Установка станка качалки на фундамент

Обновлено: 02.05.2024

Фундамент для станка качалки

В нашей стране применяются в основном редукторные станки-качалки, устанавливаемые на фундаменты, которые делятся на три группы: бутобетонные или бетонные; из бетонных труб; металлические постаменты различных конструкций.

Бутобетонные фундаменты для станков-качалок нормального ряда сооружаются с использованием деревянной опалубки; стены цоколя выкладываются из бутового камня. Перед монтажом станка-качалки проверяется комплектность поставки узлов и крепежного материала (болтов, гаек, шайб). Доставленные к месту монтажа узлы станка-качалки располагаются с учетом последовательности сборки. Монтаж начинается с установки рамы на фундамент затаскиванием ее по уложенным накатам из труб или краном, смонтированным на тракторе. После установки рамы выверяется ее положение относительно центра скважины и горизонтальность в продольном и поперечном направлениях.

Небольшие отклонения устраняются перемещением балансира при помощи регулировочных болтов. Балансир закрепляется, траверса с двумя шатунами и ее опорой поднимается для присоединения к балансиру. Верхние головки должны свободно вращаться на пальцах во втулках траверсы. Пальцы должны быть надежно застопорены в верхних головках шатунов. После сборки тормозного устройства шкив редуктора проворачивается до установки кривошипов в горизонтальное положение. На кривошипы устанавливаются противовесы, которые закрепляются болтами с гайками и контргайками. Нижние головки шатунов присоединяются к кривошипам и закрепляются в определенном положении гайкой, затягиваемой специальным патронным ключом. Гайки после крепления шплинтуются. Расстояние между шатунами и кривошипами с обеих сторон станка должно быть одинаковым. После проверки параллельности продольных осей кривошипов и совпадения наружных поверхностей шкивов редуктора и электродвигателя надеваются клиновые ремни. Натяжение ремней регулируется подъемом или опусканием поворотных салазок. По окончании сборки и проверки ее качества устанавливаются фундаментные шпильки, концы которых должны выступать над верхней плоскостью рамы для установки гайки и контргайки. После заливки цементного рас твора под раму станка-качалки и его затвердения фундаментные болты затягиваются.

По окончании монтажа электрооборудования, ограждения кривошипа и площадки с лестницей для обслуживания электродвигателя, а также проверки смазки в подшипниках и в редукторе разрешается выполнить пробный пуск станка-качалки и обкатку на холостом ходу в течение 3 часов.

В процессе обкатки проверяются вертикальность движения шатунов, точки подвеса штанг, величины торцевого и радиального биений шкивов, наличие шума и стуков в узлах. При удовлетворительной работе и отсутствии дефектов присоединяются штанги скважинного насоса и станок под нагрузкой включается.

Устройство оснований и фундаментов для установки станочного оборудования

Еще одна публикация из учебника А.М. Гаврилина, В.И. Сотникова, А.Г. Схиртладзе и Г.А. Харламова «Металлорежущие станки» с полезной информацией о станках с ЧПУ. Сегодня разберем особенности в устройстве оснований и фундаментов для установки станочного оборудования.

Устройство оснований и фундаментов для установки станочного оборудования

Для защиты от внешних вибраций станки следует устанавливать на фундаменты или на специальные виброизоляторы.

Документы, высылаемые заводом-изготовителем вместе со станком, в большинстве случаев содержат указания по устройству фундаментов и их виброизоляции. Виброизоляция станков может быть также обеспечена установкой их на виброопоры или на резиновые прокладки без устройства фундамента.

При выборе типа основания для любого станка должны быть учтены следующие основные факторы: класс точности станка, жесткость конструкции, масса станка, характер нагрузок при работе.

Станки класса точности С устанавливаются на массивные бетонные фундаменты, вывешенные на пружинах с демпферами или резиновых ковриках (рис 17.1 д, е) и боковой виброизоляцией (пробковая крошка, шлак, шлаковата, отходы кожевенно-обувной промышленности) .

Станки класса точности А устанавливают на бетонных фундаментах с боковой виброизоляцией из тех же материалов, которые используются для фундаментов станков класса точности С.


Рис. 17.1. Фундаменты под металлорежущие станки:

а — общая плита цеха; б — ленточный; в — обычного типа; г — свайный; д — на резиновых ковриках; е — на пружинах

Станки класса точности В, имеющие нежесткие станины, а также крупные и тяжелые станки независимо от жесткости станин устанавливаются на бетонные фундаменты с боковой виброизоляцией, аналогично станкам класса точности А.

Станки класса точности П, имеющие нежесткие станины, и крупные и тяжелые станки независимо от жесткости станин устанавливаются на бетонные фундаменты без боковой виброизоляции. На такие же фундаменты устанавливают крупные и тяжелые станки класса точности Н (рис. 17.1, в, г).

Станки классов точности В, П и Н легкой и средней массы, не имеющие резко реверсирующих узлов, устанавливают на виброопоры (рис. 17.2, д). Такие же станки с быстро реверсирующими узлами устанавливают на жесткие (клиновые) опоры (рис. 17.2, в, рис. 17.3)


Рис. 17.2. Способы установки станка на фундамент:

а — с подливкой опорной поверхности станины цементным раствором и креплением фундаментными болтами; б — с подливкой без крепления болтами; в, г — на регулируемых жестких опорах; д — на упругих опораx


Рис. 17.3. Опорные башмаки:

а — для установки станка без закрепления фундаментными болтами; б для установки станка с закреплением фундаментными болтами

При устройстве фундамента из бетона станок можно монтировать через семь дней после укладки бетона, а пуск станка разрешается на 22-й день.

От разрушения маслами фундамент железнят цементным раствором с жидким стеклом.

Фундамент должен обеспечить:

  • распределение на грунт сосредоточенной силы веса станка;
  • увеличение жесткости станины станка;
  • необходимую устойчивость станка при работе за счет понижения центра тяжести;
  • увеличение суммарной массы станка и фундамента, что приводит к уменьшению амплитуды вибраций;
  • защиту станка от вибраций рядом стоящего оборудования. Фундаменты должны быть компактными, сравнительно небольших размеров и простой формы в очертаниях, удобными для размещения и закрепления станка.

Нужно стремиться к тому, чтобы общий центр тяжести станка и фундамента находились на одной вертикали и располагались в центре площади основания фундамента. Допустимое смещение центров тяжести не должно превышать 3. 5 % от ширины фундамента в зависимости от типа грунта.

Высота фундамента делается как можно меньше, но ширину желательно увеличить (уменьшается опрокидывающий момент). Обязательны боковые зазоры. Подошву всего фундамента желательно расположить на одной глубине. Для влажных грунтов делается подготовка из щебня, крупного гравия.

Площадь подошвы фундамента:


где Q — нагрузка на грунт (вес станка, фундамента, детали); R — допустимое давление на грунт.

Допустимое давление на грунт определяют по формуле


где α — коэффициент, учитывающий характер динамических нагрузок, возникающих при работе технологического оборудования (формовочные машины — α = 0,3 . 0,5 ; молоты — α = 0,4; металлорежущие станки — α = 0,8. 1,0); RH — нормативное удельное давление для грунта (супеси — R н = 2. 3 кг/см 2 , суглинки — RH = 1. 3 кг/см 2 , глина — RH = 1 . 6 кг/см 2 , песок — R Н = 1,5. 3,5 кг/см 2 ).

Вес фундамента Q Ф определяют исходя из веса станка:


где КФ — коэффициент, учитывающий вид нагрузки технологического оборудования (при статической нагрузке — К Ф = 0,6. 1,5, при значительной динамической нагрузке — К Ф = 2. 3); Q СТ — вес станка.

Высота фундамента берется из расчета веса фундамента и площади его основания или с учетом длины заделки фундаментных болтов (рис. 17.4).


Рис. 17.4. Фундаментные болты:

а, б— изогнутые; в — с анкерной плитой

Материалы для фундаментов: бетон, железобетон (реже бутобетон и кирпич) из портландцемента марок 200. 500 (схватывание бетона от 45 мин до 12 ч).

Ориентировочно глубина фундамента h принимается в зависимости от длины фундамента L :

Расстояние от края колодца для анкеров до края фундамента не менее 120 мм, от дна колодца до дна фундамента минимум 100. 150 мм.

Металлический свайный фундамент для станка-качалки скважинной насосной установки

Полезная модель относится к свайным фундаментам и может быть использовано для передачи нагрузки от установленной на фундаменте станка-качалки скважинной насосной установки грунту. Металлический свайный фундамент для станка-качалки скважинной установки, включает сваи, выполненные в виде вертикально расположенных труб, по меньшей мере, две из которых жестко связаны между собой соединяющей балкой. Фундамент представляет собой четыре пары вертикально расположенных на расстоянии друг за другом труб не связанных между собой, но каждая пара жестко связана между собой соединяющей балкой для установки основания станка-качалки. Каждая балка выполнена в виде швеллера для установки ее сверху на сваи, и приваренных к швеллеру с двух концов в верхней его части пластин с отверстиями для соединения их со сваями с помощью болтов. Концы каждой сваи выполнены в виде шнека, по меньшей мере, с одним оборотом, и с заостренным концом. К верхним частям четырех пар, не связанных между собой, вертикально расположенных труб и к верхним частям второй, третьей и четвертой пар труб жестко связанных между собой соединяющими балками, приварены по два пересекающихся уголковых профиля, которые приварены друг к другу с помощью пластин, для скрепления этих вертикальных труб. К первой и четвертой балкам приварены пластины с отверстиями для центровочных болтов и регулировки положения основания станка-качалки. Балки снабжены дополнительными прижимными балками с продольными пазами, шпильками и гайками для стягивания балок, основания станка-качалки и прижимных балок. Предлагаемый фундамент позволит снизить усилие и напряжение в элементах конструкции, сократить время установки фундамента, снизить трудоемкость и стоимость строительства. 2, 3.п. ф-лы,6 ил.

Полезная модель относится к свайным фундаментам и может быть использовано для передачи нагрузки от установленной на фундаменте станка-качалки скважинной насосной установки грунту.

Известен сборный металлический ростверк многосвайного фундамента башенной опоры, содержащий центральный элемент и два периферийных элемента, при этом центральный элемент выполнен сварным из двух параллельных балок, на которых закреплена пластина с отверстиями под фланцевое соединение с основанием башенной опоры, и двух приваренных к балкам поперечины, скрепляющих концы параллельных балок, каждый периферийный элемент выполнен в виде балки с отверстиями для закрепления ростверка на хвостах свай, к которой приварены две консоли, а концы консолей периферийного элемента и концы поперечин центрального элемента снабжены фланцами для болтового соединения друг с другом, (патент РФ 107191, МПК Е02Д 27/42, опуб. 10.08.11 г.).

Недостатком этой конструкции является то, что статическая нагрузка передается грунту, тогда как при ударе динамических масс (таранном ударе) приходящемся в изделии, установленном на эту конструкцию фундамента, происходят не контролируемые деформации, приводящие к разрушению конструкции в целом, а следовательно, и полной замене фундамента.

Известен металлический свайный фундамент, включающий сваи, выполненные в виде вертикально расположенных труб, по меньшей мере, две из которых жестко связаны между собой двумя соединяющими балками, каждая из не связанных между собой труб в верхней части снабжена средством для опоры ростверка, ростверк выполнен в виде системы Г-образных балок, каждая из которых снабжена одним жестко соединенным с концом балки демпфером, посредством которого она опирается на средство для опоры, (патент RU 123425, МПК Е02Д 27/14, опуб. 27.12.2012 г.).

В этом металлическом свайном фундаменте, наиболее близком к предлагаемому, хотя и снижены усилия и напряжения в элементах конструкции фундамента, но они недостаточны для передачи нагрузки грунту от установленного на фундамент станка-качалки скважинной установки.

Технический результат на достижение которого направлена полезная модель, заключается в создании высокопрочной конструкции свайного фундамента, обеспечивающего гашение импульса удара динамических масс, т.е. обеспечивающего возможность преобразования полученной ею энергии от ударной (динамической) нагрузки посредством балок, уголковых профилей и свай на грунт.

Для достижения этого технического результата металлический свайный фундамент для станка-качалки скважинной насосной установки, включающий сваи, выполненные в виде вертикально расположенных труб, по меньшей мере две из которых жестко связаны между собой двумя соединяющими балками, фундамент представляет собой четыре пары вертикально расположенных на расстоянии друг за другом труб не связанных между собой, но каждая пара жестко связана между собой соединяющей балкой для установки основания станка-качалки, причем каждая балка выполнена в виде швеллера для установки ее сверху на сваи и приваренных к швеллеру с двух концов в верхней его части пластин с отверстиями для соединения их со сваями с помощью болтов, а концы каждой сваи выполнены в виде шнека по меньшей мере с одним оборотом и с заостренным концом, при этом к верхним частям четырех пар не связанных между собой вертикально расположенных труб и к верхним частям второй, третьей и четвертой пар труб жестко связанных между собой соединяющими балками приварены по два перекрещивающихся угловых профиля, которые приварены друг к другу с помощью пластин для скрепления этих вертикальных труб, а к первой и четвертой балкам приварены пластины с отверстиями для центровочных болтов и регулировки положения основания станка-качалки, причем балки снабжены дополнительными прижимными балками с продольными пазами, шпильками и гайками для стягивания самих балок, основания станка-качалки и прижимных балок. Кроме того, первая балка установлена на три сваи, а концы угловых профилей приварены к сваям непосредственно или через накладки.

Признаки, отличающие предлагаемый металлический свайный фундамент для станка-качалки скважинной насосной установки от наиболее близкого к нему известного патента RU 123425 (прототип) характеризуют выполнение фундамента в виде четырех пар вертикально расположенных на расстоянии друг за другом труб не связанных между собой, но каждая пара жестко связана между собой соединяющей балкой для установки основания станка-качалки, выполнение каждой балки в виде швеллера для установки ее сверху на сваи и приваренных к швеллеру с двух концов в верхней его части пластин с отверстиями для соединения их со сваями с помощью болтов, выполнение концов каждой сваи в виде шнека, по меньшей мере, с одним оборотом и с заостренным концом, наличие приваренных двух перекрещивающихся угловых профиля к верхним частям четырех пар, не связанных между собой вертикально расположенных труб и к верхним частям второй, третьей и четвертой пар труб жестко связанных между собой соединяющими балками, уголковые профили приварены друг к другу с помощью пластин для скрепления этих вертикальных труб, наличие приваренных к первой и четвертой балкам пластины с отверстиями для центровочных болтов и регулировки положения основания станка-качалки, наличие у балок дополнительных прижимных балок с продольными пазами, шпильками и гайками для стягивания самих балок, основания станка-качалки и прижимных балок, кроме того установки первой балки на три сваи, выполнение концов уголковых профилей приваренными к сваям непосредственно или через накладки, что позволяет снизить усилия и напряжение в элементах конструкции фундамента и обеспечить передачу ударной (динамической) нагрузки посредством свай и балок на грунт, позволяет ускорить установку свайного фундамента, при необходимости сваи можно извлечь и использовать повторно, получить высокую точность установки свай по строго заданной отметке, сократить время установки свайного фундамента до одного дня.

Предлагаемый металлический свайный фундамент для станка-качалки скважинной насосной установки иллюстрируется чертежами, представленными на фиг. 1-6.

На фиг. 1 показана конструкция металлического свайного фундамента для станка-качалки, вид сбоку;

Металлический свайный фундамент для станка-качалки (фиг. 1) включает сваи, выполненные в виде вертикально расположенных труб, по меньшей мере, две из которых жестко связаны между собой соединяющей балкой. Фундамент представляет собой четыре пары вертикально расположенных на расстоянии друг за другом труб 1, 2, 3, 4, связанных между собой соединяющей балкой 5, 6, 7, 8 соответственно для установки основания 9 станка-качалки (фиг. 2, 3, 4). Каждая балка выполнена в виде швеллера, для установки ее сверху на сваи, и приваренных к швеллеру с двух концов пластин 10 и 11 с отверстиями для соединения их со сваями с помощью болтов 12 и 13.

Концы каждой сваи выполнены в виде шнека, по меньшей мере, с одним оборотом 14, и с заостренным концом 15. К верхним частям четырех пар, не связанных между собой вертикально расположенных труб 1, 2, 3, 4 и к верхним частям второй, третьей и четвертых пар труб, жестко связанных между собой соединяющими балками 6, 7, 8 приварены по два пересекающихся уголковых профиля 16 и 17, которые приварены к друг другу с помощью пластин 18, для скрепления этих вертикальных труб. К балкам 5 и 8 приварены пластины 19 с отверстиями для центровочных болтов 20 и регулировки положения основания 9 станка-качалки. Балки 5, 6, 7, 8, снабжены дополнительными прижимными балками 21, 22, 23, 24 с продольными пазами 25, шпильками 26 и гайками 27 для стягивания балок 5, 6, 7, 8, основания 9 станка-качалки и прижимных балок 21, 22, 23, 24. Балка 1 установлена на три сваи (фиг. 3), а концы уголковых профилей 16 и 17 приварены к сваям непосредственно или через накладки 28.

Принцип работы предложенной полезной модели основан на преобразования ударной (динамической) нагрузки посредством балок, уголковых профилей и свай на грунт.

В процессе работы станка-качалки статические и динамические нагрузки воздействуют на основание станка-качалки 9. Основание станка-качалки 9 в свою очередь воздействует на соединяющие балки 5, 6, 7, 8, которые воспринимают нагрузку, распределяют и передают ее на сваи.

Во время спуско-подъемных операций головка балансира станка-качалки совершает возвратно-поступательное движение, вследствие чего возникают знакопеременные нагрузки, воздействующие через основание на соединяющие балки 5, 6, 7, 8. Балка 5, находящаяся непосредственно под стойкой станка-качалки воспринимает большую нагрузку, в связи с чем она установлена на три сваи.

Прижимные балки 21, 22, 23, 24 воспринимающие изгибающий момент при возникновении знакопеременных нагрузок, раскладывают его на пару сил. Одна сила, передает усилие на шпильки 26, которые работают на сжатие-растяжение. Другая, поперечная сила, воздействуя на прижимные балки 21, 22, 23, 24, работает на сдвиг. Для снятия напряжения при воздействии данной силы прижимные балки 21, 22, 23, 24 выполнены с продольными пазами, для возможности продольного сдвига, вследствие чего на шпильках 26 возникает изгибающий момент. Шпильки 26 работают на изгиб, благодаря наличию продольных пазов 25, обеспечивая тем самым, устойчивость свай.

Свая, воспринимая нагрузку от соединяющей балки работает как, сжатый стержень в упругой среде, ее несущая способность определяется прочностью материала сваи и сопротивлением грунта под ее нижним концом, выполненным в виде шнека по меньшей мере, с одним оборотом 14, и с заостренным концом 15.

Пересекающиеся уголковые профили 16 и 17, приваренные к друг другу с помощью пластин 18, обеспечивают общую устойчивость свай при воздействии статической и динамической нагрузок.

Предложенная конструкция фундамента позволяет снизить усилие и напряжение в элементах конструкции, сократить время погружения свай в грунт до 10-15 мин., при необходимости сваи можно извлечь и использовать повторно, повысить точность установки фундамента, снизить объем земляных работ, сократить время установки фундамента станка-качалки скважинной насосной установки до одного дня.

Были проведены испытания предлагаемого металлического свайного фундамента для установки станка-качалки скважинной насосной установки на скважинах ОАО «Татнефть», которые показали их надежность, быстроту установки фундамента, снижение трудоемкости и стоимости строительства фундамента.

1. Металлический свайный фундамент для станка-качалки скважинной установки, включающий сваи, выполненные в виде вертикально расположенных труб, по меньшей мере, две из которых жестко связаны между собой соединяющей балкой, отличающийся тем, что фундамент представляет собой четыре пары вертикально расположенных на расстоянии друг за другом труб, не связанных между собой, но каждая пара жестко связана между собой соединяющей балкой для установки основания станка-качалки, причем каждая балка выполнена в виде швеллера, для установки ее сверху на сваи, и приваренных к швеллеру с двух концов в верхней его части пластин с отверстиями для соединения их со сваями с помощью болтов, а концы каждой сваи выполнены в виде шнека, по меньшей мере, с одним оборотом, и с заостренным концом, при этом к верхним частям четырех пар, не связанных между собой, вертикально расположенных труб и к верхним частям второй, третьей и четвертой пар труб, жестко связанных между собой соединяющими балками, приварены по два пересекающихся уголковых профиля, которые приварены друг к другу с помощью пластин для скрепления этих вертикальных труб, а к первой и четвертой балкам приварены пластины с отверстиями для центровочных болтов и регулировки положения основания станка-качалки, причем балки снабжены дополнительными прижимными балками с продольными пазами, шпильками и гайками для стягивания балок, основания станка-качалки и прижимных балок.

2. Металлический свайный фундамент по п. 1, отличающийся тем, что первая балка установлена на три сваи.

3. Металлический свайный фундамент по п. 1, отличающийся тем, что концы уголковых профилей приварены к сваям непосредственно или через накладки.

Вопрос 4.36. Монтаж станка-качалки

В нашей стране применяют в основном редукторные станки-ка­чалки. Их устанавливают на фундаменты, которые делятся на три группы:

- бутобетонные или бетонные;

- из бетонных труб;

- металлические постаменты различных конструкций.

Бутобетонные фундаменты для станков-качалок нормального ряда сооружают с использованием деревянной опалубки; стены цо­коля выкладывают из бутового камня.

Перед монтажом станка-качалки проверяют комплектность по­ставки узлов и крепежного материала (болтов, гаек, шайб). Достав­ленные к месту монтажа узлы станка-качалки располагают с учетом последовательности сборки. Монтаж начинается с установки рамы на фундамент затаскиванием ее по уложенным накатам из труб или краном, смонтированным на тракторе.

После установки рамы выверяют ее положение относительно цен­тра скважины и горизонтальность в продольном и поперечном на­правлениях.

При наличии на скважине вышки или мачты монтаж стойки и балансира можно выполнять при помощи подъемника, в других слу­чаях - грузоподъемными средствами. Перед установкой балансира проверяют горизонтальность верхней плиты стойки в двух направ­лениях и крепление к раме. Балансир поднимают и устанавливают на плиту стойки вместе с его опорой. При этом продольная ось баланси­ра должна совпадать с продольной осью симметрии станка, а плос­кость качания балансира - быть перпендикулярной к плоскости ос­нования. Правильность положения балансира относительно центра скважины проверяют отвесом, прикрепленным к центру траверсы канатной подвески.

Небольшие отклонения устраняют перемещением балансира при помощи регулировочных болтов. Закрепляя балансир, поднимают траверсу с двумя шатунами и ее опорой для присоединения к балан­сиру. Верхние головки должны свободно вращаться на пальцах во втулках траверсы. Пальцы должны быть надежно застопорены в вер­хних головках шатунов. После сборки тормозного устройства прово­рачивают шкив редуктора до установки кривошипов в горизонталь­ное положение и затормаживают их. На кривошипы устанавливают противовесы и закрепляют их болтами с гайками и контргайками.

Нижние головки шатунов присоединяют к кривошипам и закрепля­ют их в определенном положении, затягивая гайку специальным пат­ронным ключом. Гайки после крепления шплинтуют. Расстояние меж­ду шатунами и кривошипами с обеих сторон станка должно быть оди­наковым. После проверки параллельности продольных осей криво­шипов и совпадения наружных поверхностей шкивов редуктора и электродвигателя надевают клиновые ремни. Натяжение ремней ре­гулируют, поднимая или опуская поворотные салазки. По окончании сборки и проверки ее качества устанавливают фундаментные шпиль­ки, концы которых должны выступать над верхней плоскостью рамы для установки гайки и контргайки. При заливке цементного раство­ра под раму станка-качалки фундаментные болты затягивают после затвердения раствора.

По окончании монтажа электрооборудования, ограждения кри­вошипа и площадки с лестницей для обслуживания электродвигате­ля, а также проверки смазки в подшипниках и в редукторе разреша­ется выполнить пробный пуск .станка-качалки и обкатку на холос­том ходу в течение 3 ч.

В процессе обкатки проверяют вертикальность движения шату­нов, точки подвеса штанг, величину торцевого и радиального биения шкивов, наличие шума и стуков в узлах. При удовлетворительной работе и отсутствии дефектов присоединяют штанги скважинного насоса и включают станок под нагрузкой.

Станок-качалка; назначение, основные узлы.

При насосном способе эксплуатации подъем нефти из сква­жин на поверхность осуществляется штанговыми и бесштанговыми насосами (погружные электроцентробежные насосы, винтовые насосы и др).

4.3.1 Эксплуатация скважин штанговыми насосами

Штанговые скважинные насосы (ШСН) обеспечивают откачку из скважин углеводородной жидкости, обводненностью до 99 % , абсолютной вязкостью до 100 мПа·с, содержанием твердых механических примесей до 0.5 %, свободного газа на приеме до 25 %, объемным содержанием сероводорода до 0.1 %, минерализацией воды до 10 г/л и температурой до 130 0 С.

Две трети фонда (66 %) действующих скважин стран СНГ (примерно 16.3 % всего объема добычи нефти) эксплуатируются ШСНУ. Дебит скважин составляет от десятков килограммов в сутки до нескольких тонн. Насосы спускают на глубину от нескольких десятков метров до 3000 м., а в отдельных скважинах на 3200 ¸ 3400 м. ШСНУ включает:

Ø Наземное оборудование: станок-качалка (СК), оборудование устья.

Ø Подземное оборудование: насосно-компрессорные трубы (НКТ), насосные штанги (НШ), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.

Отличительная особенность ШСНУ обстоит в том, что в скважине устанавливают плунжерный (поршневой) насос, который приводится в действие поверхностным приводом посредством колонны штанг.

Штанговая глубинная насосная установка (Рисунок 4.4) состоит из скважинного насоса 2 вставного или невставного типов, насосных штанг 4 насосно-компрессорных труб 3, подвешенных на планшайбе или в трубной подвеске 8, сальникового уплотнения 6, сальникового штока 7, станка-качалки 9, фундамента 10 и тройника 5. На приеме скважинного насоса устанавливается защитное приспособление в виде газового или песочного фильтра 1.

Недостатками штанговых насосов является ограниченность глубины их подвески и малая подача нефти из скважин.

Рисунок 4.4 — Схема установки штангового скважинного насоса

Устьевое оборудование насосных скважин предназначено для герметизации затрубного пространства, внутренней полости НКТ, отвода продукции скважин и подвешивания колонны НКТ (Рисунок 4.8).


Рисунок 4.8 — Типичное оборудование устья скважины для штанговой насосной установки

1 — колонный фланец; 2 — планшайба; 3 — НКТ; 4 — опорная муфта; 5 — тройник, 6 — корпус сальника, 7 — полированный шток, 8 — головка сальника, 9 — сальниковая набивка

Устьевое оборудование типа ОУ включает устьевой сальник, тройник, крестовину, запорные краны и обратные клапаны.

Устьевой сальник герметизирует выход устьевого штока с помощью сальниковой головки и обеспечивает отвод продукции через тройник. Тройник ввинчивается в муфту НКТ. Наличие шарового соединения обеспечивает самоустановку головки сальника при несоосности сальникового штока с осью НКТ, исключает односторонний износ уплотнительной набивки и облегчает смену набивки.

Станок-качалка (Рисунок 4.9) является индивидуальным приводом скважинного насоса.

Основные узлы станка-качалки — рама, стойка в виде усеченной четырехгранной пирамиды, балансир с поворотной головкой, траверса с шатунами, шарнирноподвешенная к балансиру, редуктор с кривошипами и противовесами. СК комплектуется набором сменных шкивов для изменения числа качаний, т.е. регулирование дискретное. Для быстрой смены и натяжения ремней электродвигатель устанавливается на поворотной раме-салазках.

Рисунок 4.9 — Станок-качалка типа СКД

1 — подвеска устьевого штока; 2 — балансир с опорой; 3 — стойка; 4 — шатун; 5 — кривошип; 6 — редуктор; 7 — ведомый шкив; 8 — ремень; 9 — электродвигатель; 10 — ведущий шкив; 11 — ограждение; 12 — поворотная плита; 13 — рама; 14 —противовес; 15 — траверса; 16 — тормоз; 17 — канатная подвеска

Монтируется станок-качалка на раме, устанавливаемой на железобетонное основание (фундамент). Фиксация балансира в необходимом (крайнем верхнем) положении головки осуществляется с помощью тормозного барабана (шкива). Головка балансира откидная или поворотная для беспрепятственного прохода спускоподъемного и глубинного оборудования при подземном ремонте скважины. Поскольку головка балансира совершает движение по дуге, то для сочленения ее с устьевым штоком и штангами имеется гибкая канатная подвеска 17. Она позволяет регулировать посадку плунжера в цилиндр насоса или выход плунжера из цилиндра, а также устанавливать динамограф для исследования работы оборудования.




Амплитуду движения головки балансира (длина хода устьевого штока) регулируют путем изменения места сочленения кривошипа с шатуном относительно оси вращения (перестановка пальца кривошипа в другое отверстие).

За один двойной ход балансира нагрузка на СК неравномерная. Для уравновешивания работы станка-качалки помещают грузы (противовесы) на балансир, кривошип или на балансир и кривошип. Тогда уравновешивание называют соответственно балансирным, кривошипным (роторным) или комбинированным.

Блок управления обеспечивает управление электродвигателем СК в аварийных ситуациях (обрыв штанг, поломки редуктора, насоса, порыв трубопровода и т.д.), а также самозапуск СК после перерыва в подаче электроэнергии.

Монтаж станка-качалки

В нашей стране применяют в основном редукторные станки-качалки . Их устанавливают на фундаменты, которые делятся на три группы:

  • бутобетонные или бетонные;
  • из бетонных труб;
  • металлические постаменты различных конструкций.

Бутобетонные фундаменты для станков-качалок нормального ряда сооружают с использованием деревянной опалубки; стены цоколя выкладывают из бутового камня.

Перед монтажом станка-качалки проверяют комплектность поставки узлов и крепежного материала (болтов, гаек, шайб). Доставленные к месту монтажа узлы станка-качалки располагают с учетом последовательности сборки. Монтаж начинается с установки рамы на фундамент затаскиванием ее по уложенным накатам из труб или краном, смонтированным на тракторе.

После установки рамы выверяют ее положение относительно центра скважины и горизонтальность в продольном и поперечном направлениях.

При наличии на скважине вышки или мачты монтаж стойки и балансира можно выполнять при помощи подъемника, в других случаях - грузоподъемными средствами. Перед установкой балансира проверяют горизонтальность верхней плиты стойки в двух направлениях и крепление к раме. Балансир поднимают и устанавливают на плиту стойки вместе с его опорой. При этом продольная ось балансира должна совпадать с продольной осью симметрии станка, а плоскость качания балансира - быть перпендикулярной к плоскости основания. Правильность положения балансира относительно центра скважины проверяют отвесом, прикрепленным к центру траверсы канатной подвески.

Небольшие отклонения устраняют перемещением балансира при помощи регулировочных болтов. Закрепляя балансир, поднимают траверсу с двумя шатунами и ее опорой для присоединения к балансиру. Верхние головки должны свободно вращаться на пальцах во втулках траверсы. Пальцы должны быть надежно застопорены в верхних головках шатунов. После сборки тормозного устройства проворачивают шкив редуктора до установки кривошипов в горизонтальное положение и затормаживают их. На кривошипы устанавливают противовесы и закрепляют их болтами с гайками и контргайками.

Нижние головки шатунов присоединяют к кривошипам и закрепляют их в определенном положении, затягивая гайку специальным патронным ключом. Гайки после крепления шплинтуют. Расстояние между шатунами и кривошипами с обеих сторон станка должно быть одинаковым. После проверки параллельности продольных осей кривошипов и совпадения наружных поверхностей шкивов редуктора и электродвигателя надевают клиновые ремни. Натяжение ремней регулируют, поднимая или опуская поворотные салазки. По окончании сборки и проверки ее качества устанавливают фундаментные шпильки, концы которых должны выступать над верхней плоскостью рамы для установки гайки и контргайки. При заливке цементного раствора под раму станка-качалки фундаментные болты затягивают после затвердения раствора.

По окончании монтажа электрооборудования, ограждения кривошипа и площадки с лестницей для обслуживания электродвигателя, а также проверки смазки в подшипниках и в редукторе разрешается выполнить пробный пуск станка-качалки и обкатку на холостом ходу в течение 3 ч.

В процессе обкатки проверяют вертикальность движения шатунов, точки подвеса штанг, величину торцевого и радиального биения шкивов, наличие шума и стуков в узлах. При удовлетворительной работе и отсутствии дефектов присоединяют штанги скважинного насоса и включают станок под нагрузкой.

Станки - качалки

Кинематическая схема преобразующего механизма балансирного станка-качалки представляет четырехзвенник OBCD ( рис. 4.35. ). Неподвижное звено - OD (расстояние от О до D), подвижные звенья - кривошип r, шатун l и заднее плечо балансира b.

Рис. 4.35. Кинематическая схема балансирного станка-качалки

Мощность электродвигателя станка-качалки

Для приведения в действие балансирного станка-качалки приводной двигатель должен обеспечить создание на кривошипном валу редуктора момента М кр . Эффективная мощность станка-качалки:

Редукторы станков-качалок

Редуктор предназначен для уменьшения частоты вращения, передаваемой от электродвигателя кривошипам станка-качалки. Применяется в станках-качалках и других механических приводах штанговых скважинных насосов. Редуктор ( рис. 4.47 ) - двухступенчатый, с цилиндрической шевронной зубчатой передачей зацепления Новикова. Быстроходная ступень - раздвоенный шеврон, тихоходная ступень - шевронная с канавкой. Подробнее.

Основные типы балансирных станков-качалок

Стандартом 1966 г. было предусмотрено 20 типоразмеров станков-качалок (СК) грузоподьемностью от 1,5 до 20 т. Типовая конструкция СК представлена на рис. 4.51. Впервые в стране был начат выпуск приводов, в которых редуктор был поднят и установлен на подставке. Подробнее.

Канатная подвеска станка-качалки

Канатная подвеска ( рис. 4.55 ) состоит из нижней траверсы 2, в которую вварены две втулки; клиновидных зажимов 10 для крепления концов каната 7; нажимной гайки 1; подъемных винтов 3 с конусной заточкой в верхней части и отверстием для вставки ворота (нижние концы винтов имеют нарезку, которой они ввинчиваются в отверстие с нарезкой в нижней траверсе); верхней траверсы 5 с вваренной в нее втулкой 4; клиновидных плашек 6 для зажима сальникового штока 8; зажимной гайки 9 с отверстиями для вставки ворота при креплении сальникового штока.

Монтаж станка-качалки

В нашей стране применяют в основном редукторные станки-качалки . Их устанавливают на фундаменты, которые делятся на три группы:

Заглянуть в климатическую хронику Земли можно, исследуя ледники. Российские ученые-гляциологи намерены начать первое в мире высокогорное бурение льда на Эльбрусе. Изучение образцов керна позволит не только понять, каким был климат планеты в далеком прошлом, но и сделать прогноз на будущее. В экспедиции участвуют специалисты из Института географии РАН и Эльбрусской учебно-научной базы географического факультета МГУ.

13.07.2009 Обзор российского рынка бурового оборудования для инженерных изысканий

Сейчас, в период кризиса, когда каждая копейка на счету, многие изыскатели стараются не обновлять парк буровой техники. Однако для кого-то вопрос о её покупке всё-таки встаёт прямо сейчас – и к этому выбору приходится подходить особенно вдумчиво. Что на сегодняшний день представляет собой рынок бурового оборудования для инженерных изысканий? Какие установки и с какими характеристиками предлагают ведущие производители? Как на них повлиял кризис? Попытка дать ответы на эти вопросы представлена в настоящем кратком обзоре. Подробнее .

07.04.2009 Нефтяной гигант Shell отказался от разработки битумных месторождений в Татарстане

Об этом сообщил прессе председатель концерна в России Крис Финлейсон. «В настоящий момент никаких переговоров с „Татнефтью” по этому вопросу не ведется. Мы в прошлом году завершили технические исследования на этот счет. С учетом падения мировых цен на нефть разработка запасов битума сейчас не представляет коммерческого интереса. Мы пришли к обоюдному решению этот проект не реализовывать», – подчеркнул он журналистам.

21.12.2008 Принудительное бурение
Нефтяников могут заставить вести геологоразведку. Дешевая нефть может привести российскую нефтяную отрасль, а вместе с ней и всю экономику к новому кризису в 2011--2012 годах.
08.12.2008 Нефтегазовому машиностроению должно помочь государство

Нефтесервисные компании и предприятия нефтегазового машиностроения сокращают объемы производства, в 2009 году эти тенденции усилятся. Пока специалисты называют разные цифры, кто-то прогнозирует 20-25% снижение, в интервью "Коммерсанту" президент ЗАО "Интегра Менеджмент" Феликс Любашевский заявил о 50% спаде. Однако на текущий момент стоит говорить не о масштабах кризиса, которые многим и так очевидны, а о том, как минимизировать его последствия, считает президент Союза производителей нефтегазового оборудования Александр Романихин.

18.11.2008 Горнопромышленники ратуют за изменение принципов налогообложения

Необходимо принять экстренные меры по поддержке предприятий горнопромышленного комплекса Южного федерального округа. С таким заявлением выступили участники очередного съезда горнопромышленников.

25.12.2007 Кто мешает искать "черное золото"?

Россия может столкнуться с дефицитом энергоресурсов. Из-за недостатка финансирования у многих компаний наблюдается серьезное "проседание" геологоразведки. По словам экспертов, существующий потенциал запасов нефти и газа - наследие бывшей советской экономики.

19.11.07 Западная Сибирь: для воспроизводства запасов НК должны тратить на ГРР около 5% выручки

Совещание "О задачах по воспроизводству и рациональному использованию сырьевой базы нефти в Западной Сибири", проходящее в Тюмени, является первым из намеченных МПР России совещаний, которые планируется провести в регионах Западной и Восточной Сибири, Поволжья, Тимано-Печерской провинции.

Станки качалки расчет фундамента

Содержание материала

12. ФУНДАМЕНТЫ МЕТАЛЛОРЕЖУЩИХ СТАНККОВ

12.1. В состав исходных данных для проектирования фундаментов металлорежущих станков, кроме материалов, указанных в п. 1.1, должны входить:

чертеж опорной поверхности станины станка с указанием опорных точек, рекомендуемых способов установки и крепления станка;

данные о классе станков по точности, а также о жесткости станины станков, о необходимости обеспечения жесткости за счет фундамента и о возможности частой перестановки станков;

12.2. Станки в зависимости от их массы, конструкции и класса точности допускается устанавливать на бетонном подстилающем слое пола цеха,на устроенные в полу утолщенные бетонные или железо­бетонные ленты (ленточные фундаменты) или на массивные фундаменты (одиночные или общие).

Читайте также: