлайн v.1.0. Для заданных параметров плотность бетонной смеси составила 2309 кг/м3

Масса одного столба = Объем столба * Плотность бетонной смеси = 0.21 м3 * 2309 кг/м3 = 484 кг = 0.48 т

Масса всех столбов = Количество столбов * Массу одного столба = 25 * 0.48т = 12 т

Расчет массы ростверка

Длина ростверка = [2 * Длина АГ] +[3*(Длина12 – 2 * Ширина ростверка)] = [10 * 2] + [3 * (12 – 2 * 0.4)] = 20 + 33.6 = 53.6 м

Длину ростверка можно посчитать и без учета ширины ростверка, но расчет будет менее точным.

Длина ростверка = 2 * 10 + 3 * 12 = 56 м

Объем ростверка = Длина ростверка * Ширина ростверка * Высота ростверка = 53.6 * 0.4 * 0.4 = 8.58 м3

Масса ростверка = Объем ростверка * Плотность бетонной смеси = 8.58 м3 * 2309 кг/м3 = 19 811 кг = 20 т

Массу арматуры не учитываем. Массу ростверка и столбов округляем в большую сторону до целого числа.

Расчет общего количества столбов на дом

Теперь, когда мы знаем не только нагрузки на фундамент, но и массу самого фундамента, можно рассчитать минимальное количество столбов, чтобы было соблюдено условие расчета по деформациям основания p<=R (среднее давление под подошвой фундамента не должно превышать расчетное сопротивление грунта).

Минимальное кол-во столбов = [Нагрузки на фундамент + Масса фундамента] / Допустимая нагрузка на один столб = [150т + 12т + 20т] / 6.2 т = 29.35 Округляем 30 столбов

Конструктивно столбов может быть больше, но их минимальное количество мы определили. Расстановка столбов по периметру ростверка должна производиться с учетом нагрузок по осям (у несущих стен шаг столбов будет чаще). Также столбы должны быть размещены по углам дома и в местах пересечения с внутренними стенами.

Читайте также: