Трехступенчатый фундамент под колонну

Обновлено: 14.05.2024

Размеры фундаментов промышленных зданий под колонны

Фундамент под колонну промышленного здания строится с учетом механико-динамических свойств почвы. Габаритные размеры фундаментов промышленных строений проектируются так, чтобы среднее значение нагрузки на нижнюю плоскость основания была не выше расчетной нагрузки, а типовые показатели усадок отдельных элементов фундамента одного и того же строения были не выше допустимых показателей, которые регламентируются проектными нормативами.

По контуру фундамент промышленного строения в основном повторяет периметр той наземной части, которая над ним расположена. Поэтому многообразие оснований зависит от конструкционных особенностей и форм зданий и сооружений. В качестве монолитных массивов выполняются фундаменты крупных строений. Например, фундамент под памятник либо опору моста.

Фундаменты под колонны могут монтироваться как для отдельной колонны, а могут располагаться группами по несколько колонн. Такие группы имеют вид лент.

Основания для стен могут устраиваться в виде отдельно стоящих опор фундамента, которые перекрываются рандбалкой, либо подземных стен, повторяющих контур несущих стен. Это стеновые или как их еще называют ленточные фундаменты. По своей конфигурации они практически неотличимы от оснований, которые устраиваются под группу колонн.

Строительные материалы, применяемые при изготовлении фундаментов промышленных зданий и сооружений – это железобетон, камень, кирпич и бетон. В состав жестких оснований в основном входит бетон, кирпичная кладка.

Если типовые схемы указывают на присутствие в конструкции основания скалывающих либо растягивающих напряжений, то здесь необходимо применять железобетон. Из этого следует, что железобетон используется при обустройстве сборных конструкций и при обустройстве гибких основ.

Виды оснований под сборные колонны из железобетона

Чертеж сопряжения фундамента с колонной

Под сборные столбы из железобетона используют монолитные либо сборные основания из железобетона.

Цельные основания из железобетона образованы несколькими ступенями и подколонником, в котором размещается стакан для опоры. Нижняя часть стакана находится на 5 см ниже основания столба. Это необходимо для того, чтобы после снятия опалубки при заливке бетонной смеси сбалансировать возможные нагрузки и огрехи в расчетах.

Сборные железобетонные основания могут изготавливаться из одного башмака либо из блок-стакана и одной или многих плит, расположенных снизу него.

Проектирование включает в себя разметку верхней части подколонника на уровне заданной разметки поверхности грунта. Основы бывают высотой 1,2−3 м, между ними создается шаг 0,3 м. Эти показатели соответствуют максимальной глубине закладки основы. Высота основания регулируется с учетом высоты подколонника, при том же размере степеней.

Если проектирование предусматривает увеличение глубины заложения фундамента, то под ним выполняют песчаную или бетонную подушку. Благодаря увеличению размера подколонника в строениях с подвальными помещениями, фундаменты располагаются ниже напольного покрытия.

Основания заливаются бетоном марок М150 и М200. Армирование выполняется металлической сеткой с размерами ячеек 200X200 мм, которая размещается в нижней его части. Сетка сваривается, и поверх нее укладывается защитный слой толщиной 0,35−0,7 м. В качестве прутьев используют горячекатаную сталь периодического профиля класса А-П. Армирование подколонников выполняется таким же способом, что и армирование столбов.

Проектирование фундаментов промышленных зданий на рыхлых почвах выполняется с последующим устройством бетонной подготовки, толщина которой достигает 10 см.

Основания под металлические колонны

Чертеж железобетонного фундамента

Чертеж железобетонного фундамента для металлического изделия

Под колонны из металла выполняют монолитные железобетонные основания.

Подколонники оборудуются анкерными болтами для фиксации колонного башмака. Их изготавливают сплошными, без стаканов. Верхнюю часть подколонника располагают так, чтобы металлический колонный башмак и верх анкерных болтов были скрыты.

Если проектирование предусмотрело заглубление металлических колонн более 4 м, то в этом случае применяют сборные железобетонные подколонники, которые производят так же, как и двухветвенные колонны. Эти элементы снизу фиксируются в стакане основания, а верхние их части крепятся с помощью анкерных болтов. Фундамент под смежные колонны монтируется общим даже тогда, когда они изготовлены из различного материала (железобетон и сталь).

Монтаж металлических колонн

Процесс монтажа металлической опоры

Монтаж металлической опоры

Металлические колонны монтируются на основаниях, в которых заблаговременно встраивают анкерные болты для их крепления. После проектирования стандартное положение опор обеспечивается точным размещением анкерных болтов на местах фиксации. При этом точность установки обеспечивается серьезной подготовкой плоскости основания.

Опирание колонн выполняется так:

  1. На поверхность основания, которое смонтировано до нужной отметке опорной подошвы, без последующей доливки цементной смеси. Применяется для опор с фрезерованными башмачными подошвами.
  2. На заблаговременно выверенные места, устанавливаются и заполняются бетонной смесью металлические плиты. Основание бетонируется до уровня на 5−8 см ниже той отметки подошвы опоры, которая обозначена при проектировании.
  3. После чего выполняют установку опорных колонн, объединяя осевые отметки разбивочных осей на элементах, вмонтированных в фундамент, с их отметками. Установочные винты регулируют положение отдельной опоры по высоте с учетом того, что верхняя поверхность плиты будет располагаться на заданной отметке опорной плоскости башмака. Опорные плоскости столбов должны заблаговременно быть простроганы.
  4. Основание бетонируется до уровня на 0,25−0,3 м ниже отметки поверхности башмака, отмеченной при его проектировании.

После выполнения этих работ, монтируются закладные элементы и составляющие опор. Верхнюю часть основания цементируют до уровня на 4−5 см ниже верхней плоскости опорных элементов. Опорная поверхность башмака изготавливается под прямым углом к оси самого столба.

Какие виды фундаментов выполняются под стены

Виды возводимых фундаментов

Виды возводимых фундаментов

Под несущие стены промышленных зданий монтируются свайные, столбчатые и ленточные фундаменты.

Свайные фундаменты выполняют на рыхлых почвах, которые залегают на значительную глубину. Сваи разделяют на различные виды в зависимости от их назначения. Изготавливаются из древесины, стали, бетона и железобетона. Различают сваи цельные и сборные из железобетона.

Широкое распространение в строительстве получили сборные сваи. Их выпускают двух видов: цилиндрические трубчатые и квадратные сплошные.


Бетонные сваи в основном производятся цельными с различной глубиной заложения, нагрузками и различными сечениями. Металлические сваи производятся из труб, швеллеров и двутавров. Такие сваи редко применяются при обустройстве фундамента под стены из-за подверженности их коррозии, а также из-за дефицита стали. Деревянные сваи выпускаются из лиственницы, сосны. На верхний край колонны надевают бугель (стальное кольцо), а на нижний – металлический башмак. Это необходимо для того, чтобы защитить сваю от размолачивания при забивке.

Столбчатые основания под несущие стены промышленных строений выполняют при плотных основаниях и малых нагрузках. Снизу стен оснований столбы располагаются в месте стыкования, пересечения и в углах, а также в различных промежутках на расстоянии менее 3–6 м. Отдельно установленные колонны связываются друг с другом балками, которые воспринимают нагрузку, создаваемую стенами.

Снизу балок основания выполняется подсыпка из песка либо шлака толщиной 50−60 см. Это необходимо для избегания влияния предельных нагрузок и предупреждения деформаций, которые связаны с рыхлостью грунта.

Ленточные основания монтируют под самонесущие либо несущие стены, выполненные из кирпича и блоков. Такие основания бывают цельными и сборными. Сборные основания пользуются большей популярностью. Такие основания устраивают из бетонных и железобетонных блоков.

Ленточные основания выполняют из следующих компонентов:

  • блок-подушек марки Ф;
  • блоков стеновых прямоугольной формы марки СП.

Блоки стен имеют следующие размеры:

  • высота – 0,6 м;
  • длина – 2,4 м;
  • толщина – 0,3-0,6 м.

Также выпускают блоки доборные марки СПД, размеры которых отличаются лишь длиной (у них она 0,8 м). Они применяются для перевязки блоков в основании.

Блоки стен изготавливаются сплошными, с несквозными отверстиями, расположенными снизу. Изготавливаются из бетона марки М150.

Применение и виды блок-подушек

Схематическое отображение составляющих фундамента

Блок-подушки применяются для увеличения размера подошвы основания. Имеют следующие размеры:

  • длина – 1,2-2,4 м;
  • толщина – 0,3-0,4 м;
  • ширина – 1-2,4 м.

Блок-подушки толщиной 1−1,6 м помимо стандартных размеров могут изготавливаться меньшей длины, то есть доборными. Изготавливаются из бетона марок М150 и М200. В качестве рабочего материала для армирования применяют класса А-П горячекатаную сталь. Чтобы уберечь от дополнительных нагрузок, блок-подушки располагают на ровную поверхность либо подготовку, выполненную из песка.

Основания из блок-подушек бывают прерывистыми и сплошными. В отдельно стоящих основаниях такие подушки укладываются с образованием разрыва, величина которого варьирует от 20 см до 90 см. Подобная конструкция дает возможность уменьшить расход стройматериала, уменьшить нагрузку и позволяет в полнее использовать несущую способность почвы.

При строительстве промышленных строений на просадочных почвах под подушками основания устраивается армированный шов, толщина которого варьирует от 3 см до 5 см, а сверху него монтируется армированный пояс толщиной от 10 см до 15 см. Это позволяет уменьшить нагрузку, увеличить жесткость основания, предупредить возникновение трещин при неравномерной усадке строения.

Блоки стен устанавливаются на бетонную смесь сверху подушек фундамента. Из подушек возводят стены подвала. Основание и его стены состоят из многорядных стеновых блоков, которые укладываются с шовной перевязкой.

Фундаменты крупных строений из массивных железобетонных компонентов выполняют из панелей-стенок и панелей-подушек. Панели-стенки устанавливаются сверху панелей-подушек. Они бывают со сквозными отверстиями, ребристыми и сплошными. Смонтированные панели скрепляются между соседними, методом сваривания закладных металлических компонентов. Эти подушки укладываются по форме прерывистых либо непрерывных лент. Бывают сплошными и ребристыми.

Ленточные монолитные фундаменты устраиваются в основном из железобетона. Они обустраиваются внутри опалубки, в которой вмонтирована арматура (если речь идет о железобетонных фундаментах), и укладывают бетонную смесь.

Свайные фундаменты имеют ряд плюсов: они практически не дают усадки, сокращают время на проведение земляных работ, а также снижают затраты на строительство. Любое строение с применением свай может простоять больше 100 лет.

4.3.3. Отдельные фундаменты под колонны (ч. 1)

Основным типом фундаментов, устраиваемых под колонны, являются монолитные железобетонные фундаменты, включающие плитную часть ступенчатой формы и подколонник. Сопряжение сборных колонн с фундаментом осуществляется с помощью стакана (см. рис. 4.1, а), монолитных — соединением арматуры колонн с выпусками из фундамента (рис. 4.8, а), стальных — креплением башмака колонны к анкерным болтам, забетонированным в фундаменте (рис. 4.8, б).

Соединение колонн с фундаментом

Рис. 4.8. Соединение колонн с фундаментом а — монолитной; б — стальной; 1 — арматурные сетки; 2 — анкерные болты

Размеры в плане подошвы ( b, l ), ступеней ( b1, l1 ), подколонника ( luc, buc ) принимаются кратными 300 мм; высота ступеней ( h1, h2 ) — кратной 150 мм; высота фундамента ( hf ) — кратной 300 мм, высота плитной части ( h ) — кратной 150 мм.

ТАБЛИЦА 4.22. ВЫСОТА СТУПЕНЕЙ ФУНДАМЕНТОВ, мм
Высота плитной части
фундамента h , мм
h1 h2 h3
300 300
450 450
600 300 300
750 300 450
900 300 300 300
1050 300 300 450
1200 300 450 450
1500 450 450 600
Модульные размеры фундамента следующие:
hf 1500—12000
h 300, 450, 600, 750, 900, 1050, 1200, 1500, 1800
h1, h2, h3 300, 450, 600
b 1500—6600
l 1500—8400
b1, b2 1500—6000
buc 900—2400
luc 900—3600
l1, l2 1500—7500

Высота ступеней принимается по табл. 4.22 в зависимости от высоты плитной части фундамента [1]. Вынос нижней ступени вычисляется по формуле c1 = kh1 , где k — коэффициент, принимаемый по табл. 4.23.

Руководство по проектированию фундаментов на естественном основании под колонны зданий и сооружений промышленных предприятий

Форма фундамента и подколонника в плане принимается: при центральной нагрузке — квадратной, размерами b×b и buc×buc ; при внецентренной нагрузке — прямоугольной, размерами b×l и buc×luc , отношение b/l составляет 0,6–0,85.

Габариты фундаментов под типовые колонны прямоугольного сечения, например по сериям КЭ-01-49 и КЭ-01-55, для одноэтажных промышленных зданий принимаются по серии 1.412-1/77. Буквы в марках фундаментов обозначают: Ф — фундамент; А, Б, В и AT, БТ и ВТ — тип подколонников для рядовых фундаментов и под температурные швы (табл. 4.24), а числа характеризуют типоразмер подошвы плитной части фундамента и его типоразмер по высоте.

ТАБЛИЦА 4.23. КОЭФФИЦИЕНТ k
Давление на грунт, МПа Значения k при классе бетона
В10 В15 В20 В10 В15 В20 В10 В15 В20 В10 В15 В20




0,15 3 3 3 3 3 3 3 3 3 3 3 3
0,2 3 3 3 3 3 3 3 3 3 2,9 3 3
3
0,25 3 3 3 3 3 3 3 3 3 2,5 2,8 3
2,6 3
0,3 3 3 3 3 3 3 2,7 3 3 2,3 2,5 3
2,8 2,4 2,6
0,35 2,8 3 3 2,7 3 3 2,4 2,7 3 2,1 2,3 2,7
3 2,9 2,6 2,9 2,2 2,4 2,9
0,4 2,6 2,9 3 2,5 2,8 3 2,3 2,5 3 2 2,1 2,5
2,7 3 2,7 3 2,4 2,7 2,2 2,6
0,45 2,4 2,7 3 2,3 2,6 3 2,1 2,3 2,8 1,9 2 2,3
2,5 2,8 2,5 2,7 2,2 2,5 3 2,1 2,5
0,5 2,3 2,5 3 2,2 2,4 3 2 2,2 2,6 1,8 1,9 2,2
2,4 2,7 2,3 2,6 2,1 2,3 2,8 2 2,3
0,55 2,2 2,4 2,8 2,1 2,3 2,7 1,9 2,1 2,5 1,7 1,8 2,1
2,3 2,5 3,8 2,2 2,4 2,9 2 2,2 2,6 1,9 2,2

Примечание. Над чертой указано значение без учета крановых и ветровых нагрузок, под чертой — с учетом этих нагрузок.

ТАБЛИЦА 4.24. РАЗМЕРЫ ПОДКОЛОННОЙ ЧАСТИ ФУНДАМЕНТОВ

Размеры подколонной части фундаментов

Размеры колонн, мм Рядовой фундамент Фундамент под температурный шов Размеры стаканов, мм Объем стакана, м 3
lc bc тип подколон-
ника
размеры, мм тип подколон-
ника
размеры, им hg lg bg
luc buc luc buc
400 400 А 900 300 AT 900 2100 800
900
500 500 0,22
0,25
500
600
600
500
400
600
Б 1200 1200 БТ 1200 2100 800
900
800
600
700
700
600
500
600
0,31
0,34
0,41
800
800
400
500
В 1200 1200 ВТ 1500 2100 900
900
900
900
500
600
0,44
0,52

По высоте приняты следующие размеры: тип 1 — 1,5 м; тип 2 — 1,8 м; тип 3 — 2,4 м; тип 4 — 3 м; тип 5 — 3,6 м и тип 6 — 4,2 м. В табл. 4.25 и 4.26 приводятся в качестве примера эскизы и размеры рядовых фундаментов и фундаментов под температурные швы. Эти фундаменты могут применяться при расчетном сопротивлении основания 0,15—0,6 МПа.

Все размеры фундаментов приняты кратными 300 мм. Применяется бетон класс В10 и В15. Армирование осуществляется плоскими сварными сетками из арматуры классов A-I, А-II и А-III. Защитный слой бетона принят толщиной 35 мм с одновременным устройством подготовки толщиной 100 мм из бетона В3,5.

ТАБЛИЦА 4.25. РАЗМЕРЫ РЯДОВЫХ ФУНДАМЕНТОВ
ТАБЛИЦА 4.26. РАЗМЕРЫ ФУНДАМЕНТОВ ПОД ТЕМПЕРАТУРНЫЕ ШВЫ
Эскиз Марка фундамента Размеры, мм Объем бетона, м 3
b l b1 h1 h1 hf
Размеры фундаментов под температурные швы
ФАТ3-1
ФАТ3-2
ФАТ3-3
ФАТ3-4
ФАТ3-5
ФАТ3-6
1800 2100 300 1500
1800
2400
3000
3600
4200
3,4
4,0
5,1
6,2
7,4
8,5
Размеры фундаментов под температурные швы
ФАТ6-1
ФАТ6-2
ФАТ6-3
ФАТ6-4
ФАТ6-5
ФАТ6-6
2400 2100 1500 300 300 1500
1800
2400
3000
3600
4200
4,2
4,7
5,9
7,0
8,1
9,3
ФАТ7-1
ФАТ7-2
ФАТ7-3
ФАТ7-4
ФАТ7-5
ФАТ7-6
2700 2100 1800 300 300 1500
1800
2400
3000
3600
4200
4,5
5,1
6,2
7,4
8,5
9,6

Фундамент с подбетонкой для опирании балок

Рис. 4.9. Фундамент с подбетонкой для опирании балок 1 — фундамент; 2 — подбетонка; 3 — колонна

Для опирания фундаментных балок предусмотрена подбетонка (рис. 4.9). Пример конструктивного решения фундамента приведен на рис. 4.10.

Габариты монолитных фундаментов под типовые колонны двухветвевого сечения, в частности для серии КЭ-01-52 одноэтажных промышленных зданий, принимаются по серии 1.412-2/77. Размеры подколонной части таких фундаментов приведены в табл. 4.27. Габариты плитной части имеют типоразмеры от 1 до 18, а также типоразмер 19, при котором размер подошвы составляет 6×5 м. По высоте фундаменты могут быть 1—6-го типа. Остальные параметры такие же, как и в серии 1.412-1/77.

Фундамент стаканного типа под колонну

Рис. 4.10. Фундамент стаканного типа под колонну 1—6 — арматурные сетки

Железобетонные фундаменты под типовые колонны прямоугольного сечения, например по сериям ИИ-04, ИИ-20 и 1.420-6 для многоэтажных производственных зданий, принимаются по серии 1.412-3/79.

ТАБЛИЦА 4.27. ТИПЫ И РАЗМЕРЫ ПОДКОЛОННИКОВ

Типы и размеры подколонников

Размеры колонн, мм Рядовой фундамент Фундамент под температурный шов Размеры стаканов, мм Объем стакана, м 3
lc bc тип подколон-
ников
размеры, мм тип подколон-
ников
размеры, мм hg lg bg
luc buc luc buc
300 300 А 900 900 AT 900 2100 450
450
400 400 0,08
0,12
400 400 650
1050
500 500 0,18
0,29
600 400 Б 1200 1200 БТ 1200 2100 650
1050
700 500 0,25
0,40

Отличие в маркировке фундаментов по сравнению с другими сериями заключается в том, что после цифры, обозначающей типоразмер подошвы, приводится высота плитной части. Размеры подколонной части фундамента приведены в табл. 4.27. Габариты плитной части включают типоразмеры от 1 до 18 и типоразмер 19 (с размером подошвы 5,4×6 м). по высоте фундаменты могут быть 1—6-го типа. Остальные параметры такие же, как и в серии 1.412-1/77. Монолитные железобетонные фундаменты под железобетонные типовые фахверковые колонны прямоугольного сечения, в частности по шифрам 460-75, 13-74 и 1142-77, принимаются по серии 1.412.1-4. Размеры фундаментов приведены в табл. 4.28. Сопряжение колонны с фундаментом шарнирное. Фундаменты разработаны для давления 0,15- 0,6 МПа. Применяется бетон класса В10. Армирование осуществляется сварными сетками из арматуры классов A-I, А-II и А-III. Пример узла опирания колонны на фундамент дан на рис. 4.11.

Под колонны зданий применяются сборные фундаменты из одного или нескольких элементов. на рис. 4.12 приведены решения сборных фундаментов под колонны каркаса для многоэтажных общественных и производственных зданий из элементов серии 1.020-1. Элементы фундамента типа Ф применяются на естественном основании, типа ФС — для составных фундаментов (табл. 4.29). Толщина защитного слоя бетона нижней рабочей арматуры принимается 35 мм, а остальной арматуры — 30 мм. Глубина заделки колонны в фундамент должна быть не менее величин, приведенных в табл. 4.30.

Фундаменты под колонны (к СНиП 2.03.01-84, 2.02.01-83), часть 3

Т - сдвигающая сила, воспринимаемая шпонками, принимаемая по наименьшему из значений:

T = d Rbm l n ; (107)

T = 2h Rbt l n, (108)

где d , l, h - соответственно глубина, длина и высота шпонки;

Rbm - расчетное сопротивление бетона замоноличивания осевому сжатию;

n - число шпонок (не более трех).

4. КОНСТРУКТИВНЫЕ УКАЗАНИЯ ПО ПРОЕКТИРОВАНИЮ ФУНДАМЕНТОВ

МАТЕРИАЛЫ

4.1.* Для монолитных железобетонных фундаментов следует применять тяжелый бетон классов по прочности В12,5 и В15 на сжатие, при соответствующем обосновании допускается применение бетона класса В20.

Для замоноличивания колонн в стакане применяется бетон класса не ниже В12,5. Бетон подготовки под подошвой фундамента принимается класса В3,5.

4.2. Для армирования фундаментов рекомендуется применять горячекатаную арматуру периодического профиля класса А- III по ГОСТ 5781-82. Для слабонагруженных сечений, где прочность арматуры используется не полностью (конструктивные сетки армирования подколонника, сетки косвенного армирования дна стакана и т.п.), а также в тех случаях, когда прочность арматуры класса А- III не используется полностью из-за ограничения по раскрытию трещин, допускается применять арматуру классов A-II по ГОСТ 5781-82 и Вр-I по ГОСТ 6727-80.

ГЕОМЕТРИЧЕСКИЕ РАЗМЕРЫ ФУНДАМЕНТОВ

4.3. Монолитные фундаменты рекомендуется проектировать ступенчатого типа, плитная часть которых имеет от одной до трех ступеней.

При соответствующем обосновании в случае массового применения или для отдельных индивидуальных фундаментов разрешается принимать размеры, кратные 100 мм в соответствии с ГОСТ 23477-79.

4.5. При центральной нагрузке подошву фундамента следует принимать квадратной.

При внецентренной нагрузке, соответствующей основному варианту нагружения, подошву рекомендуется принимать прямоугольной с соотношением сторон не менее 0,6.

4.6. Высота фундамента h назначается с учетом глубины заложения подошвы и уровня обреза фундамента. Обрез фундамента железобетонных колонн зданий следует принимать, как правило, на отметке 0,15 для обеспечения условий выполнения работ нулевого цикла.

4.7. Рекомендуемые размеры сечений подколонников, высот фундаментов и плитной части, а также подошвы приведены в табл. 4.

Модульные размеры фундамента, м, при модуле, равном 0,3

пря мо уголь ной
b ´ l

под ко лонны в тем пера тур ных швах bcf ´ lcf

4.8. Сопряжение фундамента с колонной выполняется монолитным для фундаментов под монолитные колонны (черт. 25, а) и стаканным для сборных или монолитных фундаментов под сборные колонны (черт. 25, б, в).

Черт. 25. Сопряжение фундамента с колонной

а - монолитной; б и в - сборной; 1 - колонна; 2 - подколонник; 3 - плитная часть фундамента

4.9. Стакан под двухветвевые колонны с расстоянием между наружными гранями ветвей не более 2400 мм выполняется общим под обе ветви, с расстоянием более 2400 мм - раздельно под каждую ветвь. Под колонны в температурных швах также рекомендуется выполнять раздельные стаканы.

Размеры стакана для колони следует назначать из условия обеспечения необходимой глубины заделки колонны в фундамент и обеспечения зазоров, равных 75 мм по верху и 50 мм по низу стакана с каждой стороны колонны (см. черт. 25).

4.10. Глубина стакана d p принимается на 50 мм больше глубины заделки колонны d с , которая назначается из следующих условий:

для типовых колонн - по данным рабочей документации;

для индивидуальных прямоугольных колонн - по табл. 5, но не менее, чем по условиям заделки рабочей арматуры колонн, указанным в табл. 6;

для двухветвевых колонн:

но не более 1,2 м,

где ld — ширина двухветвевой колонны по наружным граням;

при ld < 1,2 м как для прямоугольных колонн, с б ó льшим размером сечения l c , равно:

но во всех случаях не менее величин, указанных в табл. 6 и не более 1,2 м.

Отношение толщины стенки стакана к высоте верхнего уступа фундамента t/hcf

Глубина заделки колонн
прямоугольного сечения dc
при эксцентриситете продольной силы

или глубине стакана t/dp ( см. черт. 7)

Глубина заделки рабочей арматуры d с при проектном классе бетона

П р и м е ч а н и я: 1. d - диаметр рабочей арматуры.

2. Значения в скобках относятся к глубине заделки сжатой рабочей арматуры.

3. Длина заделки может быть уменьшена в случаях:

а) неполного использования расчетного сечения арматуры длину заделки допускается принимать lan N/Rs As , но не менее чем для стержней в сжатой зоне, где N - усилие, которое должно быть воспринято анкеруемыми растянутыми стержнями, а Rs As - усилие, которое может быть воспринято;

б) приварки к концам рабочих стержней анкерных стержней или шайб (черт. 26).

Черт. 26. Детали анкеровки рабочей арматуры

а - анкеровка дополнительным стержнем; б - анкеровка шайбой

При этом шайбы должны рассчитываться на усилие, равное

4.11. Глубину заделки двухветвевых колонн необходимо проверять также по анкеровке растянутой ветви колонны в стакане фундамента.

Глубину заделки растянутой ветви двухветвевой колонны в стакане необходимо проверять по плоскостям контакта бетона замоноличивания:

с бетонной поверхностью стакана — по формуле

с бетонной поверхностью ветви колонны — по формуле

В формулах (112), (113):

dc - глубина заделки двухветвевой колонны, м;

N p - усилие растяжения в ветви колонны, тс;

hc ¢ , bc ¢ - размеры сечения растянутой ветви, м;

Ran ¢ , Ran ¢¢ - величина сцепления бетона, принимаемая по табл. 7, тс/м 2 .

Величина сцепления по плоскостям контакта бетона замоноличивания с бетоном

П р и м е ч а н и е. Величина Rbt относится к бетону замоноличивания.

4.12. Минимальную толщину стенок неармированного стакана поверху следует принимать не менее 0,75 высоты верхней ступени (подколонника) фундамента или 0,75 глубины стакана d p и не менее 200 мм.

В фундаментах с армированной стаканной частью толщина стенок стакана определяется расчетом по пп. 2.34, 2.35 и принимается не менее величин, указанных в табл. 8.

Толщина стенок стакана t , мм

колонны прямоугольного сечения с эксцентриситетом продольной силы

В плоскости изгибающего момента

0,2 lc , но не менее 150

0,3 lc , но не менее 150

0,2 l d , но не менее 150

Из плоскости изгибающего момента

4.13. Толщину дна стакана фундаментов следует принимать не менее 200 мм.

4.14. Для опирания фундаментных балок на фундаментах следует предусматривать столбчатые набетонки, которые выполняются на готовом фундаменте. Крепление набетонок к фундаменту рекомендуется осуществлять за счет сцепления бетона с предварительно подготовленной поверхностью бетона фундамента (насечки) или приваркой анкеров к закладным изделиям, или с помощью выпусков арматуры, предусмотренных в теле фундамента (при отношении высоты набетонки к ее меньшему размеру в плане ³ 15).

АРМИРОВАНИЕ ФУНДАМЕНТОВ

4.15. Армирование подошвы фундаментов следует производить сварными сетками но серии 1.410-3 и ГОСТ 23279-84.

4.16. В случае, когда меньшая из сторон подошвы в фундаменте имеет размер b £ 3 м, следует применять сетки с рабочей арматурой в двух направлениях (черт. 27, а).

При b > 3 м применяются отдельные сетки с рабочей арматурой в одном направлении, укладываемые в двух плоскостях. При этом рабочая арматура, параллельная б ó льшей стороне подошвы l , укладывается снизу. Сетки в каждой из плоскостей укладываются без нахлестки с расстоянием между крайними стержнями не более 200 мм (черт. 27, б).

Черт. 27. Армирование подошвы фундамента

а - при b £ 3 м; б - при b > 3 м; 1- нижние сетки; 2 - верхние сетки

Минимальный диаметр рабочей арматуры сеток подошв принимается равным 10 мм вдоль стороны l £ 3 м и 12 мм при l > 3 м.

4.17. При выполнении условия

анкеровка продольной рабочей арматуры сеток подошв считается обеспеченной, l b - длина участка нижней ступени, на котором прочность наклонных сечений обеспечивается бетоном, определяемая по формуле

где h1 - высота нижней ступени фундамента;

р max - максимальное краевое давление на грунт, вычисляемое по формулам (5), (6);

lan - длина анкеровки арматуры, определяемая по формуле

где A st , Asf - обозначения те же, что в п. 2.59;

d - диаметр продольной арматуры.

При невыполнении условия (114) в сетках необходимо предусмотреть приварку поперечных анкерующих стержней на расстоянии не более 0,8 lb от края продольного стержня. Диаметр анкерующего стержня рекомендуется принимать не менее 0,5 d продольной арматуры.

Анкеровка рабочей арматуры в подошве фундамента считается обеспеченной, если хотя бы один из поперечных стержней сетки, приваренный к рабочей продольной арматуре, располагается в пределах участка lb .

4.18. Подколонники рекомендуется армировать, если это необходимо по расчету, вертикальными сварными плоскими сетками по ГОСТ 23279-85.

4.19. Минимальный процент содержания арматуры s и s' во внецентренно сжатом железобетонном подколоннике должен составлять не менее 0,04 % площади его поперечного сечения.

В подколонниках с продольной арматурой, расположенной равномерно по периметру сечения, минимальная площадь сечения всей продольной арматуры должна приниматься не менее 0,08 %.

4.20. Железобетонные подколонники рекомендуется армировать вертикальными сварными плоскими сетками, объединяемыми в пространственный каркас. Сетки рекомендуется устанавливать по четырем сторонам сечения подколонника (черт. 28).

Черт. 28. Армирование железобетонного подколонника пространственными каркасами, собираемыми из плоских сеток

1 - сетка

4.21. В железобетонных подколонниках, где по расчету сжатая арматура не требуется, а количество растянутой арматуры не превышает 0,3 %, допускается не ставить продольную и поперечную арматуру по граням, параллельным плоскости изгиба. В этих случаях допускается:

установка сеток только по двум противоположным сторонам сечения подколонника, как правило, в плоскостях, перпендикулярных плоскости действия б ó льшсго из двух воздействующих на фундамент изгибающих моментов;

соединение плоских сеток в пространственный каркас без соединения продольных стержней хомутами и шпильками. Толщина защитного слоя бетона (см. п. 5.19 СНиП 2.03.01-84) в этом случае должна быть не менее 50 мм и не менее двух диаметров продольной арматуры (черт. 29);

сетки устанавливаются на всю высоту подколонника.

Черт. 29. Армирование железобетонного подколонника двумя сетками

1 — арматурная сетка

4.22. В случаях, когда по расчету принято бетонное сечение подколонника, пространственный каркас устанавливается только в пределах стаканной части с заглублением ниже дна стакана на величину не менее 35 диаметров продольной арматуры (черт. 30).

Черт. 30. Армирование бетонного подколонника, имеющего стакан
под сборную колонку

1 - сетка

4.23. Если в сечении бетонного подколонника возникают растягивающие или сжимающие напряжения менее 10 кгс/см 2 , то при максимальных сжимающих напряжениях более 0,8 Rb (напряжения определяются как для упругого тела) необходимо выполнять конструктивное армирование на всю высоту подколонника. При этом площадь сечения арматуры с каждой стороны подколонника должна быть не менее 0,02% площади его поперечного сечения, а в случае расположения арматуры по периметру сечения — не менее 0,04 %.

4.24. При расчетном или конструктивном армировании подколонника диаметр продольных стержней вертикальной арматуры принимается не менее 12 мм. В бетонном подколоннике минимальный диаметр продольной арматуры принимается равным 10 мм.

4.25. Горизонтальное армирование стаканной части подколонника осуществляется сварными плоскими сетками с расположением стержней у наружных и внутренних поверхностей стенок стакана. Продольная вертикальная арматура должна размещаться внутри горизонтальных сеток. Диаметр стержней сеток принимается не менее 8 мм и не менее четверти диаметра продольной арматуры вертикального армирования подколонника.

4.26. Расположение горизонтальных сеток следует принимать по черт. 31.

Черт. 31. Схема расположения горизонтальных сеток армирования
подколонника:

а - при e0 > lc /2; б - при lc /6 < e0 £ lc /2

4.27. Толщина защитного слоя бетона для рабочей арматуры подколонника должна быть не менее 30 мм, а для подошвы фундамента при условии устройства под ним бетонной подготовки принимается равной 35 мм.

4.28. При необходимости косвенного армирования дна стакана устанавливают сварные сетки (от двух до четырех).

5. IIPOЕКТИРОВАНИЕ ФУНДАМЕНТОВ С ПОМОЩЬЮ ЭВМ

5.1. Для подбора типовых (например, из номенклатуры серии 1.412) или проектирования нетиповых фундаментов имеется ряд программ, в которых реализованы алгоритмы расчета оснований под фундаменты и расчета прочности конструктивных элементов фундаментов.

5.2. Алгоритмы расчета грунтового основания по различным программам включают следующие нормируемые проверки, в результате удовлетворения которых определяют размеры подошвы:

по величинам средних, краевых и угловых давлений под подошвой;

по форме эпюры давлений и величине отрыва;

по величине давления на кровлю слабого слоя;

по величинам осадки и крена;

по несущей способности:

по прочности скального основания;

по прочности и устойчивости нескального основания;

на сдвиг по подошве;

на сдвиг по слабому слою.

5.3. Алгоритмы расчета прочности конструктивных элементов фундамента включают следующие нормируемые проверки, в результате удовлетворения которых определяют размеры ступеней и армирование:

по продавливанию и раскалыванию;

по поперечной силе;

по обратному моменту;

на косое внецентренное сжатие сплошного бетонного и железобетонного сечения;

на изгиб стаканной части;

на смятие под торцом колонны.

5.4. В табл. 9 приведены общие данные о специализированных программах, рекомендуемых при проектировании фундаментов на естественном основании под колонны зданий и сооружений.

Типовые по серии 1.412

Нескальные, непросадочные, сухие и водонасыщенные

Типовые по серии 1.412 и нетиповые, в том числе глубокого заложения

Скальные и нескальные, включая просадочные и водонасыщенные

Нетиповые, в том числе глубокого заложения

Нескальные, непросадочные, сухие

Нескальные, включая просадочные и водонасыщенные

Окончание табл. 9

П р и м е ч а н и е. Все материалы по программам для расчета фундаментов публикуются в информационных выпусках фонда алгоритмов и программ отрасли «Строительство» Госстроя СССР.

Пример 1. Расчет внецентренно нагруженного фундамента под сборную колонну

Дано: фундамент со ступенчатой плитной частью и стаканным сопряжением с колонной серии 1.423-3 сечением lc х bc = 400x400 мм (черт. 32); глубина заделки колонны dc = 750 мм; отметка обреза фундамента - 0,15 м; глубина заложения - 2,55 м; размер подошвы, определенный из расчета основания по деформациям в соответствии с указаниями СНиП 2.02.01-84, l x b = 3,3х2,7 м. Расчетные нагрузки на уровне обреза фундамента приведены в табл. 10.

Окончание табл. 10

Обозначения, принятые в таблице:

g f - коэффициент надежности по нагрузке;

х - направление вдоль б ó льшего размера подошвы фундамента.

П р и м е ч а н и е. Материал - сталь класса А- III .

Черт 32. Внецентренно нагруженный фундамент под сборную колонну

Rs = Rsc = 355 МПа ( Æ 6-8 мм) (3600 кгс/см 2 );

Rs = Rsc = 365 МПа ( Æ 10-40 мм) (3750 кгс/см 2 );

Es = 2 × 10 5 МПа (2 × 10 6 кгс/см 2 ).

Бетон тяжелый класса В 12,5 по прочности на сжатие:

Rb = 7,5 МПа (76,5 кгс/см 2 ); Rbt = 0,66 МПа (6,75 кгс/см 2 );

Rbt.ser = 1,0 МПа (10,2 кгс/см 2 ); Eb = 21 × 10 3 МПа (214 × 10 3 кгс/см 2 ).

Коэффициенты условий работы бетона: g b2 = 0,9; g b9 = 0,9 (для бетонных сечений).

НАЗНАЧЕНИЕ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ
ФУНДАМЕНТА

ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ПОДКОЛОННИКА В ПЛАНЕ

При е 0 < 2lс толщина стенок стакана принимается не менее 0,2l c = 0,2 ´ 0,4 = 0,08 м и не менее 0,15 м. Тогда при l с = b с = 0,4 м минимальные размеры подколонника lcf = bcf = 2 × 0,15 + 2 × 0,075 + l c = 0,85 м.

С учетом рекомендуемых модульных размеров подколонников, приведенных в табл. 4, принимаем lcf х bcf = 0,9 х 0,9 м; глубину стакана под колонну dp = dc + 0,05 = 0,75 + 0,05 = 0,8 м; площадь подошвы фундамента А = l х b = 3,3 х 2,7 = 8,91 м 2 ; момент сопротивления подошвы фундамента в направлении б ó льшсго размера W = 4,9 м 3 .

РАСЧЕТ ПЛИТНОЙ ЧАСТИ ФУНДАМЕНТА
НА ПРОДАВЛИВАНИЕ

ОПРЕДЕЛЕНИЕ ВЫСОТЫ ПЛИТНОЙ ЧАСТИ ФУНДАМЕНТА hpl

Высота фундамента h = 2,55 — 0,15 = 2,4 м.

Ориентировочная минимальная высота подколонника при трехступенчатом фундаменте hcf = 2,4 - 0,3 × 3 = 1,5 м.

В соответствии с указаниями п. 2.6 при hcf - d p = 1,5 - 0,8 = 0,7 м > 0,5 (lcf — lc ) = 0,5 (0,9 — 0,4) = 0,25 м. Высота плитной части определяется проверкой на продавливание по схеме 1 от низа подколонника.

Определяем необходимую рабочую высоту плитной части по черт. 11.

Найдем максимальное краевое давление на основание при:

сочетании 1 : р = 2,4/8,91 + (0,096 + 0,036 • 2,4)/4,9 = 0,268 + 0,038 = 0,306 МПа;

сочетании 3 : р = 2,1/8,91 + (0,336 + 0,072 • 2,4)/4,9 = 0,235 +0,104 = 0,339 МПа.

Принимаем максимальное значение p max = 0,339 МПа.

По найденным значениям A 3 = b(l — 0,5 b + bcf — lcf ) = 2,7(3,3 — 0,5 x 2,7 + 0,9 - 0,9) = 5,26 м 2 и r = g b2 Rbt / pmax = 0,9 × 0,66 / 0,339 = 1,75 необходимая рабочая высота плитной части фундамента h 0 , pl = 62 см. Следовательно, h pl = 62 + 5 = 67 см.

В соответствии с указаниями п. 4.4 и табл. 4 высоту плитной части принимаем равной 0,9 м. Для случая индивидуального фундамента допускается принимать высоту 0,7 м (кратной 100 мм) с высотой нижней ступени 0,3 м и верхней 0,4 м.

Укажем, что с учетом принятых в дальнейшем размеров ступеней (см. черт. 32) объем бетона плитной части в обоих случаях будет практически одинаков: 4,4 м 3 при высоте плитной части 0,7 м и 4,38 м 3 — при высоте плитной части 0,9 м. Вместе с тем б ó льшая высота плитной части позволяет снизить сечение рабочей арматуры подошвы фундамента, что отражается и на общей его стоимости (см. табл. 3 прил. 7).

При 0,5 (b - bcf ) = 0,5(2,7 - 0,9) = 0,9 м > h 0,pl = 0,9 - 0,05 = 0,85 м рабочую высоту h0,pl можно определить также по формуле (9) с заменой bc на bcf , lc на lcf .

Вычислим значения с l и с b :

с l = 0,5 (l - lcf ) = 0,5(3,3 - 0,9) = 1,2 м; с b = 0,5 (b - bcf ) = 0,5(2,7 - 0,9) = 0,9 м; r = 1,75 (см. выше);

Высота ступеней назначается по табл. 4 в зависимости от полной высоты плитной части фундамента: при hpl = 0,9 h1 = h2 = h3 = 0,3 м.

ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ВТОРОЙ СТУПЕНИ
ФУНДАМЕНТА

Первоначально определяем предельный вылет нижней ступени по формуле (16), приняв его одинаковым в двух направлениях (по х и по у):

с1 = с2 = 0,5b + (l + r)h01 - = 0,5 × 2,7 + (1 + 1,75)(0,3 - 0,05) - = 1,35 + 0,69 - = 2,04 - 1,46 = 0,58 м.

Назначаем вылеты нижней ступени с1 = с2 = 0,45 м < 0,58 м и соответственно размеры второй ступени фундамента:

l1 = l - 2c1 = 3,3 - 2 × 0,45 = 2,4 м; b1 = b - 2c2 = 2,7 - 2 × 0,45 = 1,8 м.

ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ТРЕТЬЕЙ СТУПЕНИ
ФУНДАМЕНТА

Размеры третьей ступени определяем по формулам (17) и (18) с заменой lc на lcf .

Назначаем размеры третьей (верхней) ступени l2 x b2 = 1,5 х 0,9 м.

Выполним проверку на продавливание двух нижних ступеней от третьей ступени, так как назначенные размеры l2 , b2 меньше значений, полученных по формулам (17) и (18).

Проверку производим по указаниям п. 2.9 с заменой bc и lc на b2 и l2 и um на bm , принимая рабочую высоту сечения

так как b - b2 = 2,7 - 0,9 = 1,8 м > 2h 0,pl = 2 • 0,55 = 1,1 м, то по формуле (7) bm = b2 + h0,pl = 0,9 + 0,55 = 1,45 м; по формуле (4) A 0 = 0,5b(l - l2 - 2h 0,pl ) - 0,25 (b - b2 - 2h0,pl ) 2 = 0,5 • 2,7(3,3 - 1,5 - 2 × 0,55) - 0,25 (2,7 - 0,9 - 2 × 0,55) 2 = 0,82 м 2 ;

Проверяем условие прочности по продавливанию g b2 Rbt bm h0,pl = 0,9 • 0,66 • 1,45 • 0,55 = 0,474 MH > 0,274 МН, то есть условие прочности по продавливанию выполнено. Размеры фундаментов показаны на черт. 32.

ОПРЕДЕЛЕНИЕ СЕЧЕНИЙ АРМАТУРЫ ПЛИТНОЙ ЧАСТИ ФУНДАМЕНТА

Определяем изгибающие моменты и площадь рабочей арматуры подошвы фундамента А sl по формулам (46)-(57) в сечениях по граням ступеней 1-1, 2-2 и по грани подколонника 3-3, 4-4.

Расчетные усилия на уровне подошвы принимаем без учета веса фундамента по 3-му сочетанию нагрузок, определяющему pmax ,

N = 2,1 МН; М = 0,336 + 0,072 • 2,4 = 0,509 МН • м; e0 = 0,509/2,1 = 0,242 м.

Изменение в «Пособии по проектированию фундаментов
на естественном основании под колонны зданий и сооружений
(к СНиП 2.03.01—84 и СНиП 2.02.01—83)»

Рекомендовано к изданию решением технического совета Ленпромстройпроекта Госстроя СССР.

Приведены указания по проектированию различных типов фундаментов и их расчет с помощью ЭВМ.

Для инженерно-технических работников проектных организаций.

При пользовании Пособием необходимо учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале «Бюллетень строительной техники» Госстроя СССР, «Сборнике изменений к строительным нормам и правилам» и информационном указателе «Государственные стандарты СССР» Госстандарта СССР.

ПРЕДИСЛОВИЕ

Пособие разработано к СНиП 2.03.01-84 «Бетонные и железобетонные конструкции» и СНиП 2.02.01-83 «Основания зданий и сооружений».

В Пособии содержатся основные положения по проектированию монолитных и сборных фундаментов под железобетонные и стальные колонны, их расчет и конструирование; приводятся указания по выбору оптимального варианта проектирования фундаментов, расчет и проектирование анкерных болтов и приемы армирования фундаментов.

Для облегчения труда проектировщиков приведены графики и таблицы для определения размеров фундаментов, примеры расчета и конструирования различных типов фундаментов.

Пособие разработано Ленпромстройпроектом — канд. техн. наук М.Б.Липницкий, В.А.Егорова; совместно с ЦНИИпромзданий — кандидаты техн. наук Н.А.Ушаков, А.М.Туголуков, Ю.В.Фролов; ПИ-1 - канд. техн. наук А.Л.Шехтман, А.В.Шапиро; НИИЖБом — кандидаты техн. наук Н.Н.Коровин, М.Б.Краковский; НИИОснований — д-р техн. наук Е.А.Сорочан.

Замечания и предложения по содержанию Пособия просьба направлять по адресу: 186190, Ленинград, Ленинский пр., 160, Ленпромстройпроект.

1. ОБЩИЕ УКАЗАНИЯ

1.1. Настоящее Пособие, разработанное к СНиП 2.03.01-084 и СНиП 2.02.01-83, распространяется на проектирование отдельных железобетонных фундаментов на естественном основании под колонны зданий и сооружений.

1.2. Проектирование оснований зданий и сооружений, то есть подбор размеров подошвы фундамента из расчета оснований, рекомендуется выполнять в соответствии со СНиП 2.02.01-83 и «Пособием по проектированию оснований зданий и сооружений» (к СНиП 2.02.01-83).

1.3. Нагрузки и воздействия на основания, передаваемые фундаментами сооружений, должны устанавливаться расчетом, как правило, исходя из рассмотрения совместной работы сооружения и основания или фундамента и основания. Учет нагрузок и воздействий в расчетах оснований рекомендуется выполнять в соответствии со СНиП 2.02.01-83 и «Пособием по проектированию оснований зданий и сооружений».

1.4. Проектирование фундаментов, эксплуатирующихся в агрессивной среде, производится с учетом требований СНиП 2.03.11-85.

1.5. Применяемые в строительстве железобетонные фундаменты могут быть представлены следующими типами:

монолитные с применением многооборачиваемой инвентарной опалубки (черт. 1, 2);

сборные железобетонные из одного блока (черт. 3);

сборно-монолитные (черт. 4, 5).

Черт. 1. Монолитные фундаменты стаканного типа
со ступенчатой плитной частью

Читайте также: