Теоретический фундамент науки селекции

Обновлено: 01.05.2024

Теоретической основой селекции является генетика. Породой, сортом, штаммом называют популяцию организмов, искусственно созданную человеком и характеризующуюся определенными наследственными особенностями. Все особи внутри сорта, породы, штаммы имеют сходную наследственную организацию, внешние признаки и однотипную реакцию на влияние факторов внешней среды. Например, молочные породы крупного рогатого скота отличаются величиной удоя, процентом жирности и содержанием белка в молоке.

Основными задачами современной селекции являются:

  • повышение урожайности сортов культурных растений, увеличение продуктивности пород домашних животных и штаммов микроорганизмов;
  • улучшение качества продукции (технологические свойства льна, содержание белка и клейковины в зерне и т.п.);
  • улучшение физиологических свойств (скороспелость, иммунитет к заболеваниям, морозостойкость и т.п.);
  • повышение интенсивности развития (у растений «отзывчивость» на подкормку, у животных на корм и содержание).

Особенно важно получение сортов растений, устойчивых к заболеваниям и поддающихся механизированной уборке, например короткостебельных неполегающих сортов злаков.

Для успешной селекционной работы необходимо:

  • исходное сортовое и видовое разнообразие растений и животных;
  • изучениероли мутации в проявлении и развитии исследуемых признаков;
  • исследованиезакономерностей наследования при гибридизации;
  • применение различных форм искусственного отбора.

Успех селекционной работы во многом зависит от генетического разнообразия исходной группы растений и животных. Генофонд существующих пород животных и сортов растений ограничен по сравнению с генофондом исходного дикого вида. С целью изучения многообразия и географического распространения культурных растений Н.И. Вавилов провел многочисленные экспедиции в разные уголки земного шара. В результате работы этих экспедиций был собран огромный семенной материал, используемый в селекционной работе, и выделены центры происхождения культурных растений. Их семь:

  1. южноазиатский – родина риса, сахарного тростника, цитрусовых;
  2. восточноазиатский – родина сои, проса, гречихи, многих плодовых и овощных культур;
  3. юго-западноазиатский – родина пшеницы, гороха, чечевицы, винограда;
  4. средиземноморский – родина маслин, капусты, свеклы;
  5. абиссинский – родина твердых пшениц, ячменя, кофейного дерева;
  6. центральноамериканский – родина кукурузы, какао, перца, фасоли, длинноволокнистого хлопка;
  7. южноамериканский – родина картофеля, табака, ананаса, подсолнечника.

Открытые Н. И. Вавиловым закономерности географического распределения сельскохозяйственных растений и расселения их из первичных центров облегчают работу селекционеров, позволяют быстрее подбирать необходимый для опытов исходный материал и в определенной мере предвидеть результаты. Исходный материал имеет первостепенное значение для успешной селекции. Им могут быть дикие формы, искусственно полученные мутантные формы, особи с комбинативной изменчивостью, сорта и породы‚ полученные в других климатических условиях.

Селекция растений

Основными методами селекции растений являются гибридизация и искусственный отбор.

В начале селекционной работы ставится конкретная задача, для выполнения которой подбирают соответствующие родительские формы. При невозможности найти нужный исходный материал получают индуцированные мутации, среди которых иногда удается найти и полезные, используемые в дальнейшей селекционной работе.

Гибридизация – это получение гибридов от скрещивания генетически разнородных организмов. В селекции применяют близкородственное скрещивание (инбридинг) и скрещивание неродственных организмов (аутбридинг).

Близкородственная гибридизация у растений основана на искусственном опылении своей пыльцой обычно перекрестноопыляемых растений. Самоопыление ведет к повышению гомозиготности и закреплению наследственных свойств. Потомство, полученное от одного гомозиготного растения путем самоопыления, называется чистой линией. У особей чистых линий часто снижаются жизнеспособность и урожайность.

Отдаленная гибридизация позволяет сочетать в одном организме ценные признаки разных видов и даже родов. Такая гибридизация осуществляется с трудом, и межвидовые гибриды обычно бесплодны, так как затруднена конъюгация хромосом разных видов при мейозе. Преодолеть бесплодность межвидовых гибридов впервые удалось Г.Д. Карпеченко (1924). Он получил гибрид редьки и капусты с диплоидным набором хромосом – 9 «редечных» и 9 «капустных», который был бесплоден. Для преодоления бесплодия Карпеченко удвоил число хромосом каждого вида (получил полиплоидную форму гибрида), в результате чего в кариотипе оказалось 36 хромосом, по 18 «редечных» и «капустных». Это создало возможность коньюгации гомологичных хромосом капусты с «капустными» и редьки с «редечными». Каждая гамета несла по одному набору хромосом капусты и редьки (9 + 9 = 18). В зиготе вновь оказывалось 36 хромосом. Полученный межвидовой гибрид стал плодовитым. Таким образом, полиплоидия является одним из способов восстановления плодовитости межвидовых гибридов у растений. Кроме того, многие полиплоидные формы растений обладают большей урожайностью и стойкостью к неблагоприятным условиям среды по сравнению с диплоидными.

После получения гибридов производится искусственный отбор. Отбор заключается в сохранении для размножения растений с желаемой комбинацией признаков. При массовом отборе выделяют группу особей с нужными признаками и получают потомство. При повторных посевах отбор приходится повторять, так как особи могут в дальнейшем давать расщепление. Индивидуальный отбор проводят путем выращивания потомков одной особи. При таком отборе результат достигается быстрее, но потомков получается значительно меньше. Индивидуальный отбор чаще проводят среди самоопыляющихся растений и получают чистые линии, которые дают ценный исходный материал для дальнейшей селекции.

Искусственный отбор на основе наследственной изменчивости служит основным способом получения новых сортов растений. Однако, одновременно на сорт действует и естественный отбор, повышая приспособленность растений к конкретным условиям среды. Вновь созданный сорт всегда является результатом деятельности человека и окружающей среды.

В последние годы селекционеры получают целые растения (плодовые кустарники, земляника) путем стимулирования деления клеток тканей растений в культуре. В этом случае образуются клоны растений с одинаковым генотипом.

Выведение новых высокоурожайных сортов растений позволяет резко интенсифицировать сельскохозяйственное производство и обеспечить население продовольствием. Творческое использование всех методов селекционной работы приводит к большим успехам. Озимая пшеница Безостая 1, созданная академиком П.П. Лукьяненко, имеет высокую урожайность и отличные мукомольные качества. Урожайность новых сортов пшениц (Аврора, Кавказ) достигают 100 ц/га. Академиком Н.В. Цициным получен ценный гибрид пшеницы и ржи – тритикале, который сочетает качества пшеницы (высокие мукомольные качества) и ржи (способность расти на бедных почвах). Коллектив селекционеров, возглавляемый академиком В.С. Пустовойтом, добился увеличения содержания масла в семенах подсолнечника на 20%. За последние годы благодаря созданию новых полиплоидных сортов (А.Н. Лутков, В.П. Зосимович) резко повысилась сахаристость и урожайность сахарной свеклы.

Селекция животных

Основные подходы к селекции животных не отличаются от принципов селекции растений. Новые породы животных получают на основе наследственной изменчивости путем искусственного отбора. Однако селекция животных имеет и некоторые особенности, вытекающие из природы организма животного:

  • животные, имеющие хозяйственное значение, размножаются только половым способом;
  • половая зрелость у них наступает относительно поздно;
  • самки приносят немногочисленное потомство, что затрудняет и замедляет процесс селекции.

При селекционной работе с животными важное значение имеет учет экстерьерных признаков. Экстерьер – это совокупность наружных форм животных, их телосложение и соотношение частей тела. Разные породы животных неодинаково реагируют на изменения внешних условий. Так, у мясных пород крупного рогатого скота улучшение питания прежде всего сказывается на увеличении массы тела, а у молочных – на повышении удоев. Началом селекционной работы является подбор родительских пар исходя из поставленной задачи. В подборе производителей важно учитывать их родословные, в которых должны быть отмечены экстерьерные особенности и продуктивность, в течение ряда поколений.

Скрещивание при работе с животными является основным способом получения разнообразия исходного материала. Как и при селекции растений, применяют два типа скрещивания: неродственное (аутбридинг) и родственное (инбридинг).

Аутбридинг – скрещивание между особями одной или разных пород – при строгом отборе приводит к поддержанию свойств или улучшению их в ряду поколений гибридов.

Инбридинг – скрещивание особей одного поколения или родителей и потомков – применяется для перевода большинства генов в гомозиготное состояние. Происходит закрепление хозяйственно ценных признаков, однако при этом часто наблюдается ослабление животных, уменьшение их устойчивости к воздействию факторов среды. Чтобы этого избежать, проводят строгий отбор особей. При селекционной работе инбридинг обычно является лишь одним из этапов улучшения пореды. За ним следует скрещивание разных линий, что переводит большинство генов в гетерозиготное состояние, при котором проявляется гетерозис (бройлерные цыплята).

В селекции домашних животных для определения наследственных свойств самцов по признакам, которые у них не проявляются, например по количеству молока и жирномолочности у быков или яйценоскости у петухов, используется метод определения качества производителей по потомству. От производителя получают немногочисленное потомство и сравнивают его продуктивность со средней продуктивностью породы. Если продуктивность дочерей выше, чем матерей, то это говорит о большой ценности производителя и его используют для дальнейшего улучшения породы. От хорошего самца можно получить большое потомство с помощью искусственного осеменения. В последнее время эмбрионы ценных пород крупного рогатого скота получают в пробирке или проводят клонирование, а затем полученные эмбрионы вводят в матку беспородных животных для дальнейшего развития. Эти методы позволяют значительно ускорить селекционную работу.

Ценные породы домашних животных получены академиком М.Ф. Ивановым, например белая украинская свинья и асканийский рамбулье. Высокой молочной продуктивностью характеризуется костромская порода крупного рогатого скота.

Наряду с внутривидовой гибридизацией в животноводстве применяется и отдаленная гибридизация. С глубокой древности человек использует мула (гибрид кобылы с ослом). В Казахстане в результате гибридизации тонкорунных овец с диким горным бараном архаром выведена новая порода тонкорунных овец – архаромеринос. Ведутся работы по гибридизации яка с крупным рогатым скотом.

Селекция микроорганизмов

Микроорганизмы способны производить жизненно важные продукты, но природные штаммы их в основном низкопродуктивны. Поэтому в микробиологической промышленности применяют селекционные методы: индуцированный‚ мутагенез и искусственный отбор. Для получения мутаций используют ионизирующие излучения и химические мутагены. Применение мутагенных факторов и целенаправленного отбора позволило повысить продуктивность штаммов в сотни и тысячи раз.

Микроорганизмы отличаются характерными особенностями, важными для производства и селекции:

  • содержат значительно меньше генов, чем клетки высокоорганизованных видов;
  • имеют простую регуляцию генной активности;
  • очень быстро размножаются;
  • их гаплоидный геном позволяет проявляться фенотипически любой мутации уже в первом ппоколении.

Использование человеком живых организмов и биологических процессов для промышленного получения продуктов называется биотехнологией. Биотехнологические процессы используются человеком с древних времен: молочнокислые бактерии – для получения молочнокислых продуктов, различные штаммы дрожжей – в виноделии, пивоварении, хлебопечении.

Особенно интенсивно начала развиваться микробиологическая промышленность с семидесятых годов ХХ века. В качестве питательной среды для бактерий начали использоваться непищевые продукты: жидкие парафины нефти, синтетические спирты, отходы деревообрабатывающей промышленности и др. Получаемые таким путем белково-витаминные препараты позволяют решить проблему нехватки кормового белка и повысить продуктивность животноводства. Кроме того, микробиологическая промышленность производит ферменты, антибиотики, гормоны, аминокислоты и другие лечебные препараты, необходимые человеку.

Для создания новых штаммов микроорганизмов в последнее время применяют генную инженерию конструирование новых генетических структур по заранее намеченному плану. Генная инженерия развивается на базе молекулярной биологии, генетики, биохимии и микробиологии. Генная инженерия включает четыре основных этапа:

  1. получение нужного гена (выделение природного или искусственный его синтез);
  2. включение этого гена в молекулу ДНК-переносчик – получение рекомбинантной молекулы ДНК;
  3. введение рекомбинантной ДНК в клетку, где она встраивается в генетический аппарат;
  4. отбор трансформированных клеток.

На основе генной инженерии в настоящее время уже освоено промышленное производство белка инсулина (гормона поджелудочной железы для лечения диабета) и интерферонов – белков, подавляющих размножение вирусов.

Генная инженерия позволяет конструировать и эукариотические клетки с новой генетической программой. В последнее время получают гибриды соматических клеток разных видов и даже животных и растений. Получены гибриды лимфоцитов с опухолевыми клетками (гибридомы), способные к длительному синтезу антител определенного типа. Созданы растения, способные усваивать атмосферный азот, что в будущем не только обогатит растительную пищу белками, но сделает ненужным применение азотных удобрений.

Биотехнология – одно из ведущих направлений современной биологии. В ближайшем будущем методы генной инженерии позволят человечеству избавиться от ряда наследственных болезней.

Селекция

Селекция (лат. selectio - выбирать) - наука и отрасль практической деятельности, направленная на создание новых сортов растений, пород животных и штаммов микроорганизмов, обладающих полезными для человека свойствами.

Этими полезными свойствами могут быть размер и форма плодов, урожайность, удойность у коров, устойчивость к факторам внешней среды (к засушливому климату, к морозу).

Селекция

Основы селекции

В основе селекции лежит способность генотипа живых организмов к изменениям, что происходит главным образом за счет комбинативной и мутационной изменчивости. В процессе селекции происходит искусственный отбор организмов с полезными для человека свойствами и их размножение.

В результате множества последовательных скрещиваний, в конце концов, селекционерам удается достичь желаемой цели: вывести гибридов с нужными признаками.

Мутационная изменчивость существует благодаря мутациям - случайным ненаправленным изменениям генотипа. Благодаря мутациям, к примеру, возник безалкалоидный сорт люпина. И.В. Мичуриным на яблоне сорта Антоновка Могилевская были обнаружены необычайно крупные плоды, ветвь с которым послужила для появления нового сорта - Антоновки шестистограммовой. Эти плоды - результат произошедшей в естественных условиях мутации соматических клеток.

Антоновка шестистограммовая

"Сколько ждать этой естественной мутации?" - спросите вы. Может один день, а может и 100, и 10000 лет - всем властвует случайность. На наш век может не выпасть удача, а мы такого допустить не можем! :)

Именно по этой причине в селекции растений часто используются искусственно вызванные мутации - авто- и аллополиплоидию.

Автополиплоидия

Автополиплоидия - кратное (4n,6n,8n) увеличение исходного набора хромосом, который характерен для особей вида.

Автополиплоидия возникает в результате обработки почек колхицином, который нарушает образование нитей веретена деления, и, соответственно, нарушает расхождение хромосом в мейозе, в результате чего набор хромосом в половых клетках (гаметах) оказывается удвоенным. Таким способом получают полиплоиды - сорта растений, обладающие повышенной урожайностью.

Существуют различные тетраплоидные сорта свеклы, мака, кукурузы и других сельскохозяйственных культур, которые отличаются большими размерами плодов.

Автополиплоидия

Аллополиплоидия

Аллополиплоидия (греч. állos — другой и polýploos — многократный) - соединение в клетках организма хромосомного набора от разных видов или родов, в результате которого образуется гибридная зигота.

Благодаря аллополиплоидии получают новые сорта растений. Наиболее известным примером является гибрид ржи и пшеницы - тритикале. Некоторые межвидовые гибриды табака обладают повышенной устойчивостью к возбудителям заболеваний мучнистой росы, табачной мозаики.

Тритикале

В рамках биотехнологии разработаны методы, с помощью которых стало возможным создание бактерий, синтезирующих полезные для человека белки, многие из которых используются как лекарства: аминокислоты, антибиотики, инсулин.

Антибиотики

Скрещивание особей в селекции

Каждое скрещивание как сдача новых карт: может повезет, а может и нет. Вполне возможно, что особь унаследует полезные признаки от родителей и сможет передать их своим потомкам, всегда есть и шанс того, что появятся новые полезные для человека признаки, равно как и шанс, что ничего полезного из проводимого скрещивания не выйдет.

    Близкородственное скрещивание (инбридинг - от англ. in — внутри + breeding — разведение)

Близкородственное скрещивание в течение нескольких поколений приводит к переходу генов в гомозиготное состояние, вследствие чего потомство ослабевает и становится более подвержено наследственным заболеваниям.

Замечу, что под инбридингом подразумевают близкородственное скрещивание животных. Для самоопыления у растений существует иной термин - инцухт.

В селекции инбридинг применяют для выведения чистых линий (гомозиготных особей - aa, AA, bb, BB), которые используются, например, для анализирующего скрещивания. Инбридинг использовался при выведении абсолютно всех пород животных, и в настоящее время активно используется в питомниках для выведения нужных пород животных (кошек, собак и т.д.)

Шотландские вислоухие

Аутбридинг заключается в скрещивании неродственных особей, которые могут принадлежать к одному сорту, породе, виду или роду. Аутбридинг ведет к явлению гетерозиса - получения гетерозисных форм, которые превосходят родительских особей по ряду признаков.

Гетерозис - явление увеличения жизнеспособности особей у гибридов, которые получены при скрещивании двух чистых линий. Такой эффект связан с переходом генов в гетерозиготное состояние, что повышает выживаемость организмов, плодовитость, и множество других полезных свойств.

Гетерозис

Применение отдаленной гибридизации заключается в скрещивании особей, принадлежащих к разным родам и видам. Такие особи обладают крайне полезными для человека свойствами, но часто бесплодны (стерильны).

Известным примером отдаленной гибридизации является мул - гибрид осла (самца) и лошади (самки). Отличаются большой выносливостью и работоспособностью, живут до 40 лет, обладают хорошим иммунитетом к заболеваниям, не требовательны в корме и уходе.

Обратный пример: гибрид ослицы (самки) и жеребца (самца) - лошак. Встречаются гораздо реже по сравнению с мулом, так как обладают меньшей выносливостью и работоспособностью. В большинстве случаев бесплодны.

Мул и лошак

Отбор в селекции

Отбор в селекции осуществляет человек с единственной целью: размножить особей с нужными и полезными признаками, свойствами. Очевидно, что такой отбор называется искусственным, в противовес естественному отбору, главный критерий которого - приспособленность.

Отбор организмов исключительно на основе внешних данных (фенотипа). Основным критерием для человека служит проявление признака: размер плодов, цвет лепестков, цвет листьев и т.д. Этот вид отбора характеризуется массовостью и быстротой.

В результате массового отбора формируется группа особей, которые обладают нужными и полезными для человека признаками. В дальнейшем они подвергаются размножению.

Массовый отбор

Выборочный отбор и сохранение особей с ценными для человека признаками. В ходе индивидуального отбора оценивается не только фенотип, но и генотип, вследствие чего данный вид отбора занимает большее время, но оказывается более эффективен.

Индивидуальный отбор требует оценки потомства от выбранной особи в ряду поколений. Иногда подобный отбор применяют у самоопыляемых растений: пшеницы, ячменя - с целью получения чистых линий. Как было сказано ранее, чистые линии характеризуются гомозиготностью и являются исходным материалом для селекции.

Индивидуальный отбор

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Генетика- теоретическая основа селекции

Генетика является теоретической основой селекции. Так как именно знание законов генетики позволяет целенаправленно управлять появление мутаций, предсказывать результаты скрещивания, правильно проводить отбор гибридов. Современный период развития селекции начинается с формирования новой науки-генетики. Генетика-это наука, изучающая наследственность и изменчивость живых организмов(растения, животные, микроорганизмы, люди). Наследственность-это свойство всех живых организмов передавать определенные особенности из поколения в поколение. Изменчивость-это свойство всех живых организмов в процессе своей жизнедеятельности приобретать новые признаки. Изменчивость обусловлена мутациями и различными их комбинациями. Комбинация генов при их взаимодействии может привести к появлению новых признаков или к новому их сочетанию. Селекция-это наука о методах создания новых сортов растений, пород животных или их усовершенствовании . Селекция-это наиболее эффективное средство обеспечения устойчивых урожаев и высокой продуктивности сельскохозяйственных растений и животных. Потому что в случае селекции применяется искусственный отбор, благодаря которому в последующих видах возможно закрепить нужный признак. Все современные методы селекции основаны на принципах генетики.

К особенности селекции животных относят:

1) Для селекции животных характерно только половое размножение;

2) В основном, очень редкая смена поколений;

3) Количество особей в потомстве невелико;

4) Затруднительно выведение чистых линий, так как животные не способны к самооплодотворении.

Основоположником генетики является чешский учёный Грегор Иоганн Мендель(1822-1884). Открытые им закономерности наследования моногенных признаков стали первыми шагами к открытию современной генетики. Мендель поставил серию опытов на горохе, тем самым доказав и установив механизм наследования признаков у живых организмов, которые отличаются по одному признаку. В опытах с огородным горохом учёный показал, что признаки родительских растений при скрещивании не уничтожаются и не смешиваются. Они предаются либо в форме, характерной одному из родителей. Или промежуточной, которая может проявиться вновь в последующих поколениях. Его опыты также доказали, что гены-это материальные носители наследственности. И они различны для каждого. В селекционной работе используют следующие методы гибридизации: инбридинг(близкородственное скрещивание), аутбридинг(межпородное или межсортовое скрещивание) и отдалённую гибридизацию(скрещивание организмов, относящихся к разным видам и родам).

К задачи современной селекции относят:

1) повышение продуктивности организмов;

2) улучшение качества продукции (вкуса ,внешнего вида, химического состава);

3) улучшение хозяйственно-важных физиологических свойств (устойчивости к болезням и вредителям, отзывчивости на удобрения или корм).

Основы научных методов селекции в нашей стране заложил Н.И.Вавилов.

Основные методы селекционной работы это -гибридизация и отбор. Вавилов установил, что у родственных растений возникают мутационные изменения. Он также установил семь центров происхождения культурных растений и их диких сородичей

южно-азиатский или тропический-рис, сахарный тростник, цитрусовые, огурец, баклажан

«Селекция – наука о методах создания новых сортов растений, пород животных и штаммов микроорганизмов. Методы селекционной науки»

Теоретической основой селекции является генетика. Это наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. В основе селекции лежат такие методы, как гибридизация и отбор. Теоретической основой селекции является генетика.

Задачи современной селекции:

- повышение продуктивности организмов;

- улучшение качества продукции (вкуса, внешнего вида, химического состава);

- улучшение хозяйственно важных физиологических свойств (устойчивости к болезням и вредителям, отзывчивости на удобрения или корм).

Для успешного решения задач, стоящих перед селекцией, академик Н.И. Вавилов особо выделял:

- значение изучения сортового, видового и родового разнообразия культур;

- изучения наследственной изменчивости, влияния среды на развитие интересующих селекционера признаков;

- знаний закономерностей наследования признаков при гибридизации, особенностей селекционного процесса для само- или перекрестноопылителей;

- стратегии искусственного отбора.

Для успешной работы селекционеру необходимо сортовое разнообразие исходного материала. Во Всесоюзном институте растениеводства Н.И. Вавиловым была собрана коллекция сортов культурных растений и их диких предков со всего земного шара, которая в настоящее время пополняется и является основой для работ по селекции любой культуры.

Породы, сорта, штаммы — искусственно созданные человеком популяции организмов с наследственно закрепленными особенностями: продуктивностью, морфологическими, физиологическими признаками.

Каждая порода животных, сорт растений, штамм микроорганизмов приспособлены к определенным условиям, поэтому в каждой зоне нашей страны имеются специализированные сортоиспытательные станции и племенные хозяйства для сравнения и проверки новых сортов и пород.

Основой селекции является наука генетика. Знание законов генетики позволяет целенаправленно управлять закреплением мутаций, предсказывать результаты скрещивания и правильно проводить отбор гибридов. В результате применения знаний по генетике удалось создать более 10 тысяч сортов пшеницы на основе нескольких исходных диких сортов, получить новые штаммы микроорганизмов, выделяющих пищевые белки, лекарственные вещества, витамины.

К задачам современной селекции относится создание новых и улучшение уже существующих сортов растений, пород животных и штаммов микроорганизмов.

Многолетняя селекционная работа позволила вывести много десятков пород домашних кур, отличающихся высокой яйценоскостью, большим весом, яркой окраской и т. п. А их единый предок — банковская курица из Юго-Восточной Азии. На территории России не растут дикие представители рода крыжовник. Однако на основе вида крыжовник отклонённый, встречающийся на Западной Украине и Кавказе, получено более 300 сортов, многие из которых прекрасно плодоносят в России.

Основные разделы селекции как науки: 1) учение об исходном материале; 2) учение о типах и источниках наследственной изменчивости; 3) учение о роли среды в развитии признаков и свойств; 4) теория искусственного отбора.

Задачи селекции : 1) улучшение продуктивности пород животных, повышение урожайности сортов растений, имеющихся у человека; 2) выведение новых сортов растений, пород животных и штаммов микроорганизмов, полезных для человека. Для выполнения этих задач у нас существует широкая сеть научных и научно-практических учреждений: институтов, селекционных станций, племенных хозяйств.

Достижения селекции: выведено много новых сортов растений, устойчивых к низким температурам, высокоурожайных, устойчивых к возбудителям болезней и т. д. На Алтае в НИИ растениеводства и садоводства им. М. А. Лисавенко выведены многочисленные сорта яблони, сливы, облепихи, смородины и других плодовых и ягодных культур .

Лекция 12: Генетика- теоретическая основа селекции

Тема занятия: Генетика- теоретическая основа селекции.

Цели: (какие компетенции формируются)

- образовательные - сформировать знания о генетике, определить основные положения селекции;

-развивающие- уметь делать сопоставления о генетике и здоровье человека;

-воспитательные - содействие формированию научного мировоззрения на основе познаваемости и общности законов живой природы.

Тип занятия : Занятие изучения нового материала

Вид занятия : лекция, объяснение, обсуждение.

Оборудование : КТП, рабочая программа, проектор, электронный материал, учебник, карта занятия.

Литература: Ю.Л.Гужав, А.В.Фукс, П.О.Валичек, Селекция и семеноводство.

Ход занятия:

Тема сегодняшнего нашего занятия: Генетика- теоретическая основа селекции.

Цель нашего занятия определить основные положения селекции.

Актуализация опорных знаний обучающихся ( может не быть).

Мотивация учебной деятельности обучающихся.

Для чего нам дальше изучать генетику?

Что подвигло ученых к образованию селекции?

Какие открытия будут в будущем если мы будеть углублять свои знания о генетике?

Изучение нового учебного материала (план занятия).

-Наследственная и ненаследственная изменчивость.
-Генетика и здоровье человека.
-Учение Н.И. Вавилова о центрах многообразия и
происхождения культурных растений.
- Основные методы селекции.

1. Наследственная и ненаследственная изменчивость.

Генотипическая (наследственная) изменчивость – изменчивость, обусловленная возникновением мутаций и их комбинаций при скрещивании.

Изменение свойств и признаков организма может быть обусловлено изменением гена или других элементов генетического аппарата клетки. Такие изменения называют мутациями. Мутации возникают скачкообразно в отдельных половых клетках и сохраняются в поколениях. Примером может служить появление в потомстве гомозиготных белых кроликов черного, у остистой пшеницы безостых форм, у зеленой водоросли хлореллы салатных и т. д.

Изменчивость может быть обусловлена не только мутациями генов, но и различной их комбинацией. Комбинация генов при наличии взаимодействия между ними может привести к появлению новых признаков или к новому их сочетанию. Такую изменчивость называют комбинативной, и возникает она в результате скрещивания.

Мутационная и комбинативная изменчивость обусловлены разнообразием генотипов, поэтому они относятся к генотипической, или наследственной, изменчивости.

Фенотипическая изменчивость – в процессе индивидуального развития наблюдаются закономерные изменения морфологических, физиологических, биохимических и других особенностей организма. Время и порядок появления этих изменений в онтогенезе строго определяются генотипом. Такую изменчивость называют возрастной или онтогенетической. Примеры онтогенетической изменчивости можно привести из личного опыта, вспомнив, как закономерно и постепенно происходит физическое и умственное развитие человека. Онтогенетическая изменчивость отличается от генотипической тем, что организмы, несмотря на их возрастные различия, сохраняют одинаковый генотип. Такую изменчивость относят к фенотипической, или ненаследственной, изменчивости.

Разнообразие в проявлении одинаковых генотипов в различных условиях среды называют модификационной изменчивостью.

Для модификаций характерны следующие признаки:

1. ненаследственный характер модификаций, они не передаются по наследству.

2. степень выраженности модификации прямо пропорциональна силе и продолжительности воздействия на организм фактора, вызывающего модификацию.

3. в большинстве случаев модификация представляет собой приспособительную реакцию организма на какой-либо фактор и т.д.

Границы модификационной изменчивости, которые определяются генотипом, называются нормой реакции. Нормой реакции называют генотипически обусловленную способность организма варьировать степень выраженности признака в определенных пределах в зависимости от условий внешней среды.

2. Генетика и здоровье человека

Селекция – наука о выведении новых и совершенствовании уже существующих старых сортов растений, пород животных и штаммов микроорганизмов с необходимыми человеку свойствами.


Сорт – популяция растений, искусственно созданная человеком, которая характеризуется определенным генофондом, наследственно закрепленными морфологическими и физиологическими признаками, определенным уровнем и характером продуктивности.
Порода – популяция животных, искусственно созданная человеком, которая характеризуется определенным генофондом, наследственно закрепленными морфологическими и физиологическими признаками, определенным уровнем и характером продуктивности.
Штамм – популяция микроорганизмов, искусственно созданная человеком, которая характеризуется определенным генофондом, наследственно закрепленными морфологическими и физиологическими признаками, определенным уровнем и характером продуктивности.

Каковы основные задачи селекции как науки?
• Повышение продуктивности сортов растений, пород животных и штаммов микроорганизмов;
• Изучение разнообразия сортов растений, пород животных и штаммов микроорганизмов;
• Анализ закономерностей наследственной изменчивости при гибридизации и мутационном процессе;
• Исследование роли среды в развитии признаков и свойств организмов;
• Разработка систем искусственного отбора, способствующих усилению и закреплению полезных для человека признаков у организмов с разными типами размножения;
• Создание устойчивых к заболеваниям и климатическим условиям сортов и пород;
• Получение сортов, пород и штаммов, пригодных для механизированного промышленного выращивания и разведения.

Что является теоретической базой селекции?
Теоретической базой селекции является генетика. Она также использует достижения теории эволюции, молекулярной биологии, биохимии и других биологических наук.

3. Учение Н.И. Вавилова о центрах многообразия и происхождения культурных растений

Центр многообразия и происхождения – территория (географическая область), в пределах которой формировался вид или другая систематическая категория сельскохозяйственных культур и откуда они распространились.
Гомологический ряд – сходный ряд наследственной изменчивости у генетически близких видов и родов.

Сформулируйте закон гомологических рядов наследственной изменчивости.
Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости. Целые семейства растений в общем характеризуется определенным циклом изменчивости, проходящий через все роды и виды, составляющие семейство.

hello_html_5a3cf1f8.jpg

4.Основные методы селекции

hello_html_ma4c5340.jpg

Первичное закрепление нового материала ( может не быть): (пробные упражнения), (тренировочные упражнения).

а) упражнения по образцу;

б) упражнения по инструкции;

в) упражнения по заданию учителя.

Творческий перенос знаний и навыков в новые условия с целью формирования умений (творческие упражнения).

1. Задачи селекции. Методы селекции. Работы Н. И. Вавилова

Селекция — это наука о методах создания новых и улучшения существующих пород животных, сортов растений и штаммов микроорганизмов.

Задачи современной селекции:

  • повышение продуктивности организмов;
  • улучшение качества продукции (вкуса, внешнего вида, химического состава);
  • улучшение хозяйственно важных физиологических свойств (устойчивости к болезням и вредителям, отзывчивости на удобрения или корм).

Сорт , порода , штамм — это искусственно созданная устойчивая группа (популяция) живых организмов, имеющая определённые наследственные особенности.

Все особи такой группы имеют сходные морфологические и физиологические признаки, однотипную реакцию на изменение факторов внешней среды, определённый уровень продуктивности.

1. Искусственный отбор используется для сохранения и размножения особей с желаемой комбинацией признаков. Различают массовый и индивидуальный отбор.

При массовом отборе одновременно отбирают большое число особей с нужным признаком, остальные выбраковывают. Это отбор по фенотипу, он не даёт генетически однородного материала. Повторяется многократно.

При индивидуальном отборе (по генотипу) выделяют одну особь с необходимыми признаками и получают от неё потомство.

2. В селекционной работе используют следующие методы гибридизации : инбридинг, аутбридинг и отдалённую гибридизацию.

Инбридинг — близкородственное скрещивание.

При инбридинге скрещиваются потомки с родительскими формами или потомки одних и тех же родителей. Этот тип скрещивания применяют для получения чистых линий , т. е. перевода большинства генов в гомозиготное состояние и закрепления ценных признаков. Нежелательным последствием близкородственного скрещивания является инбредная депрессия — снижение продуктивности и жизнеспособности потомства из-за проявления рецессивных мутаций.

Аутбридинг — неродственное (межпородное или межсортовое) скрещивание.

При неродственном скрещивании может наблюдаться эффект гетерозиса ( гибридной силы ) — повышение жизнеспособности и продуктивности гибридов по сравнению с родительскими формами. Гетерозис проявляется у гибридов первого поколения и обусловлен переходом большинства генов в гетерозиготное состояние. При этом нежелательные рецессивные мутации становятся скрытыми. При половом размножении в следующих поколениях степень гетерозиготности уменьшается и эффект гибридной силы исчезает. Он может сохраняться только при вегетативном размножении.

Отдалённая гибридизация — скрещивание организмов, относящихся к разным видам и родам.

Осуществляется с трудом, а полученные гибриды бесплодны из-за затруднения конъюгации хромосом разных видов в профазе \(I\) мейоза. Разработаны методы преодоления бесплодия.

3. Искусственный ( индуцированный ) мутагенез используют для увеличения разнообразия исходного материала. Мутагенез вызывают действием мутагенных факторов, например, рентгеновского облучения. Мутации носят ненаправленный характер, поэтому селекционер отбирает организмы с новыми полезными свойствами.

Геномной мутацией является полиплоидия , т. е. кратное увеличение числа хромосомных наборов. Используется в селекции растений. Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные формы культурных растений (пшеницы, картофеля, овощных культур) имеют более высокую урожайность, чем родственные диплоидные виды.

Искусственно полиплоидию вызывают обработкой растений колхицином . Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.

Работы Н. И. Вавилова

Для успешной селекционной работы в первую очередь необходим разнообразный исходный материал .

Поиск исходного материала облегчает закон гомологических рядов наследственной изменчивости , открытый Н. И. Вавиловым .

Родственные роды и виды живых организмов характеризуются сходными рядами наследственной изменчивости.

Если известны формы изменчивости одного вида, то можно предположить, что подобные формы будут существовать и у других близкородственных видов.

Н. И. Вавилов установил также семь центров происхождения культурных растений и основал мировую коллекцию семян культурных растений и их диких сородичей.

Читайте также: