Таблица сбора нагрузок на фундамент excel

Обновлено: 10.05.2024

Инструкция по выполнению расчета нагрузок в Excel

Если вам больше нравится смотреть и слушать, чем читать, то на нашем канале в YouTube мы разместили подробную видеоинструкцию о том, как пользоваться нашим сервисом. Обязательно посмотрите ее.

Общие положения

Лист состоит из 5 разделов: Общие данные, Ввод, Источник, Перекос фаз и Расчет нагрузок.

Внимание! Не добавляйте никаких строк внутри первых четырех разделов. Это нарушит работу программы.

Можно копировать листы внутри файла Excel, чтобы держать все расчеты нагрузок для одного проекта, внутри одного файла.

В качестве разделителя разрядов используйте запятую.

Все введенные данные (описания, наименования, комментарии и т.д.) будут отформатированы автоматически. Не отвлекайтесь на мелочи, а занимайтесь творчеством! Рутиной займемся мы.

Если вы случайно испортили файл, то не расстраивайтесь, а скачайте новый в разделе Файлы.

Раздел "Общие данные"

Раздел содержит данные, в основном содержащиеся в угловом штампе.

Совет! Если в вашем проекте несколько щитов, и вы собираетесь использовать наш штамп, то сначала заполните этот раздел. Затем можно скопировать листы и делать расчет нагрузок для каждого щита, чтобы не заполнять повторно "Общие данные"

Рис.1 Схема размещения данных в штампе.

Схема размещения данных в угловом штампе однолинейной схемы электрощита

Раздел "Ввод"

Программа чертит 6 типов схем. На вводе в щит могут находиться:

  1. Рубильник
  2. Автомат
  3. Рубильник + автомат
  4. Рубильник + электросчетчик
  5. Автомат + электросчетчик
  6. Рубильник + автомат+ электросчетчик
  • Марка. Здесь пишется серия автомата, рубильника или счетчика. Для автомата серия подставляется автоматически из ячейки N23. Для рубильника максимум 11 символов, для счетчика 25.
  • Номинал. Здесь пишется: для рубильника номинал - макимум 4 цифры. Для автомата значение подставляется автоматически из ячейки M23. Для счетчика максимум 20 символов. Например, 380/220 5/50A.
  • Комментарий. Здесь можно оставить какой либо комментарий для элемента на чертеже. Например, для счетчика "запрограммировать в однотарифный режим". Максимальная длина комментария для счетчика 90 символов, для автомата и рубильника по 60 символов.

Раздел "Источник"

В этом разделе описывается подключение к источнику, например к ГРЩ. Раздел содержит следующие элементы:

  • Наименование. Маркировка секции в ГРЩ, к которой подключается щит. Максимум 15 символов
  • Номинал автомата. Номинал автомата в ГРЩ, куда подключается щит. Максимум 4 цифры
  • Марка Марка кабеля, которым подключается щит к ГРЩ. Максимум 20 символов
  • Кол-во жил. Количество жил в кабеле, которым подключается щит к ГРЩ. Максимум 2 цифры
  • Сечение. Сечение кабеля, которым подключается щит к ГРЩ. Максимум 4 символа
  • Длина м. Длина кабеля, которым подключается щит к ГРЩ. Максимум 4 цифры

Раздел "Перекос фаз"

В данном разделе показано распределение тока по фазам и перекос тока по фазам в процентном отношении. Раздел добавлен исключительно для наглядности. В генерации чертежа участия не принимает.

Раздел "Расчет нагрузок"

В данном разделе осуществляется расчет нагрузок на электрощит. Заполнять нужно только ячейки, которые не закрашены серым цветом. Все остальные данные будут получены автоматически на основе вычислений.

Ограничения на ввод данных:

Самая первая строка с данными - "Итого на щит". Здесь нужно заполнить только коэффициент спроса на щит, фазу, к которой подключен щит, номинал и модель автомата на вводе щита. Если номинал автомата меньше расчетного тока, то ячейка будет закрашена красным цветом.

Далее идут данные для каждой группы. Чтобы добавить группу, просто скопируйте строку и вставьте ее в нужное место листа. Чтобы удалить группу просто вырежьте всю строку.

Внимание! Подсчет итоговых данных осуществляется от самой первой (верхней) группы к низу листа. Поэтому не вставляйте никаких ненужных данных ниже вашей последней (нижней) строки, во избежание получения неверных результатов.

Описание элементов для каждой группы:

Для создания в щите резервной группы просто оставьте пустой ячейку Pуст. в этом случае на чертеже будут отображаться только фаза, номинал, модель и тип автомата.

Пример заполнения вы можете посмотреть в нашем рабочем файле Excel, который вы можете скачать в разделе файлы.

on CAD

Мы делаем жизнь инженера-проектировщика легче. Повышаем эффективность его труда.

Если вам понравился наш сервис, то непременно расскажите о нас своим друзьям в соцсетях!

Расчет столбчатого фундамента (Excel)


В программе можно быстро произвести расчет столбчатого фундамента по I и II предельному состоянию.
Все расчеты выполняются по актуальным СП на текущую дату 09.2020.

v.0.2 от 30.12.2020 Исправлено:
- Неправильно выводился минимальный процент армирования
- Вывел минимальную площадь арматуры в см2.
- Графики отражают фундамент полностью
- Опечатки
- На графике исправлена отметка грунта

v.0.3 от 26.05.2021 Исправлено:
- Уменьшил количество ступеней до 3 шт
- Откорректированы примечания
- Улучшена графика
- Расчет в общем стал понятнее и интуитивнее
- Теперь ширина подколонника задается в ручную
- Исправлена ошибка при расчете координаты расчетного сечения вдоль оси Х
- Добавлено правило знаков
- Теперь высота рабочего сечения вдоль оси Х рассчитывается точнее
- На график выведены вспомогательные линии пирамиды продавливания
- Откорректирован расчет на прочность ступеней вдоль оси Х

Всегда рад доброй критике и возможным предложениям.

Расчет столбчатого фундамента (Excel)1

Комментарии

Комментарии 1-10 из 12 Евгений Грызунов , 06 сентября 2020 в 13:00

Добрый день. Недавно закончил делать похожую программу, еще свежи формулы в голове.

Добрая критика и предложения:
1. расчетное сопротивление грунта лучше тоже вычислять, т.к. оно зависит от размеров фундамента. Т.е. на одном и том же основании разные по геометрии фундаменты будут иметь разную R
2. расчет на осадку тоже нужен. Он может быть определяющим для габаритов фундамента.
3. изгибающие моменты можно задать в двух плоскостях - у Вас есть вся геометрия для проверки фундамента в другой плоскости. + проверка угловой точки (R > 1.5P)
4. часто бывает разное кол-во ступеней в двух направлениях фундамента. Расчет на продавливание тоже усложняется для такого случая.
5. минимальный процент армирования подошвы фундаментов не регламентируется. (хотя в современных нормах не нашел этого пункта)
6. удобней задавать высоту фундамента, а не высоту подколонника. А то при изменении кол-ва ступеней, нужно изменять высоту подколонника.

77867026670 , 06 сентября 2020 в 13:06 Евгений Грызунов , 06 сентября 2020 в 13:15
По ссылке расчет основания, а тут выложен расчет фундамента. Bunt , 06 сентября 2020 в 13:45

Добрый день. Недавно закончил делать похожую программу, еще свежи формулы в голове.

Добрая критика и предложения:
1. расчетное сопротивление грунта лучше тоже вычислять, т.к. оно зависит от размеров фундамента. Т.е. на одном и том же основании разные по геометрии фундаменты будут иметь разную R
2. расчет на осадку тоже нужен. Он может быть определяющим для габаритов фундамента.
3. изгибающие моменты можно задать в двух плоскостях - у Вас есть вся геометрия для проверки фундамента в другой плоскости. + проверка угловой точки (R > 1.5P)
4. часто бывает разное кол-во ступеней в двух направлениях фундамента. Расчет на продавливание тоже усложняется для такого случая.
5. минимальный процент армирования подошвы фундаментов не регламентируется. (хотя в современных нормах не нашел этого пункта)
6. удобней задавать высоту фундамента, а не высоту подколонника. А то при изменении кол-ва ступеней, нужно изменять высоту подколонника.

qwer18 , 06 сентября 2020 в 19:19

5. минимальный процент армирования подошвы фундаментов не регламентируется. (хотя в современных нормах не нашел этого пункта)


В СНиПе, вроде, отдельно прописывалось, что нет минимального процента армирования для фундаментов, сейчас у же есть.
СП 63.13330.2018
10.4.1 При конструировании основных несущих элементов конструктивной системы
(колонн, стен, плит перекрытий и покрытий, балок, фундаментных плит) следует соблюдать
требования 10.2 и 10.3 по конструированию железобетонных конструкций, а также
настоящего подраздела.
Конец пункта 10.4.10 Армирование фундаментных плит следует производить аналогичным образом. Евгений Грызунов , 06 сентября 2020 в 22:39 Ну вот фундаментные плиты и столбчатые фундаменты наверно разные вещи.
У столбчатого фундамента в сечении по грани колонны или подоконника h0 может быть и 3,0м как там соблюдать минимальный процент? qwer18 , 07 сентября 2020 в 05:46

Ну вот фундаментные плиты и столбчатые фундаменты наверно разные вещи.

Сбор нашрузок на фундамент

Перед строительством дома важно грамотно запроектировать его несущие конструкции. Расчет нагрузки на фундамент позволит обеспечить надежность опор под здание. Его проводят перед подбором фундамента после определения характеристик грунта.

Какие воздействия испытывает фундамент и их определение

  • постоянные;
  • временные.

Постоянные нагрузки

Чтобы рассчитать постоянные нагрузки, потребуется знать:

  • размеры элементов дома;
  • материал, из которого они изготовлены;
  • коэффициенты надежности по нагрузке.

Схема дома

Совет! Для начала рекомендуется нарисовать схему дома, на которой будут нанесены габариты здания, размеры его конструкций. Далее можно воспользоваться таблицей, в которой приведены массы для основных материалов и конструкций.

Тип конструкции Масса
Стены
Из керамического и силикатного полнотелого кирпича толщиной 380 мм (1,5 кирпича) 684 кг/м 2
То же толщиной 510 мм (2 кирпича) 918 кг/м 2
То же толщиной 640 мм (2,5 кирпича) 1152 кг/м 2
То же толщиной 770 мм (3 кирпича) 1386 кг/м 2
Из керамического пустотелого кирпича толщиной 380 мм 532 кг/м 2
То же 510 мм 714 кг/м 2
То же 640 мм 896 кг/м 2
То же 770 мм 1078 кг/м 2
Из силикатного пустотелого кирпича толщиной 380 мм 608 кг/м 2
То же 510 мм 816 кг/м 2
То же 640 мм 1024 кг/м 2
То же 770 мм 1232 кг/м 2
Из бруса (сосна) толщиной 200 мм 104 кг/м 2
То же толщиной 300 мм 156 кг/м 2
Каркасные с утеплением толщиной 150 мм 50 кг/м 2
Перегородки и внутренние стены
Из керамического и силикатного кирпича (полнотелого) толщиной 120 мм 216 кг/м 2
То же толщиной 250 мм 450 кг/м 2
Из керамического кирпича пустотелого толщиной 120 мм (250 мм) 168 (350) кг/м 2
Из силикатного кирпича пустотелого толщиной 120 мм (250 мм) 192 (400) кг/м 2
Из гипсокартона 80 мм без утеплителя 28 кг/м 2
Из гипсокартона 80 мм с утеплителем 34 кг/м 2
Перекрытия
Железобетонные сплошные толщиной 220 мм с цементно-песчаной стяжкой 30 мм 625 кг/м 2
Железобетонные из пустотных плит 220 мм со стяжкой 30 мм 430 кг/м 2
Деревянное по балкам высотой 200 мм с условием укладки утеплителя плотностью не более 100 кг/м 3 (при меньших значениях обеспечивается запас по прочности, поскольку самостоятельные расчеты не имеют высокой точности) с укладкой в качестве напольного покрытия паркета, ламината, линолеума или ковролина 160 кг/м 2
Кровля
С покрытием из керамической черепицы 120 кг/м 2
Из битумной черепицы 70 кг/м 2
Из металлической черепицы 60 кг/м 2

Также потребуется рассчитать собственную массу фундамента дома. Перед этим нужно определиться с глубиной его заложения. Она зависит от следующих факторов:

  • глубина промерзания почвы;
  • уровень расположения грунтовых вод;
  • наличие подвала.

При залегании на участке крупнообломочных и песчаных грунтов (средний, крупный) можно не углублять подошву дома на величину промерзания. Для глин, суглинков, супесей и других неустойчивых оснований, необходима закладка на глубину промерзания грунта в зимний период. Определить ее можно по формуле в СП «Основания и фундаменты» или по картам в СНиП «Строительная климатология» (этот документ сейчас отменен, но в частном строительстве может быть использован в ознакомительных целях).

При определении залегания подошвы фундамента дома важно контролировать, чтобы она располагалась на расстоянии не менее 50 см от уровня грунтовых вод. Если в здании предусмотрен подвал, то отметка основания принимается на 30-50 см ниже отметки пола помещения.

Определившись с глубиной промерзания, потребуется подобрать ширину фундамента. Для ленточного и столбчатого ее принимают в зависимости от толщины стены здания и нагрузки. Для плитного назначают так, чтобы опорная часть выходила за пределы наружных стен на 10 см. Для свай сечение назначается расчетом, а ростверк подбирается в зависимости от нагрузки и толщины стен. Можно воспользоваться рекомендациями по определению из таблицы ниже.

Временные нагрузки

Проще всего здесь разобраться с полезной. Для жилых зданий она равняется 150 кг/м2 (определяется исходя из площади перекрытия). Коэффициент надежности в этом случае будет равен 1,2.

Снеговая зависит от района строительства. Чтобы определить снеговой район потребуется СП «Строительная климатология». Далее по номеру района находят величину нагрузки в СП «Нагрузки и воздействия». Коэффициент надежности равен 1,4. Если уклон кровли более 60 градусов, то снеговую нагрузку не учитывают.

Определение значения для расчета

При расчете фундамента дома потребуется не общая его масса, а та нагрузка, которая приходится на определенный участок. Действия здесь зависят от типа опорной конструкции здания.

Тип фундамента Действия при расчете
Ленточный Для расчета ленточного фундамента по несущей способности нужна нагрузка на погонный метр, исходя из нее рассчитывается площадь подошвы для нормальной передачи массы дома на основание, исходя из несущей способности грунта (точное значение несущей способности грунта можно узнать только с помощью геологических изысканий). Полученную в сборе нагрузок массу нужно разделить на длину ленты. При этом учитываются и фундаменты под внутренние несущие стены. Это самый простой способ. Для более подробного вычисления потребуется воспользоваться методом грузовых площадей. Для этого определяют площадь, с которой передается нагрузка на определенный участок. Это трудоемкий вариант, поэтому при строительстве частного дома можно воспользоваться первым, более простым, способом.
Плитный Потребуется найти массу, приходящуюся на каждый квадратный метр плиты. Найденную нагрузку делят на площадь фундамента.
Столбчатый и свайный Обычно в частном домостроении заранее задают сечение свай и потом подбирают их количество. Чтобы рассчитать расстояние между опорами с учетом выбранного сечения и несущей способности грунта, нужно найти нагрузку, как в случае с ленточным фундаментом. Делят массу дома на длину несущих стен, под которые будут установлены сваи. Если шаг фундаментов получится слишком большим или маленьким, то сечение опор меняют и выполняют расчет заново.

Пример выполнения вычислений

Удобнее всего сбор нагрузок на фундамент дома делать в табличной форме. Пример рассмотрен для следующих исходных данных:

  • дом двухэтажный, высота этажа 3 м с размерами в плане 6 на 6 метров;
  • фундамент ленточный железобетонный монолитный шириной 600 мм и высотой 2000 мм;
  • стены из кирпича полнотелого толщиной 510 мм;
  • перекрытия монолитные железобетонные толщиной 220 мм с цементно-песчаной стяжкой толщиной 30 мм;
  • кровля вальмовая (4 ската, значит, наружные стены по всем сторонам дома будут одинаковой высоты) с покрытием из металлической черепицы с уклоном 45 градусов;
  • одна внутренняя стена посередине дома из кирпича толщиной 250 мм;
  • общая длина гипсокартонных перегородок без утепления толщиной 80 мм 10 метров.
  • снеговой район строительства ll, нагрузка 120 кг/м2 кровли.

Далее рассмотрен пример расчета в табличной форме.

24 м * 3 м = 72 м 2 -площадь в пределах одного этажа

6 м * 2 шт * 3 м = 36 м 2 площадь стен на протяжении двух этажей

Чтобы понять пример, эту таблицу нужно смотреть совместно с той, в которой приведены массы конструкций.

Далее необходимо сложить все полученные значения. Итого нагрузка для данного примера на фундамент с учетом собственного веса составляет 409,7 тонн. Чтобы найти нагрузку на один погонный метр ленты, необходимо разделить полученное значение на протяженность фундамента (посчитано в первой строке таблицы в скобках): 409,7 тонн /30 м = 13,66 т/м.п. Это значение берут для расчета.

При нахождении массы дома важно выполнять действия внимательно. Лучше всего уделить этому этапу проектирования достаточное количество времени. Если совершить ошибку в этой части расчетов, потом возможно придется переделывать весь расчет по несущей способности, а это дополнительные затраты времени и сил. По завершении сбора нагрузок рекомендуется перепроверить его, для исключения опечаток и неточностей.

Расчёт железобетонных конструкций в Excel

Для ускорения расчётов по прочности, и трещиностойкости, да и вообще для возможности проверки подобранной арматуры, нами был разработан специальный файл в формате excel. В данном файле производятся расчёты железобетонных конструкций на изгиб, внецентренное сжатие и косое сжатие по I и II группам предельных состояний по формулам СП 63.13330.2012.

Исходные параметры для расчёта вводим в Блок ввода данных

Screenshot_2

Таблицы автоматически всё пересчитывают и Вы получаете готовый отчёт, оформленный на листах формата А4.

Сбор нагрузок на фундамент

Схема ленточного фундамента

Схема ленточного фундамента

На стадии проектирования строительства жилого дома для правильного определения геометрических размеров фундамента в обязательном порядке выполняется сбор нагрузок, действующих на конструкции здания. От того, насколько точно будет выполнен расчет, зависит общая несущая способность дома или сооружения, его долговечность и прочность. По результатам расчетных данных подбирается площадь фундамента, его конфигурация, глубина расположения нижней отметки. Существуют нормативные строительные документы (СНиП), в которых четко описан принцип составления сбора нагрузок и их предельно допустимые значения.

Разновидность нагрузок

Конструкция фундамента находится под влиянием постоянных и временных нагрузок, значение которых зависит от многих факторов: климатического района застройки, видов грунтов основания, строительных материалов для основных конструкций стен, крыши, перекрытий.

Постоянные нагрузки

К постоянным видам нагрузок относятся:

  • Собственный вес конструкций здания.
  • Расчетные показатели давления грунтов на боковую поверхность ленточного фундамента.
  • Давление от грунтовых вод.

При выполнении расчетов усилия от постоянного веса считаются самым серьезным видом нагрузки.

Временная нагрузка

Конструкция здания может подвергаться периодическим временным нагрузкам, таким как:

  • Снеговая, показатель которой зависит от толщины снежного покрова в каждом конкретном регионе.
  • Ветровая, определяемая по таблице усредненных показателей розы ветров в данной местности.
  • Сейсмическая (для районов с повышенной сейсмичностью).
  • От веса мебели в помещениях и перемещения людей.

Показатели временных нагрузок можно найти в ДБН В.1.2-2 2006 «Нагрузки и воздействия» в разделе 6 по таблице 6.2.

Учет необходимых параметров

Влияние грунтового основания на фундамент

Влияние грунтового основания на фундамент

Для обеспечения надежности несущего основания необходимо грамотно и правильно произвести подсчет всех нагрузок от усилий и внешних факторов, влияющих на проектируемое здание.

Для успешного выполнения сбора нагрузок необходимо предусмотреть следующие параметры:

  1. Климатические условия места под застройку.
  2. Тип почвенных грунтов и их структурные особенности.
  3. Уровень горизонтальной линии грунтовых вод.
  4. Особенности конструкции здания, объема и вида материалов для строительства здания.
  5. Вид кровельной конструкции с материалами.

Все эти факторы служат исходными данными составления расчетной несущей способности ленточного фундамента.

Расчет несущего основания

Схема устройства ленточного фундамента

Схема устройства ленточного фундамента

Глубина залегания

При проведении расчетов по сбору нагрузок на фундамент рекомендуется найти суммарный вес элементов конструкции и определить глубину залегания подошвы ленточной конструкции. Чтобы вычислить необходимую глубину залегания низа ленточного фундамента необходимо определить глубину промерзания грунта и сделать структурный анализ почвы. Для каждого региона существует свой показатель промерзания почвы, выведенный на основе длительных наблюдений и многолетнего опыта.

В строительстве принято закладывать ленточный фундамент на отметке ниже точки промерзания грунта.

Определение нижней отметки

Чтобы легче было понимать принцип сбора исходных данных, рекомендуется обратить внимание на конкретный примерный расчет сбора нагрузок на несущую фундаментную конструкцию с помощью таблиц усредненных коэффициентов.

Например, требуется найти проектную отметку расположения подошвы фундамента жилого дома, расположенного в городе Курск.

Таблица 2. Уровень промерзания почвы

Таблица 2. Уровень промерзания почвы

Таблица помогает вычислить проектную глубину, на которой целесообразно размещать ленточный фундамент. Для выбранного участка строительства с глинистыми грунтами типа «супесь» искомое значение расположения нижней точки ленты фундамента равняет 3/4 табличного значения уровня промерзания грунтов.

Путем несложных арифметических вычислений определяется величина показателя:

120 см х 3/4 =120 см х 0,75 =90 см

Эта цифра показывает минимальную глубину заложения надежного фундамента, которая исключает риски деформации несущих конструкций из-за сезонных циклов замерзания и оттаивания почвы. По желанию застройщика, можно сделать и более заглубленный фундамент. Но и расчетной глубины, равной 90 см, будет вполне достаточно, чтобы получился прочный и надежный жилой дом.

Сбор нагрузок от кровельной конструкции

Расчетный коэффициент материала кровли для сбора кровельной нагрузки

Расчетный коэффициент материала кровли для сбора кровельной нагрузки

Кровельная нагрузка от собственного веса равномерно распределяется на несущие стены дома. Например, если жилой дом оборудован стандартной классической двухскатной крышей, в этом случае она будет опираться на две боковые противоположные крайние стены. Для определения кровельной нагрузки такого вида кровли следует произвести необходимый расчет, который удобно представить в табличном виде:

Пример сбора кровельной нагрузки:

НаименованиеЗначение
1Длина стороны крыши10 м
2Площадь кровли100 м2
3Материал покрытия Черепица
4Коэффициент из таблицы70 кг/м2
5Расчет кровельной нагрузки 100м2 /10м х70 кг/м 2 =700 кг/м2

Суммарный вес от крыши на ленточный фундамент составит: 700 кг/м 2.

Усилия от снежной нагрузки

В зимнее время толщина снежного покрова может достигать максимального размера, который составляет 250–450 мм.

Вначале необходимо найти показатель снеговой нагрузки по табличным данным карты среднего снежного покрова.

Таблица 3. Карта для определения показателя снеговой нагрузки

Таблица 3. Карта для определения показателя снеговой нагрузки

Так как снег равномерно распределяется по всей площади крыши, то показатель снеговой нагрузки напрямую зависит от площади кровли.

В примерном расчете кровля 2-х скатная с уклоном в 45 градусов. Длину одного ската крыши с уклоном 45 градусов определяем по формуле:

Длина cката = (Длина кровли /количество скатов кровли): косинус 45 градусов.
Если подставить в расчет конкретные цифры примера, то получится следующие значения:
Длина cката = (10 м / 2): 0,525 = 9,52 м.

Теперь необходимо вычислить площадь кровли, которая зависит от длины ската, конька кровли и количества скатов крыши:

Площадь кровли = Длина cката х длина конька х количество скатов.

В нашем примере расчетная площадь кровли составляет:

S кровли=9, 52 метра х 10м х 2 =190, 4 м 2.

По справочной таблице 3 снеговой нагрузки находим средний коэффициент снеговой нагрузки для города Курск. Табличное значение составляет 126 кг/м 2.

Чтобы определить нагрузку от веса снега на ленточный фундамент необходимо знать площадь нагруженных стен фундамента: Р снега = (S кровли х коэффициент таблицы): S стен нагруженных фундаментов.

Крыша в нашем примере имеет два ската, значит, снеговую нагрузку воспринимают две стороны ленточного фундамента, длина которых составляет 10 м. Ширина ленточного фундамента 500 мм. Значит, площадь нагружаемых стен фундамента составляет:

(10м +10 м) : 0,5 м=10 м2.

В нашем примере снеговая нагрузка на фундамент составляет:

Р снега = (190,4 м2 х126 кг/м2): 10 м2=2399 кг.

Для удобства и наглядности все расчетные показатели удобно свести в таблицу, в которой видна вся цепочка промежуточных расчетов:

Длина ската (уклон 45 град)9,52 м
1Площадь крыши190,4 м 2
2Снег, коэффициент для Курска126 кг/м 2
3Количество скатов2
4Площадь нагружаемых стен фундамента10м 2
5Снеговая нагрузка2399 кг

Расчетная снеговая нагрузка на конструкцию ленточного фундамента составляет 2399 кг.

Нагрузки от веса этажного перекрытия

Усилие в виде давления от веса перекрытий дома передается на несущие стены и фундамент, поэтому расчет этажных нагрузок находится в прямой зависимости от их суммарной площади.

Таблица 4. Усредненный вес перекрытия

Таблица 4. Усредненный вес перекрытия

В нашем примере, в жилом доме имеется два перекрытия – одно из деревянного массива, а второе монолитная железобетонная плита. По табличным данным 4 определяем искомые показатели и производим дальнейшие расчеты.

Нагрузка от перекрытия 1, выполненного из сборных железобетонных элементов:

Площадь перекрытия = 10 м х 10 м = 100 м .

По таблице 4 находится коэффициент веса железобетонных плит перекрытия, равный 500кг/м 2.

Вычисляем нагрузку от веса перекрытия: 100м2 х 500 кг/м 2=50000 кг.

Нагрузку от перекрытия 2 из деревянных конструкций определяем аналогичным путем: Площадь перекрытия=10 м х10 м=100м2.

Коэффициент веса деревянных конструкций по табличным данным равен 150 кг/м2. Расчетная нагрузка от деревянного перекрытия составляет: 100м2 ж150 кг/м 2 =150000 кг

Суммарный вес нагрузок от перекрытия составляет: 50000 кг +150000 кг=65000 кг

Площадь нагружаемых стен фундамента составляет 10м2 (расчет снеговой нагрузки).

Зная это значение, можно найти нагрузку от веса перекрытий на 1 м2 площади фундамента: 65000 кг: 10 м2=6500 кг

Суммарный вес перекрытий 6500 кг на 1 м 2.

Нагрузки от стен дома

Чтобы вычислить показатель от собственного веса стен дома необходимо знать их объем и общий вес, который зависит от вида применяемого материала для кладки стен. Составляется таблица, в которой легко и наглядно можно увидеть весь путь подсчета данных.

Таблица 5. Усреднённый вес стен.

Таблица 5. Усреднённый вес стен.

Для расчета нагрузки от собственного веса стен здания необходимо выполнить следующие вычисления. Вначале определяем площадь стен здания. В нашем примере длина каждой стены составляет 10 м, высота 3 м. Находим периметр стен: Р = (10+10+10+10) м х 3 м=120 м2.

Для дальнейших расчетов потребуется значение объема стен здания. При толщине наружных стен 0,4 м объем стен составит:

V= 120 м2 х 0,4 м=48 м3. В качестве материала для стен используется пустотелый кирпич. В таблице усредненных показателей находим значение веса кирпича, равный 1400 кг/м3.Используя значение этого коэффициента и объема стен можно найти общую стеновую нагрузку: 48 м3 х1400 кг/м3=67200 кг.

Ширина ленточного фундамента составляет 500 мм. Периметр стен фундамента составляет 40 м.

Площадь стен фундамента:40 м х0,5 м=20м2.

Определяем стеновую нагрузку на 1 м2 фундамента: 67200 кг: 20 м2=3360 кг.

Результаты вычислений заносим в таблицу:

Сторона здания10 м
Периметр 40 мКоэффициент по таблице для кирпича1400 кг/м3
Высота стен3 мОбщий вес стен из кирпича67200 кг
Площадь стен 120 м2Площадь стен фундамента при ширине 500 мм20 м2
Объем стен при толщине стен 400 мм48 м2Расчетная нагрузка на 1 м2 фундамента3360 кг

Сбор дополнительных усилий

Этот показатель учитывает собственный вес конструкции фундамента, который в виде равномерных нагрузок передается непосредственно на грунтовое основание. Для определения этого значения, необходимо знать объем фундамента и удельную плотность строительных материалов, из которых он изготовлен.

Таблица 6.Усредненный показатель плотности материалов

Таблица 6.Усредненный показатель плотности материалов

Для вычисления нагрузки от собственного веса ленточного фундамента используем значения предыдущих расчетов площади стен фундамента 20 м2 и отметки залегания фундамента 0,9 м. Определяем объем ленточного фундамента: 20 м2 х 0,9 м=18 м3.

По таблице усредненных показателей плотности материалов находим значение плотности фундамента из бетона на гранитном щебне, который равен 2300 кг/м3.Для определения нагрузки от собственного веса фундамента используем полученный объем стен фундамента и табличный коэффициент: 18 м2 х 2300 кг/м3 =41400 кг.

Чтобы узнать расчетную нагрузку на 1 м2 фундамента используется общая нагрузка от веса фундамента и площадь стен фундамента: 41400 кг: 20 м2=2079 кг/м2

Данные заносим в таблицу

Площадь фундамента20 м2
1Отметка залегания низа фундамента0,9 м
2Объем фундамента18 м3
3Коэффициент плотности бетона2300 кг/м3
4Общая нагрузка на грунт41300 кг
5Расчетная нагрузка на 1 м2 фундамента2065 кг/м2

Общая суммарная нагрузка на грунт составит 2065 кг/кв.м.

Видеопример расчета фундамента:

После учета показателей нагрузок от расчетных усилий на ленточный фундамент, принимается окончательное решение по габаритам конструкции опорной части жилого дома. При этом важно не превышать предельно допустимую суммарную нагрузку, которую способен выдержать фундамент.

Сбор нагрузок (пример)

2_sn

Расчеты строительных конструкций, как правило, начинают со сбора нагрузок. Что бы правильно собрать нагрузки, необходимы справочные данные и учет требований строительных норм и правил. Этот раздел содержит некоторые данные, собранные из нормативных документов, которыми приходится часто пользоваться.

Если необходимо быстро собрать нагрузки и посмотреть как это делается, то переходим на эту страницу:

При выполнении расчетов строительных конструкций следует учитывать все стадии работы конструкций:

Основные характеристики нагрузок устанавливает СНиП 2.01.07-85* НАГРУЗКИ И ВОЗДЕЙСТВИЯ

Классификация нагрузок.

Нагрузки бывают нормативные и расчетные.

Нормативные нагрузки, как правило, используются для расчета по деформациям и на выносливость, т.к. коэффициент надежности по нагрузке равен 1.

Расчетные нагрузки используются для расчетов на прочность и устойчивость.

В зависимости от продолжительности нагрузки бывают:

— постоянные нагрузки (Собственные вес);

— временны нагрузки (Длительные, кратковременные, особые)

Длительные нагрузки действуют продолжительное время, например нагрузки от оборудования или временных перегородок.

Кратковременные нагрузки появляются и исчезают за относительно короткий промежуток времени. Например, снеговые и ветровые нагрузки.

Особые нагрузки — это воздействие на конструкций вызванное землетрясениями, авариями, разрушениями, пожарами и т.п.

Сочетания нагрузок.

Сочетания нагрузок бывают двух типов: основное и особое.

Основное сочетание нагрузок включает в себя постоянные нагрузки и не менее двух временных нагрузок. Постоянные нагрузки умножают на коэффициент сочетания равный 0,95, а кратковременные нагрузки умножают на коэффициент сочетания равный 0,9.

Особое сочетание нагрузок включает в себя основное сочетание нагрузок плюс особая нагрузка, которая принимается с коэффициентом сочетания равным 1.

В основных сочетаниях при учете трех и более кратковременных нагрузок их расчетные значения допускается умножать на коэффициент сочетания y2, принимаемый для первой (по степени влияния) кратковременной нагрузки — 1,0, для второй — 0,8, для остальных — 0,6.

Нагрузка на основание фундамента

Рассмотрим нагрузки на основание от столбчатых фундаментов:

При расчете нагрузок на основание (грунт), следует учитывать не только нагрузки передаваемые на основание от вышележащих конструкций (колонны, стены и т.п.), но и вес самого фундамента, а также вес грунта, расположенного выше опорной плиты.

Рассмотрим следующие типы столбчатых фундаментов:

Нагрузка на основание от столбчатого фундамента Тип 1.

Такой фундамент применяется при наличии надежных непучинистых грунтах и небольших нагрузках. Обычно это фундаменты мелкого заложения.

Нагрузка на основание от столбчатого фундамента Тип 2.

Это самый распространенный тип фундамента. Состоит из двух частей: стакан и фундаментная плита. Оптимальное соотношение простоты и эффективности. Трудоемкость изготовления не большая. Часто изготавливается в заводских условиях, а после доставляется на строительную площадку.

Нагрузка на основание от столбчатого фундамента Тип 3.

Такой фундамент используют при больших вертикальных нагрузках. Две ступени используют для исключения изгибающих моментов в опорной плите фундамента.

Сбор нагрузок на фундамент. Как рассчитать, примеры

Нагрузки на основание бывают постоянные Pd и временные (длительные Pl, кратковременные Pt, особые Ps).

Таблица 1 - Классификация нагрузок

вес частей сооружений, в том числе несущих и ограждающих строительных конструкций.

вес временных перегородок, подливок и подбетонок под оборудование, вес стационарного оборудования, заполняющих его жидкостей, твердых тел и др.

воздействия от людей (животных, оборудования) на перекрытия, от подвижного подъемно-транспортного оборудования, от транспортных средств и климатические (снеговая, ветровая и т.д.).

сейсмическое, взрывное воздействие, воздействие от столкновения транспортных средств с частями сооружения, воздействия, обусловленные пожаром или деформациями основания, сопровождающимися коренным изменением структуры грунта.

Чтобы правильно рассчитать воздействие на фундамент, необходимо выполнить сбор всех нагрузок. В примерах, приведенных в этой статье, учтены те виды воздействия, которые принципиальны при расчете фундамента из винтовых свай для объектов ИЖС.

2. Постоянные нагрузки. Как рассчитать вес частей сооружения?

Чтобы посчитать вес строения, нужно знать только удельный вес материалов и их объемы. Такие данные с легкостью могут предоставить поставщики строительных материалов.

При выполнении расчетов можно также использовать усредненные значения удельного веса конструкций. Для удобства они приведены в таблице 2.

Таблица 2 - Справочные данные с усредненными значениями удельного веса конструкций дома: стен, перекрытий, кровли.

Удельный вес 1 м 2 стены

Каркасные стены толщиной 200 мм с утеплителем

Стены из бревен и бруса

Кирпичные стены толщиной 150 мм

Железобетон толщиной 150 мм

Удельный вес 1 м 2 перекрытий

Чердачное по деревянным балкам с утеплителем, плотностью до 200 кг/м 3

Чердачное по деревянным балкам с утеплителем плотностью до 500 кг/м 3

Цокольное по деревянным балкам с утеплителем, плотностью до 200 кг/м 3

Цокольное по деревянным балкам с утеплителем, плотностью до 500 кг/м 3

Удельный вес 1 м 2 кровли

Кровля из листовой стали

Кровля из шифера

Кровля из гончарное черепицы

Согласно п. 4.2. СП 20.13330.2011 расчетное значение нагрузки определяется как произведение ее нормативного значения на коэффициент надежности по нагрузке (γf) для веса строительных конструкций, соответствующий рассматриваемому предельному состоянию:

Таблица 3 - Таб. 7.1 СП 20.13330.2011

Конструкции сооружений и вид грунтов

Коэффициент надежности, γf

Бетонные (со средней плотностью свыше 1600 кг/м), железобетонные, каменные, армокаменные, деревянные

Бетонные (со средней плотностью 1600 кг/м, изоляционные, выравнивающие и отделочные слои (плиты, материалы в рулонах, засыпки, стяжки и т.п.), выполняемые:

в заводских условиях

на строительной площадке

В природном залегании

На строительной площадке

Выполним расчеты на примере каркасно-щитового дома с мансардой с размерами в плане 6х9 м:

дом,6х9,каркасно-щитовой.jpg

Чтобы посчитать вес от стен дома необходимо вычислить их периметр. Периметр наружных стен + внутренние стены: Р=47 м, среднюю высоту стен примем h=4,5 м. Тогда вес от конструкции стен будет равен: Р х h х удельный вес материала стен.

47 м х 4,5 м х 70 кг/м 2 = 14 805 кг = 14,8 т.

Далее посчитаем вес крыши. Принимаем, что вес крыши (деревянная стропильная система с покрытием из металлочерепицы) равен 40 кг/м 2 (суммарный вес металлочерепицы, обрешетки, стропилы). Тогда вес крыши будет равен:S крыши х удельный вес 1 м 2 .

92 м 2 х 40 кг/м 2 = 3 680 кг = 3,7 т.

Также необходимо посчитать вес от перекрытий. Принимаем, что вес деревянного пола вместе с утеплителем будет равен 100 кг/м 2 . Тогда вес от перекрытий будет равен:S перекрытия*удельный вес*количество.

54 м 2 х 0,1 т/м 2 х 2 = 10,8 т.

После того как выполнены все необходимые расчеты, полученный вес сооружения умножаем на коэффициент надежности, о котором мы говорили ранее (в расчете для каркасно-щитового дома коэффициент принимаем равным 1,1 – для деревянных конструкций):

29,3 т х 1,1 = 32,2 т

Нагрузка от самого здания составит 32,2 т. Этот вес принят условно, без вычета дверных и оконных проемов.

Программа Сбор нагрузок на здания

Программа Сбор нагрузок на здания

Формат XLS
Все просто: вводите нормативную нагрузку, шаг рам и прогонов и опа, вот вам погонная расчетная нагрузка со всеми коэффициентами. Удобно при формировании отчетов в ворде.

Похожие разделы

Смотрите также

Балка

  • формат html, txt
  • размер 350.43 КБ
  • добавлен 07 декабря 2008 г.

Программа для расчёта однопролетных статически определимых балочных систем, построения эпюр поперечных сил и изгибающих моментов, возникающих в балке от приложенных внешних нагрузок. Также производится подбор сечения стальных балок, описанных в сортаменте металлопроката, прилагаемом с данной программой.rn

Карякин А.А. Расчет поперечной рамы одноэтажного промышленного здания с использованием программного комплекса ЛИРА 9.6

  • формат pdf
  • размер 1.65 МБ
  • добавлен 05 августа 2011 г.

Учебное пособие. – Челябинск, ЮУрГУ, 2010. – 67 с. Пособие содержит пример статического расчета и конструирования железобетонных и стальных конструкций поперечной рамы одноэтажного промышленного здания (ОПЗ) с использованием программного комплекса «ЛИРА 9.6». Приведены рекомендации по компоновке рамы ОПЗ и даны все необходимые ссылки на учебную и нормативную литературу. Пособие предназначено для студентов всех строительных специальностей всех ф.

Расчет крановых нагрузок

  • формат xmcd
  • размер 45.55 КБ
  • добавлен 15 октября 2009 г.

Полноценная программа в Mathcad 13 для расчета всех компонентов крановых нагрузок необходимых для расчета каркасов крановых зданий (в т. ч. с неразрезными балками) и самих подкрановых балок. - исправлен косяк (считалось в запас надежности) - добавлены компоненты нагрузок для расчета самих балок - выведены промежуточные результаты расчета (для тестирования) - добавлена схема кранаrn

Расчет энергетического паспорта здания (теплотехнический расчет)

  • формат txt, xls
  • размер 34.87 КБ
  • добавлен 16 мая 2010 г.

Довольно полный энергетический расчет здания с таблицами, СНиПами. Прост в использовании. Excel. Все расчетные программы выполнены отдельными энтузиастами для облегчения труда при расчете и проектировании строительных конструкций и предназначены для проверочного расчета. Результаты расчета не служат основанием для принятия проектного решения, а лишь являются ориентировочным результатом, который требует дальнейшей перепроверки, согласно действующ.

ФОК-ПК 2008

  • формат txt
  • размер 26.75 МБ
  • добавлен 29 июня 2010 г.

Программа предназначена для проектирования отдельно стоящих фундаментов под колонны каркасных зданий на естественном, свайном забивном и свайном буронабивном основании. 1. Решение прямой задачи - проектирование фундамента под колонну по описанию проектной ситуации. 2. Решение обратной задачи - подбор из номенклатуры пользователя или поверка ранее запроектированных фундаментов. 3. Определение осадок (и просадок) запроектированных фундаментов с уче.

Фундамент 12.4

  • формат exe
  • размер 5.83 МБ
  • добавлен 02 февраля 2010 г.

Программа позволяет производить различные расчеты: подпорных стен с естественным основанием столбчатых и ленточных c естественным основанием крен и осадок фундамента с естественным основанием, расчеты основаны на трех теориях, суффозионной осадке, усадки при набухании, просадки, подъема осадки, при учете влияния заложенных рядом фундаментов столбчатых свайных и ленточных подпорных стен на основании из свай несущей способности свай осадки.

Base 7.4 для строителей и архитекторов

  • формат exe
  • размер 9.53 МБ
  • добавлен 03 марта 2011 г.

Удобная маленькая программа для расчетов фундаментов, свай, др. элементов зданий, расчета нагрузок, теплотехнических характеристик, инсоляции, проектирования узлов и проч и проч. Программа необходима и полезна архитекторам, строителям, студентамrn

Floor Estimate Pro 3.0b

  • формат txt, exe, pdf
  • размер 14.91 МБ
  • добавлен 12 ноября 2010 г.

Небольшая программа для создания схем этажей здания. За основу расчетов приняты соответствующие СНиП. +ключ

Herz C.O 3.5

  • формат exe
  • размер 6.27 МБ
  • добавлен 17 сентября 2009 г.

Программа Herz C.O. версия 3.5 предназначена для гидравлического расчета одно- и двухтрубных систем отопления и охлаждения, при проектировании новых систем, а также для регулирования существующих в реконструируемых зданиях (например, после утепления здания), имеет возможность расчета систем, где теплоносителем являются гликолиевые смеси. Программа предоставляет возможность для выполнения полностью всех гидравлических расчетов оборудования, в рам.

Weter 1.0 - Программа для расчета на устойчивость от ветровых нагрузок

  • формат doc
  • размер 345.38 КБ
  • добавлен 17 апреля 2009 г.

Программа заменяет многочасовые труды многих студентов, которым приходится вручную производить расчеты на устойчивость от ветровых нагрузок. Программу желательно запускать через Norton Commander, т. к. на многих версиях WinXP она почему-то отказывается работать. В архиве присутствует подробная инструкция.

Читайте также: